Pub Date : 2021-11-01DOI: 10.34314/jalca.v116i11.4662
S. Kailasam, K. Balaji, S. Kanth
The current study focuses on the isolation of Bacillus cerus from mangrove rhizosphere and its ability to treat semi-chrome process liquor of upper leathers. This strain has been identified by its molecular characteristics (16s rRNA sequencing) and confirmation has been obtained from neighbor joining tree. Minimum inhibitory concentration of the strain has been found to be 50 ppm. The growth pattern of this organism has been investigated in the presence of chromium, which showed the bacterial strain can grow luxuriantly at 50 and 100 ppm concentration of chromium. Biosorption study has been conducted at different concentrations (50, 100, 150, 200 and 250 ppm) of chromium. The biosorption capability of Bacillus cerus has been found to be 80.78, 73.19, 65.86, 59.44 and 39.27% for 50, 100, 150, 200 and 250 ppm respectively. Chromium sorption from the semi-chrome process liquor by Bacillus cerus has also been investigated, which showed a reduction of 76.15, 68.56, 61.63, 56.29 and 36.51% against 50, 100, 150, 200 and 250 ppm of chromium. Sorption characterization has been carried out by FTIR (Fourier Transform Infra-Red spectroscopy) and SEM (Scanning Electron Microscopy) analyses and the results confirmed the presence of sorption of chromium in Bacillus cerus.
{"title":"Biosorption of Chromium from Spent Semi-Chrome Liquor: Part 1 Effective Pollution Abatement using Bacillus cerus","authors":"S. Kailasam, K. Balaji, S. Kanth","doi":"10.34314/jalca.v116i11.4662","DOIUrl":"https://doi.org/10.34314/jalca.v116i11.4662","url":null,"abstract":"The current study focuses on the isolation of Bacillus cerus from mangrove rhizosphere and its ability to treat semi-chrome process liquor of upper leathers. This strain has been identified by its molecular characteristics (16s rRNA sequencing) and confirmation has been obtained from neighbor joining tree. Minimum inhibitory concentration of the strain has been found to be 50 ppm. The growth pattern of this organism has been investigated in the presence of chromium, which showed the bacterial strain can grow luxuriantly at 50 and 100 ppm concentration of chromium. Biosorption study has been conducted at different concentrations (50, 100, 150, 200 and 250 ppm) of chromium. The biosorption capability of Bacillus cerus has been found to be 80.78, 73.19, 65.86, 59.44 and 39.27% for 50, 100, 150, 200 and 250 ppm respectively. Chromium sorption from the semi-chrome process liquor by Bacillus cerus has also been investigated, which showed a reduction of 76.15, 68.56, 61.63, 56.29 and 36.51% against 50, 100, 150, 200 and 250 ppm of chromium. Sorption characterization has been carried out by FTIR (Fourier Transform Infra-Red spectroscopy) and SEM (Scanning Electron Microscopy) analyses and the results confirmed the presence of sorption of chromium in Bacillus cerus.","PeriodicalId":17201,"journal":{"name":"Journal of The American Leather Chemists Association","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86040737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-01DOI: 10.34314/jalca.v116i11.4663
Zhi-Kua Chen, Tao Luo, Xu Zhang, B. Peng, Chunxiao Zhang
Leather made with soybean phospholipid fatliquors is prone to problems such as yellowing, elevated hexavalent chromium content, and undesirable odor. In this study, the aforementioned typical defects of soybean phospholipid fatliquors were investigated in respect to the main components, the antioxidants and the unsaturation degree of the natural soybean phospholipid. The results showed that the oxidation of soybean phospholipid is the primary source for its yellowing, elevated hexavalent chromium content, and undesirable odor. The volatile aldehydes produced by lipid oxidative rancidity are the main components of the undesirable odor. The purification of natural soybean phospholipid through removing the non-phospholipid components cannot solve the problems caused by oxidation of phospholipid. Furthermore, as a typical natural antioxidant existing in natural soybean phospholipid, tocopherols can restrain the oxidation of phospholipid to a certain degree, however, the dissolving out and destruction of tocopherols at high temperature in the phospholipid purification process can lead to more obviously oxidation of phospholipids. Additionally, the oxidation defects of phospholipid cannot be completely resolved by adding extra tocopherols, even at high dosages. The research finds that the defects of soybean phospholipid fatliquors can be thoroughly solved by increasing the saturation degree of lipid through addition reaction, the suggested iodine value of phospholipid products is lower than 20 g I2/100 g.
