首页 > 最新文献

Journal of The American Water Resources Association最新文献

英文 中文
Remote Sensing of Chlorophyll a and Temperature to Support Algal Bloom Monitoring in Blue Mesa Reservoir, Colorado 叶绿素a和温度遥感支持科罗拉多州蓝梅萨水库藻华监测
IF 2.2 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2025-08-11 DOI: 10.1111/1752-1688.70038
Tyler V. King, Robert A. Bean, Katherine Walton-Day, M. Alisa Mast, Evan J. Gohring, Rachel G. Gidley, Natalie K. Day, Nicole D. Gibney

We present methods to reconstruct historical chlorophyll a and surface water temperatures from satellite-based remote sensing products for Blue Mesa Reservoir, Colorado, to support algal bloom monitoring. A machine learning model was trained to construct chlorophyll a concentrations from Sentinel-2 satellite imagery and in situ measurements of chlorophyll a concentrations (out of bag RMSE = 1.9 μg/L, R2 = 0.63) and reconstruct summertime chlorophyll a concentrations over the entire reservoir from 2016 through 2023. Concurrently, we developed an approach to retrieve remotely sensed water temperatures from the Landsat collection 2 provisional surface temperature product (MAE = 0.6°C) and reconstructed summertime surface water temperature records from 2000 through 2023. Finally, we demonstrate how the reconstructed chlorophyll a and temperature records can yield insight on reservoir dynamics. The chlorophyll a records indicate that algal blooms have a consistent spatial pattern across multiple years, initiating in the eastern end of the reservoir and spreading to the west over time. Water temperatures increased at a linearized rate of 0.3°C per decade from 2000 through 2023 and were inversely proportional to reservoir water surface elevation. Finally, mean summer remotely sensed chlorophyll a concentration had a moderately positive correlation with mean summer remotely sensed water temperature.

本文提出了基于卫星遥感产品重建美国科罗拉多州Blue Mesa水库历史叶绿素a和地表水温度的方法,以支持藻华监测。通过训练机器学习模型,利用Sentinel-2卫星图像和原位测量的叶绿素A浓度(out of bag RMSE = 1.9 μg/L, R2 = 0.63)构建叶绿素A浓度,并重建2016年至2023年整个水库夏季叶绿素A浓度。同时,我们开发了一种从Landsat collection 2临时地表温度产品(MAE = 0.6°C)中检索遥感水温的方法,并重建了2000 - 2023年夏季地表温度记录。最后,我们展示了重建的叶绿素a和温度记录如何产生对储层动力学的见解。叶绿素a记录表明,藻华在多年间具有一致的空间格局,随着时间的推移,从水库东端开始,向西扩散。从2000年到2023年,水温以每10年0.3°C的线性速率上升,与水库水面高度成反比。夏季平均遥感叶绿素a浓度与夏季平均遥感水温呈中等正相关。
{"title":"Remote Sensing of Chlorophyll a and Temperature to Support Algal Bloom Monitoring in Blue Mesa Reservoir, Colorado","authors":"Tyler V. King,&nbsp;Robert A. Bean,&nbsp;Katherine Walton-Day,&nbsp;M. Alisa Mast,&nbsp;Evan J. Gohring,&nbsp;Rachel G. Gidley,&nbsp;Natalie K. Day,&nbsp;Nicole D. Gibney","doi":"10.1111/1752-1688.70038","DOIUrl":"https://doi.org/10.1111/1752-1688.70038","url":null,"abstract":"<p>We present methods to reconstruct historical chlorophyll <i>a</i> and surface water temperatures from satellite-based remote sensing products for Blue Mesa Reservoir, Colorado, to support algal bloom monitoring. A machine learning model was trained to construct chlorophyll <i>a</i> concentrations from Sentinel-2 satellite imagery and in situ measurements of chlorophyll <i>a</i> concentrations (out of bag RMSE = 1.9 μg/L, <i>R</i><sup>2</sup> = 0.63) and reconstruct summertime chlorophyll <i>a</i> concentrations over the entire reservoir from 2016 through 2023. Concurrently, we developed an approach to retrieve remotely sensed water temperatures from the Landsat collection 2 provisional surface temperature product (MAE = 0.6°C) and reconstructed summertime surface water temperature records from 2000 through 2023. Finally, we demonstrate how the reconstructed chlorophyll <i>a</i> and temperature records can yield insight on reservoir dynamics. The chlorophyll <i>a</i> records indicate that algal blooms have a consistent spatial pattern across multiple years, initiating in the eastern end of the reservoir and spreading to the west over time. Water temperatures increased at a linearized rate of 0.3°C per decade from 2000 through 2023 and were inversely proportional to reservoir water surface elevation. Finally, mean summer remotely sensed chlorophyll <i>a</i> concentration had a moderately positive correlation with mean summer remotely sensed water temperature.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"61 4","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.70038","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144814531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating Daily Nitrate Loads in Iowa Streams Using a Partial Least Squares Regression Framework 用偏最小二乘回归框架估计爱荷华州溪流的每日硝酸盐负荷
IF 2.6 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2025-07-03 DOI: 10.1111/1752-1688.70036
Patrick Dunn, Emily Elliott, Leanne M. Gilbertson