用大豆磷脂脂质制成的皮革容易出现发黄、六价铬含量升高和难闻气味等问题。本研究从大豆磷脂的主要成分、抗氧化剂和天然大豆磷脂的不饱和程度等方面考察了上述大豆磷脂脂类的典型缺陷。结果表明,大豆磷脂氧化是其发黄、六价铬含量升高和产生异味的主要原因。油脂氧化酸败产生的挥发性醛是产生不良气味的主要成分。通过去除非磷脂成分提纯天然大豆磷脂,并不能解决磷脂氧化带来的问题。此外,作为天然大豆磷脂中存在的一种典型的天然抗氧化剂,生育酚可以在一定程度上抑制磷脂的氧化,但在磷脂纯化过程中,生育酚在高温下的溶出和破坏会导致磷脂的氧化更加明显。此外,磷脂的氧化缺陷不能通过添加额外的生育酚完全解决,即使在高剂量。研究发现,通过加成反应提高脂质饱和度,可以彻底解决大豆磷脂脂质液的缺陷,磷脂产品的建议碘值低于20 g /100 g。
{"title":"Typical Defects of Natural Phospholipid Fatliquors in Leather Industry and Their Solutions","authors":"Zhi-Kua Chen, Tao Luo, Xu Zhang, B. Peng, Chunxiao Zhang","doi":"10.34314/jalca.v116i11.4663","DOIUrl":"https://doi.org/10.34314/jalca.v116i11.4663","url":null,"abstract":"Leather made with soybean phospholipid fatliquors is prone to problems such as yellowing, elevated hexavalent chromium content, and undesirable odor. In this study, the aforementioned typical defects of soybean phospholipid fatliquors were investigated in respect to the main components, the antioxidants and the unsaturation degree of the natural soybean phospholipid. The results showed that the oxidation of soybean phospholipid is the primary source for its yellowing, elevated hexavalent chromium content, and undesirable odor. The volatile aldehydes produced by lipid oxidative rancidity are the main components of the undesirable odor. The purification of natural soybean phospholipid through removing the non-phospholipid components cannot solve the problems caused by oxidation of phospholipid. Furthermore, as a typical natural antioxidant existing in natural soybean phospholipid, tocopherols can restrain the oxidation of phospholipid to a certain degree, however, the dissolving out and destruction of tocopherols at high temperature in the phospholipid purification process can lead to more obviously oxidation of phospholipids. Additionally, the oxidation defects of phospholipid cannot be completely resolved by adding extra tocopherols, even at high dosages. The research finds that the defects of soybean phospholipid fatliquors can be thoroughly solved by increasing the saturation degree of lipid through addition reaction, the suggested iodine value of phospholipid products is lower than 20 g I2/100 g.","PeriodicalId":17201,"journal":{"name":"Journal of The American Leather Chemists Association","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74998201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-01DOI: 10.34314/jalca.v116i11.4661
M. Sathish, D. Seeniammal, R. Poornima, J. Rao
Antimicrobial agents have been used in leather manufacturing to prevent leather products from microbial contamination. In this work, the antifungal activity of green solvent such as propylene carbonate was investigated against the mixed culture of fungi isolated from wet-blue using broth dilution/well diffusion. A concentration of 5% and above (propylene carbonate) showed effective antifungal activity against the mixed culture of fungi and the efficiency of propylene carbonate on the mixed culture increased with increasing concentration/volume. Propylene carbonate exhibited fungistatic activity against the mixed culture of fungi but it lost its activity after a certain period and fungal growth was observed again. It was also found that 2% propylene carbonate in chrome tanning process effectively inhibited the fungal growth and the wet-blue can be preserved up to 30 days without any fungal attack.
{"title":"Evaluation of Antifungal Activity of Carbonate Solvent – Part:1","authors":"M. Sathish, D. Seeniammal, R. Poornima, J. Rao","doi":"10.34314/jalca.v116i11.4661","DOIUrl":"https://doi.org/10.34314/jalca.v116i11.4661","url":null,"abstract":"Antimicrobial agents have been used in leather manufacturing to prevent leather products from microbial contamination. In this work, the antifungal activity of green solvent such as propylene carbonate was investigated against the mixed culture of fungi isolated from wet-blue using broth dilution/well diffusion. A concentration of 5% and above (propylene carbonate) showed effective antifungal activity against the mixed culture of fungi and the efficiency of propylene carbonate on the mixed culture increased with increasing concentration/volume. Propylene carbonate exhibited fungistatic activity against the mixed culture of fungi but it lost its activity after a certain period and fungal growth was observed again. It was also found that 2% propylene carbonate in chrome tanning process effectively inhibited the fungal growth and the wet-blue can be preserved up to 30 days without any fungal attack.","PeriodicalId":17201,"journal":{"name":"Journal of The American Leather Chemists Association","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76830685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-01DOI: 10.34314/jalca.v116i10.4616
Jie Liu, Yanchun Liu, E. M. Brown, Zhengxin Ma, Cheng‐Kung Liu
The leather industry generates considerable amounts of solid waste and raises many environmental concerns during its disposal. The presence of collagen in these wastes provides a potential protein source for the fabrication of bio-based value-added products. Herein, a novel composite film was fabricated by incorporating vegetable-tanned collagen fiber (VCF), a mechanically ground powder-like leather waste, into a chitosan matrix and crosslinked with genipin. The obtained composite film showed a compact structure and the hydrogen bonding interactions were confirmed by FTIR analysis, indicating a good compatibility between chitosan and VCF. The optical properties, water absorption capacity, thermal stability, water vapor permeability and mechanical properties of the composite films were characterized. The incorporation of VCF into chitosan led to significant decreases in opacity and solubility of the films. At the same time, the mechanical properties, water vapor permeability and thermal stability of the films were improved. The composite film exhibited antibacterial activity against food-borne pathogens. Results from this research indicated the potential of the genipin-crosslinked chitosan/VCF composites for applications in antimicrobial packaging.
{"title":"Fabrication of Composite Films Based on Chitosan and Vegetable-Tanned Collagen Fibers Crosslinked with Genipin","authors":"Jie Liu, Yanchun Liu, E. M. Brown, Zhengxin Ma, Cheng‐Kung Liu","doi":"10.34314/jalca.v116i10.4616","DOIUrl":"https://doi.org/10.34314/jalca.v116i10.4616","url":null,"abstract":"The leather industry generates considerable amounts of solid waste and raises many environmental concerns during its disposal. The presence of collagen in these wastes provides a potential protein source for the fabrication of bio-based value-added products. Herein, a novel composite film was fabricated by incorporating vegetable-tanned collagen fiber (VCF), a mechanically ground powder-like leather waste, into a chitosan matrix and crosslinked with genipin. The obtained composite film showed a compact structure and the hydrogen bonding interactions were confirmed by FTIR analysis, indicating a good compatibility between chitosan and VCF. The optical properties, water absorption capacity, thermal stability, water vapor permeability and mechanical properties of the composite films were characterized. The incorporation of VCF into chitosan led to significant decreases in opacity and solubility of the films. At the same time, the mechanical properties, water vapor permeability and thermal stability of the films were improved. The composite film exhibited antibacterial activity against food-borne pathogens. Results from this research indicated the potential of the genipin-crosslinked chitosan/VCF composites for applications in antimicrobial packaging. ","PeriodicalId":17201,"journal":{"name":"Journal of The American Leather Chemists Association","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86320928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-01DOI: 10.34314/jalca.v116i10.4618
Abhinandan Kumar, J. Alla, Deepika Arathanaikotti, J. Raj, N. K. Chandrababu
Chrome tanned leathers are definitely unique in comparison with leather made from any other known tanning agents, especially in terms of thermal stability, cost and its reactive mechanism with collagen fibers. In our current studies, self basifying chrome tanning materials masked with different percentages of organic acid were prepared and applied after the de-liming stage of leather processing. This eliminated the need for pickling and basification steps. Tanned leathers resisted shrinkage up to 103 and 105±2°C while conventional chrome tanned leathers resisted up to 108±2°C. Also, interaction of anionic chrome species in tanning was studied. It was observed that the percentage of anionic species in the experimental chrome tanning material was higher than conventional chrome tanning material and the shrinkage temperature achieved by application of experimental tanning material proves that anionic species do involve in tanning. Tanned leathers were crusted and analysed for strength and organoleptic properties.