Agricultural nitrate pollution is a major threat to water quality in Iowa. Iowa uses a majority of its land for row crop agriculture and maintains a large livestock population, which together cause high nitrate loads in streams. High-frequency stream nitrate data can aid policy decisions for reducing nitrate emissions by identifying streams with high nitrate loads, historical trends of improvement or deterioration in nitrate loads, and land use or practice changes that affect water quality. We developed a time series regression model framework to supplement existing sensor data and predict daily nitrate loads in Iowa streams lacking nitrate monitoring. Using nitrate data from statewide and national resources, this framework was trained and validated using 11 study sites of diverse geography and land use in Iowa. Partial least squares regression (PLSR) was used with geographical predictors, including land use, hydrogeology, and meteorology, to predict streamflow-nitrate load relationships across the study sites. The developed PLSR model, combined with daily streamflow data, was then used to predict daily nitrate loads with high accuracy over a three-year study period with a mean Kling–Gupta Efficiency of 0.74. Our framework was then used to estimate mean nitrate concentrations at 34 sites that lack nitrate sensors, demonstrating a low-cost, facile method for the accurate prediction of daily nitrate loads in Iowa streams.

农业硝酸盐污染是爱荷华州水质的主要威胁。爱荷华州将大部分土地用于行作物农业,并饲养了大量牲畜,这些因素共同导致溪流中的硝酸盐含量很高。高频率溪流硝酸盐数据可以通过识别高硝酸盐负荷的溪流、硝酸盐负荷改善或恶化的历史趋势以及影响水质的土地利用或实践变化,帮助制定减少硝酸盐排放的政策决策。我们开发了一个时间序列回归模型框架,以补充现有的传感器数据,并预测缺乏硝酸盐监测的爱荷华州溪流的每日硝酸盐负荷。利用来自全州和全国资源的硝酸盐数据,该框架在爱荷华州11个不同地理和土地利用的研究地点进行了培训和验证。将偏最小二乘回归(PLSR)与地理预测因子(包括土地利用、水文地质和气象)结合使用,预测研究地点的水流-硝酸盐负荷关系。开发的PLSR模型,结合每日溪流流量数据,然后用于在三年的研究期间高精度地预测每日硝酸盐负荷,平均克林-古普塔效率为0.74。然后,我们的框架被用于估计34个缺乏硝酸盐传感器的站点的平均硝酸盐浓度,展示了一种低成本,简便的方法来准确预测爱荷华州溪流的每日硝酸盐负荷。
{"title":"Estimating Daily Nitrate Loads in Iowa Streams Using a Partial Least Squares Regression Framework","authors":"Patrick Dunn,&nbsp;Emily Elliott,&nbsp;Leanne M. Gilbertson","doi":"10.1111/1752-1688.70036","DOIUrl":"https://doi.org/10.1111/1752-1688.70036","url":null,"abstract":"<div>\u0000 \u0000 <p>Agricultural nitrate pollution is a major threat to water quality in Iowa. Iowa uses a majority of its land for row crop agriculture and maintains a large livestock population, which together cause high nitrate loads in streams. High-frequency stream nitrate data can aid policy decisions for reducing nitrate emissions by identifying streams with high nitrate loads, historical trends of improvement or deterioration in nitrate loads, and land use or practice changes that affect water quality. We developed a time series regression model framework to supplement existing sensor data and predict daily nitrate loads in Iowa streams lacking nitrate monitoring. Using nitrate data from statewide and national resources, this framework was trained and validated using 11 study sites of diverse geography and land use in Iowa. Partial least squares regression (PLSR) was used with geographical predictors, including land use, hydrogeology, and meteorology, to predict streamflow-nitrate load relationships across the study sites. The developed PLSR model, combined with daily streamflow data, was then used to predict daily nitrate loads with high accuracy over a three-year study period with a mean Kling–Gupta Efficiency of 0.74. Our framework was then used to estimate mean nitrate concentrations at 34 sites that lack nitrate sensors, demonstrating a low-cost, facile method for the accurate prediction of daily nitrate loads in Iowa streams.</p>\u0000 </div>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"61 4","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144536982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cascade Reservoirs Multiobjective Optimal Scheduling Based on an Improved Two-Stage Particle Swarm Optimization Algorithm 基于改进两阶段粒子群算法的梯级水库多目标优化调度
IF 2.6 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2025-06-24 DOI: 10.1111/1752-1688.70032
Zhaocai Wang, Haifeng Zhao, Zhiyuan Yao, Tunhua Wu