{"title":"Role of Anionic Chromium Species in Leather Tanning","authors":"Abhinandan Kumar, J. Alla, Deepika Arathanaikotti, J. Raj, N. K. Chandrababu","doi":"10.34314/jalca.v116i10.4618","DOIUrl":"https://doi.org/10.34314/jalca.v116i10.4618","url":null,"abstract":"Chrome tanned leathers are definitely unique in comparison with leather made from any other known tanning agents, especially in terms of thermal stability, cost and its reactive mechanism with collagen fibers. In our current studies, self basifying chrome tanning materials masked with different percentages of organic acid were prepared and applied after the de-liming stage of leather processing. This eliminated the need for pickling and basification steps. Tanned leathers resisted shrinkage up to 103 and 105±2°C while conventional chrome tanned leathers resisted up to 108±2°C. Also, interaction of anionic chrome species in tanning was studied. It was observed that the percentage of anionic species in the experimental chrome tanning material was higher than conventional chrome tanning material and the shrinkage temperature achieved by application of experimental tanning material proves that anionic species do involve in tanning. Tanned leathers were crusted and analysed for strength and organoleptic properties.","PeriodicalId":17201,"journal":{"name":"Journal of The American Leather Chemists Association","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83588008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-01DOI: 10.34314/jalca.v116i10.4615
J. Liu, D. He, Cheng Hualin, K. Ding
In order to investigate the change of chemical bonds between tanning agents and collagen molecules directly, hide powder tanned by aluminum, silicon and phosphorus tanning agents were prepared. The chemical shifts of Al, Si and P in tanned hide powder were analyzed by solid-state 27Al NMR, 29Si NMR and 31P NMR. The results showed that, the chemical shift of Al in aluminum tanned hide powder which interacted with collagen molecules through coordination bond could be regarded as unchanging after hydrothermal denaturation (only slightly moved to high field area). The chemical shift of Si in silicon tanned hide powder which interacted with collagen molecules through hydrogen bond did not change after hydrothermal denaturation. The chemical shift of P in phosphorus tanned hide powder, which interacted with collagen molecules through covalent bond, was obviously shifted to the high field area after hydrothermal denaturation.
{"title":"Solid State NMR Analysis for Hide Powder Tanned by Aluminum, Silicon and Phosphorus Tanning Agents before and after Hydrothermal Denaturation","authors":"J. Liu, D. He, Cheng Hualin, K. Ding","doi":"10.34314/jalca.v116i10.4615","DOIUrl":"https://doi.org/10.34314/jalca.v116i10.4615","url":null,"abstract":"In order to investigate the change of chemical bonds between tanning agents and collagen molecules directly, hide powder tanned by aluminum, silicon and phosphorus tanning agents were prepared. The chemical shifts of Al, Si and P in tanned hide powder were analyzed by solid-state 27Al NMR, 29Si NMR and 31P NMR. The results showed that, the chemical shift of Al in aluminum tanned hide powder which interacted with collagen molecules through coordination bond could be regarded as unchanging after hydrothermal denaturation (only slightly moved to high field area). The chemical shift of Si in silicon tanned hide powder which interacted with collagen molecules through hydrogen bond did not change after hydrothermal denaturation. The chemical shift of P in phosphorus tanned hide powder, which interacted with collagen molecules through covalent bond, was obviously shifted to the high field area after hydrothermal denaturation.","PeriodicalId":17201,"journal":{"name":"Journal of The American Leather Chemists Association","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83676980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-01DOI: 10.34314/jalca.v116i10.4617
J. Morera, E. Bartolí, Patricia Rojas, L. Cabeza
Polluting and potentially toxic chemicals are used in tanning. Sodium sulfide/hydrosulfide are used when the hides are unhaired. These chemicals can be transformed into hydrogen sulfide with a simple change of pH. This gas is highly toxic and is the recurring cause of many deaths and accidents due to suffocation of workers in tanneries around the world. The basic salts of chromium III are the most used chemical to tan. The chromium III used can be transformed by oxidation, even once the leather transformed into a consumer good (shoes, for example), in chromium VI, which is carcinogenic. Both chemicals are present in process floats, in residual floats and in solid waste generated. Chromium III is also present in manufactured leathers. This article aims to describe the problems associated with the use of the aforementioned hazardous materials and deepen the possibility of using less toxic alternative processes to tan. The designed process allows to significantly reduce the pollutant load of the discharged wastewater, facilitates the reuse of the solid waste generated and clearly improve the safety of people at work.
{"title":"Avoiding the Production of Polluting and Toxic Chemicals in the Tanning Process","authors":"J. Morera, E. Bartolí, Patricia Rojas, L. Cabeza","doi":"10.34314/jalca.v116i10.4617","DOIUrl":"https://doi.org/10.34314/jalca.v116i10.4617","url":null,"abstract":"Polluting and potentially toxic chemicals are used in tanning. Sodium sulfide/hydrosulfide are used when the hides are unhaired. These chemicals can be transformed into hydrogen sulfide with a simple change of pH. This gas is highly toxic and is the recurring cause of many deaths and accidents due to suffocation of workers in tanneries around the world. The basic salts of chromium III are the most used chemical to tan. The chromium III used can be transformed by oxidation, even once the leather transformed into a consumer good (shoes, for example), in chromium VI, which is carcinogenic. Both chemicals are present in process floats, in residual floats and in solid waste generated. Chromium III is also present in manufactured leathers. This article aims to describe the problems associated with the use of the aforementioned hazardous materials and deepen the possibility of using less toxic alternative processes to tan. The designed process allows to significantly reduce the pollutant load of the discharged wastewater, facilitates the reuse of the solid waste generated and clearly improve the safety of people at work.","PeriodicalId":17201,"journal":{"name":"Journal of The American Leather Chemists Association","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86959893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-07DOI: 10.34314/jalca.v116i9.4398
V. Sundar, C. Muralidharan
In line with the resurgence of natural products in the global manufacturing industry, the leather industry is also relooking the increased use of organic materials. To exploit the benefits of the vegetable tanning materials and to couple with suitable organic material for overcoming the inherent shortcomings of vegetable tanning materials, studies were undertaken. Tanning materials like raw fish oil have advantageous properties to impart on leather such as softness, lightweight, and washability characteristics. Hence studies were undertaken on polyphenol-fish oil combination tannages. The quantities of wattle and fish oil and process conditions were standardized. The study indicated that the oxidation of fish oil could take place in the presence of vegetable tannins. The leathers tanned by this combination tanning system could be converted into garment leathers of rich shades and possessed good strength and physical properties. Propelled by encouraging results, investigations were also made on the nature of interaction between vegetable tannins and fish oil with collagen. It was also observed that the vegetable tannins probably do not hinder the oxidation of oil. To sum up, the study leads to the development of a viable, versatile organic tanning system to gain eco-acceptability for the leather manufacturing process.