The multiobjective scheduling of cascade reservoir systems faces challenges due to high-dimensional nonlinearity, where traditional optimization methods struggle to achieve globally balanced solutions. This study proposes a Two-Stage Multi-Objective Particle Swarm Optimization (TSMOPSO) algorithm, incorporating two innovative components to enhance optimization performance. The first component employs Piecewise mapping, adapts weights and introduces two operators to improve optimization efficiency and convergence speed. The second component features a two-stage refinement mechanism, implementing a two-level adjustment of upstream and downstream water levels based on constraint evaluations, effectively alleviating constraint limitations. A case study is conducted on cascade reservoirs system in the Jinsha River Basin of the Upper Yangtze River (JRBUY), with a multiobjective model integrating power generation, power output, and navigation demands. Numerical experiments demonstrate that TSMOPSO achieves remarkable performance under wet-year conditions: power generation of 2087.46 KW h, power output of 16,435.75 MW, and a navigation index of 3052.92 m3/s. Compared wtih other algorithms, TSMOPSO exhibits significant advantages in hypervolume (HV) indicators and solution set coverage. Pareto front analysis reveals competitive mechanisms among the three objectives. This approach provides a novel technical pathway for multiobjective optimization of complex cascade reservoir systems.

梯级水库系统的多目标调度面临着高维非线性的挑战,传统的优化方法难以达到全局平衡。本文提出了一种两阶段多目标粒子群优化算法(TSMOPSO),该算法结合了两个创新组件来提高优化性能。第一部分采用分段映射,自适应权值,引入两个算子提高优化效率和收敛速度。第二组成部分采用两阶段细化机制,基于约束评价对上下游水位进行两级调整,有效缓解约束限制。以长江上游金沙江流域梯级水库系统(JRBUY)为研究对象,建立了综合发电、输出和通航需求的多目标模型。数值试验结果表明,该系统在湿年条件下的发电能力为2087.46 KW h,输出功率为16435.75 MW,导航指数为3052.92 m3/s。与其他算法相比,TSMOPSO在hypervolume (HV)指标和解集覆盖方面具有显著优势。帕累托前沿分析揭示了三个目标之间的竞争机制。该方法为复杂层叠储层系统的多目标优化提供了新的技术途径。
{"title":"Cascade Reservoirs Multiobjective Optimal Scheduling Based on an Improved Two-Stage Particle Swarm Optimization Algorithm","authors":"Zhaocai Wang,&nbsp;Haifeng Zhao,&nbsp;Zhiyuan Yao,&nbsp;Tunhua Wu","doi":"10.1111/1752-1688.70032","DOIUrl":"https://doi.org/10.1111/1752-1688.70032","url":null,"abstract":"<div>\u0000 \u0000 <p>The multiobjective scheduling of cascade reservoir systems faces challenges due to high-dimensional nonlinearity, where traditional optimization methods struggle to achieve globally balanced solutions. This study proposes a Two-Stage Multi-Objective Particle Swarm Optimization (TSMOPSO) algorithm, incorporating two innovative components to enhance optimization performance. The first component employs Piecewise mapping, adapts weights and introduces two operators to improve optimization efficiency and convergence speed. The second component features a two-stage refinement mechanism, implementing a two-level adjustment of upstream and downstream water levels based on constraint evaluations, effectively alleviating constraint limitations. A case study is conducted on cascade reservoirs system in the Jinsha River Basin of the Upper Yangtze River (JRBUY), with a multiobjective model integrating power generation, power output, and navigation demands. Numerical experiments demonstrate that TSMOPSO achieves remarkable performance under wet-year conditions: power generation of 2087.46 KW h, power output of 16,435.75 MW, and a navigation index of 3052.92 m<sup>3</sup>/s. Compared wtih other algorithms, TSMOPSO exhibits significant advantages in hypervolume (<i>HV</i>) indicators and solution set coverage. Pareto front analysis reveals competitive mechanisms among the three objectives. This approach provides a novel technical pathway for multiobjective optimization of complex cascade reservoir systems.</p>\u0000 </div>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"61 3","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144473003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Is Hot Drought a Risk in the US Mid-Atlantic? A Potomac Basin Case Study 炎热干旱是美国大西洋中部地区的风险吗?波托马克河流域案例研究
IF 2.6 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2025-06-18 DOI: 10.1111/1752-1688.70031
C. L. Schultz, A. Seck, S. N. Ahmed

Interannual variability of streamflow will increase under a future climate, but at the regional scale, there is uncertainty regarding changes in drought severity, and in particular, changes in extreme hydrological drought that could necessitate new water supply infrastructure. This is due to the wide range of regional projections for precipitation and the challenge of estimating statistics in a nonstationary climate. We assess changes in annual streamflow in the Potomac River Basin using a nonparametric approach based on a climate response function and the K-nearest neighbor method, which is relied on to construct time series of sufficient length to compute extreme quantile values. Our results indicate that future Potomac River flows will be impacted by “hot drought”, that is, increasing drought severity caused by rising temperatures coupled with natural variability in precipitation. Average precipitation is projected to increase in the Potomac basin by 9%–12% in the period 2039–2069 and by 11%–16% by 2070–2099. Average streamflow increases more modestly, by 4%–7% in 2039–2069 and by 2 to 9% in 2070–2099, whereas annual flows in an extreme drought year decrease by 3 to 26% in 2039–2069 and by 2%–49% in 2070–2099, assuming a medium sensitivity of flow to temperature. Our approach can provide multi-model consensus inputs for water supply planning models to support decision-making regarding new infrastructure.

在未来气候条件下,河流流量的年际变化将增加,但在区域尺度上,干旱严重程度的变化存在不确定性,特别是极端水文干旱的变化可能需要新的供水基础设施。这是由于对降水的区域预估范围很广,以及在非平稳气候中估计统计数据的挑战。我们使用基于气候响应函数和k近邻方法的非参数方法来评估波托马克河流域年流量的变化,该方法依赖于构建足够长度的时间序列来计算极端分位数值。我们的研究结果表明,未来波托马克河的流量将受到“热干旱”的影响,即气温上升和降水自然变率导致的干旱程度增加。预计2039-2069年期间,波托马克河流域的平均降水量将增加9%-12%,2070-2099年期间将增加11%-16%。平均流量增加较为温和,2039-2069年增加4%-7%,2070-2099年增加2% - 9%,而极端干旱年的年流量在2039-2069年减少3% - 26%,2070-2099年减少2%-49%,假设流量对温度的敏感性中等。我们的方法可以为供水规划模型提供多模型共识输入,以支持有关新基础设施的决策。
{"title":"Is Hot Drought a Risk in the US Mid-Atlantic? A Potomac Basin Case Study","authors":"C. L. Schultz,&nbsp;A. Seck,&nbsp;S. N. Ahmed","doi":"10.1111/1752-1688.70031","DOIUrl":"https://doi.org/10.1111/1752-1688.70031","url":null,"abstract":"<p>Interannual variability of streamflow will increase under a future climate, but at the regional scale, there is uncertainty regarding changes in drought severity, and in particular, changes in extreme hydrological drought that could necessitate new water supply infrastructure. This is due to the wide range of regional projections for precipitation and the challenge of estimating statistics in a nonstationary climate. We assess changes in annual streamflow in the Potomac River Basin using a nonparametric approach based on a climate response function and the K-nearest neighbor method, which is relied on to construct time series of sufficient length to compute extreme quantile values. Our results indicate that future Potomac River flows will be impacted by “hot drought”, that is, increasing drought severity caused by rising temperatures coupled with natural variability in precipitation. Average precipitation is projected to increase in the Potomac basin by 9%–12% in the period 2039–2069 and by 11%–16% by 2070–2099. Average streamflow increases more modestly, by 4%–7% in 2039–2069 and by 2 to 9% in 2070–2099, whereas annual flows in an extreme drought year decrease by 3 to 26% in 2039–2069 and by 2%–49% in 2070–2099, assuming a medium sensitivity of flow to temperature. Our approach can provide multi-model consensus inputs for water supply planning models to support decision-making regarding new infrastructure.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"61 3","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.70031","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144315201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying the Impact of Iowa's Flood-Mitigation Reservoirs on Sediment and Nutrient Loss 量化爱荷华州防洪水库对沉积物和养分损失的影响
IF 2.6 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2025-06-16 DOI: 10.1111/1752-1688.70035
Elliot S. Anderson, Keith E. Schilling