{"title":"Metal-Free Combination Tanning with Replenishable Polyphenols and Marine Oil","authors":"V. Sundar, C. Muralidharan","doi":"10.34314/jalca.v116i9.4398","DOIUrl":"https://doi.org/10.34314/jalca.v116i9.4398","url":null,"abstract":"In line with the resurgence of natural products in the global manufacturing industry, the leather industry is also relooking the increased use of organic materials. To exploit the benefits of the vegetable tanning materials and to couple with suitable organic material for overcoming the inherent shortcomings of vegetable tanning materials, studies were undertaken. Tanning materials like raw fish oil have advantageous properties to impart on leather such as softness, lightweight, and washability characteristics. Hence studies were undertaken on polyphenol-fish oil combination tannages. \u0000The quantities of wattle and fish oil and process conditions were standardized. The study indicated that the oxidation of fish oil could take place in the presence of vegetable tannins. The leathers tanned by this combination tanning system could be converted into garment leathers of rich shades and possessed good strength and physical properties. Propelled by encouraging results, investigations were also made on the nature of interaction between vegetable tannins and fish oil with collagen. It was also observed that the vegetable tannins probably do not hinder the oxidation of oil. To sum up, the study leads to the development of a viable, versatile organic tanning system to gain eco-acceptability for the leather manufacturing process.","PeriodicalId":17201,"journal":{"name":"Journal of The American Leather Chemists Association","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82691388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-07DOI: 10.34314/jalca.v116i9.4400
P. Maharaja, M. Mahesh, N. Patchaimurugan, S. Swarnalatha, G. Sekaran
Slaughterhouse wastewater consists of moderate to high strength complex wastewater comprising about 45% soluble and 55% coarse suspended organics exhibiting high COD and BOD levels. Conventional wastewater treatment methods cannot effectively treat slaughterhouse wastewater. Thus, a four-stage sequential anaerobic/aerobic immobilized bio reactor system comprising a two stage Fluidized Anaerobic immobilized Reactor (FAIR – I and FAIR – II), a Fluidized Immobilized Cell Carbon Oxidation (FICCO) reactor and a Chemo Autotrophic Activated Carbon Oxidation (CAACO) reactor was tested in a slaughterhouse treating wastewater between 3 m3 /day to 17 m3 /day. Nanoporous activated carbon (NPAC) was used for the immobilization of microorganisms in all of the reactors. The NPAC BET surface area was found to be 291 m2/g with the average pore diameter of 28 Å. Spin density (free electrons) in the NPAC, was calculated to be 16 x 1018 spins/g using ESR spectroscopy. The overall NH3-N, TKN, COD and BOD removal efficiency was 64%, 71%, 82% and 85% respectively. Multivariate analysis (PCA and cluster analysis) found that the COD removal by the FICCO and CAACO reactors is more efficient than the FAIR reactors. The treatment was confirmed through UV-visible and UV-fluorescence spectroscopic analysis.
屠宰场废水由中等至高强度的复杂废水组成,其中含有约45%的可溶性有机物和55%的粗悬浮有机物,具有高COD和BOD水平。传统的废水处理方法不能有效地处理屠宰场废水。因此,一个四级顺序厌氧/好氧固定化生物反应器系统,包括一个两级流态化厌氧固定化反应器(FAIR - I和FAIR - II),一个流态化固定化细胞碳氧化(FICCO)反应器和一个化学自养活性炭氧化(CAACO)反应器,在一个屠宰场进行了试验,处理3立方米/天至17立方米/天的废水。采用纳米多孔活性炭(NPAC)固定反应器中的微生物。NPAC BET的比表面积为291 m2/g,平均孔径为28 Å。利用ESR谱法计算出NPAC中的自旋密度(自由电子)为16 x 1018个自旋/g。总体NH3-N、TKN、COD和BOD去除率分别为64%、71%、82%和85%。多变量分析(PCA和聚类分析)发现,FICCO和CAACO反应器对COD的去除效果优于FAIR反应器。通过紫外-可见光谱和紫外-荧光光谱分析证实了其治疗效果。
{"title":"Treatment of Slaughterhouse Wastewater by Integrated Anaerobic/Aerobic Bioreactors Loaded with Immobilized Nanoporous Activated Carbon","authors":"P. Maharaja, M. Mahesh, N. Patchaimurugan, S. Swarnalatha, G. Sekaran","doi":"10.34314/jalca.v116i9.4400","DOIUrl":"https://doi.org/10.34314/jalca.v116i9.4400","url":null,"abstract":"Slaughterhouse wastewater consists of moderate to high strength complex wastewater comprising about 45% soluble and 55% coarse suspended organics exhibiting high COD and BOD levels. Conventional wastewater treatment methods cannot effectively treat slaughterhouse wastewater. Thus, a four-stage sequential anaerobic/aerobic immobilized bio reactor system comprising a two stage Fluidized Anaerobic immobilized Reactor (FAIR – I and FAIR – II), a Fluidized Immobilized Cell Carbon Oxidation (FICCO) reactor and a Chemo Autotrophic Activated Carbon Oxidation (CAACO) reactor was tested in a slaughterhouse treating wastewater between 3 m3 /day to 17 m3 /day. Nanoporous activated carbon (NPAC) was used for the immobilization of microorganisms in all of the reactors. The NPAC BET surface area was found to be 291 m2/g with the average pore diameter of 28 Å. Spin density (free electrons) in the NPAC, was calculated to be 16 x 1018 spins/g using ESR spectroscopy. The overall NH3-N, TKN, COD and BOD removal efficiency was 64%, 71%, 82% and 85% respectively. Multivariate analysis (PCA and cluster analysis) found that the COD removal by the FICCO and CAACO reactors is more efficient than the FAIR reactors. The treatment was confirmed through UV-visible and UV-fluorescence spectroscopic analysis.","PeriodicalId":17201,"journal":{"name":"Journal of The American Leather Chemists Association","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88703057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-07DOI: 10.34314/jalca.v116i7.4335
B. Sahu, J. Alla, G. Jayakumar
Leather tanning is a stabilisation process of skin fibers. This is achieved by the interaction of collagen amino acids with tanning agents to stabilise skin from putrefaction. Tanning of collagen with oil is a special class of tanning known as chamois tanning. Chemically, the oil tanning involves oxidation of unsaturation present in the oil, which is generally achieved by exposing oil treated skins to air. In this study, Benzoyl peroxide has been used as an accelerating agent for oxidation of unsaturated bonds present in the linseed oil for oil tanning process. Results shows remarkable reduction in tanning duration from fifteen days to two days. The chamois leathers prepared using oxidation accelerant (Benzoyl peroxide) have been evaluated for physical properties such as water absorption (611%), tensile strength (18 N/mm2) and percentage of elongation (66 %) which are found to be better than control leathers.
{"title":"Studies on the Development of Benzoyl Peroxide Catalysed Rapid Oil Tanning using Linseed Oil","authors":"B. Sahu, J. Alla, G. Jayakumar","doi":"10.34314/jalca.v116i7.4335","DOIUrl":"https://doi.org/10.34314/jalca.v116i7.4335","url":null,"abstract":"Leather tanning is a stabilisation process of skin fibers. This is achieved by the interaction of collagen amino acids with tanning agents to stabilise skin from putrefaction. Tanning of collagen with oil is a special class of tanning known as chamois tanning. Chemically, the oil tanning involves oxidation of unsaturation present in the oil, which is generally achieved by exposing oil treated skins to air. In this study, Benzoyl peroxide has been used as an accelerating agent for oxidation of unsaturated bonds present in the linseed oil for oil tanning process. Results shows remarkable reduction in tanning duration from fifteen days to two days. The chamois leathers prepared using oxidation accelerant (Benzoyl peroxide) have been evaluated for physical properties such as water absorption (611%), tensile strength (18 N/mm2) and percentage of elongation (66 %) which are found to be better than control leathers.","PeriodicalId":17201,"journal":{"name":"Journal of The American Leather Chemists Association","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87514049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}