Flood-mitigation reservoirs have long been known to impact pollutant transport by retaining or removing incoming sediment and nutrients. However, historical reductions in these systems have rarely been well quantified. In this study, we used water quality data to estimate inputs and outputs of total suspended solids (TSS), two phosphorus (P) forms, and three nitrogen (N) forms in three Iowa reservoirs (Coralville, Red Rock, and Saylorville). We also explored the influence of reservoir residence times on removal rates. Annual residence times were largely consistent across the basins, ranging from roughly 6 to 100 days (mean of 19 days). Between 2001 to 2023, most TSS (~ 80%) entering the reservoirs was retained. This sedimentation corresponded to average volume losses in the reservoirs' normal storage pools of 0.37%–0.85%/year. About 40% of P and 12% of N were likewise reduced—driven mainly by decreases in particulate P and nitrate. Residence time appeared unrelated to removal rates of TSS and particulate nutrient forms, but longer residence times coincided with increased nitrate loss. Reservoir impact on statewide nutrient export was significant, with loads in Iowa's major rivers being reduced by 9.8% (for P) and 4.7% (for N) due to reservoir capture. These findings suggest that reservoir operators may be able to facilitate further nitrate removal by lengthening storage durations without incurring additional sedimentation or generating other nutrient forms.

人们早就知道,防洪水库通过保留或去除进入的沉积物和营养物质来影响污染物的运输。然而,这些系统的历史减少很少得到很好的量化。在这项研究中,我们使用水质数据来估计爱荷华州三个水库(Coralville、Red Rock和Saylorville)中总悬浮固体(TSS)、两种磷(P)形态和三种氮(N)形态的输入和输出。我们还探讨了储层停留时间对去除率的影响。各流域的年停留时间基本一致,约为6 ~ 100天(平均19天)。2001 - 2023年,大部分进入水库的TSS(~ 80%)被保留。这种沉积相当于水库正常储水池的平均体积损失0.37% ~ 0.85%/年。大约40%的磷和12%的氮也同样减少,主要是由于颗粒磷和硝酸盐的减少。停留时间与TSS去除率和颗粒营养物形态无关,但停留时间越长,硝酸盐损失越大。水库对全州营养输出的影响是显著的,由于水库捕获,爱荷华州主要河流的负荷减少了9.8%(磷)和4.7%(氮)。这些发现表明,水库运营商可以通过延长储存时间来促进硝酸盐的进一步去除,而不会引起额外的沉淀或产生其他营养形式。
{"title":"Quantifying the Impact of Iowa's Flood-Mitigation Reservoirs on Sediment and Nutrient Loss","authors":"Elliot S. Anderson,&nbsp;Keith E. Schilling","doi":"10.1111/1752-1688.70035","DOIUrl":"https://doi.org/10.1111/1752-1688.70035","url":null,"abstract":"<p>Flood-mitigation reservoirs have long been known to impact pollutant transport by retaining or removing incoming sediment and nutrients. However, historical reductions in these systems have rarely been well quantified. In this study, we used water quality data to estimate inputs and outputs of total suspended solids (TSS), two phosphorus (P) forms, and three nitrogen (N) forms in three Iowa reservoirs (Coralville, Red Rock, and Saylorville). We also explored the influence of reservoir residence times on removal rates. Annual residence times were largely consistent across the basins, ranging from roughly 6 to 100 days (mean of 19 days). Between 2001 to 2023, most TSS (~ 80%) entering the reservoirs was retained. This sedimentation corresponded to average volume losses in the reservoirs' normal storage pools of 0.37%–0.85%/year. About 40% of P and 12% of N were likewise reduced—driven mainly by decreases in particulate P and nitrate. Residence time appeared unrelated to removal rates of TSS and particulate nutrient forms, but longer residence times coincided with increased nitrate loss. Reservoir impact on statewide nutrient export was significant, with loads in Iowa's major rivers being reduced by 9.8% (for P) and 4.7% (for N) due to reservoir capture. These findings suggest that reservoir operators may be able to facilitate further nitrate removal by lengthening storage durations without incurring additional sedimentation or generating other nutrient forms.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"61 3","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.70035","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144299744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Nonpoint Source Challenge: Obstacles and Opportunities for Meeting Nutrient Reduction Goals in the Chesapeake Bay Watershed 非点源挑战:实现切萨皮克湾流域营养减少目标的障碍和机遇
IF 2.6 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2025-06-14 DOI: 10.1111/1752-1688.70034
Zachary Easton, Kurt Stephenson, Brian Benham, J. K. Böhlke, Anthony Buda, Amy Collick, Lara Fowler, Ellen Gilinsky, Andrew Miller, Gregory Noe, Leah H. Palm-Forster, Leonard Shabman, Theresa Wynn-Thompson

This document examines the Chesapeake Bay watershed response to nutrient and sediment reduction efforts under the Clean Water Act's total maximum daily load (TMDL) regulation. As the 2025 Chesapeake Bay TMDL deadline approaches, water quality goals remain unmet, primarily because of nonpoint source pollution, the largest remaining source of nutrients and sediment, and the primary obstacle to meeting the TMDL. We focus on the factors influencing the gap between the expected effect of management to reduce nonpoint source loads reaching the Bay and empirical evidence suggesting that decades of effort have not produced the expected improvement. This gap may be caused by both insufficient scale and type of implemented water quality management practices and by an overestimation of practice effectiveness. Reasons water quality goals remain unmet include legacy nutrients and lag times masking or delaying the effects of management efforts, areas with large nutrient mass imbalances contributing disproportionate loads, and the difficulty of incentivizing behavior change in voluntary nonpoint source programs. Closing the response gap may require fundamental changes to nonpoint source programs. Apart from seeking additional funding, nonpoint source programs could develop policies to more effectively incentivize behavior change, identify and target treatment of high loading areas with appropriate management actions, and address nutrient mass imbalances.

本文考察了切萨皮克湾流域对《清洁水法》总最大日负荷(TMDL)规定下的营养物和沉积物减少努力的反应。随着2025年切萨皮克湾TMDL期限的临近,水质目标仍未实现,主要原因是非点源污染,这是最大的剩余营养物和沉积物来源,也是实现TMDL的主要障碍。我们的重点是影响管理减少到达海湾的非点源负荷的预期效果与表明几十年的努力没有产生预期改善的经验证据之间差距的因素。造成这一差距的原因可能是所实施的水质管理做法的规模和类型不足,以及对实践有效性的高估。水质目标未能实现的原因包括遗留的营养物质和滞后时间掩盖或延迟了管理努力的效果,大量营养物质不平衡的地区造成了不成比例的负荷,以及在自愿非点源计划中激励行为改变的困难。缩小响应差距可能需要对非点源程序进行根本性的改变。除了寻求额外的资金,非点源项目还可以制定政策,以更有效地激励行为改变,通过适当的管理行动确定和目标处理高负荷地区,并解决营养质量失衡问题。
{"title":"The Nonpoint Source Challenge: Obstacles and Opportunities for Meeting Nutrient Reduction Goals in the Chesapeake Bay Watershed","authors":"Zachary Easton,&nbsp;Kurt Stephenson,&nbsp;Brian Benham,&nbsp;J. K. Böhlke,&nbsp;Anthony Buda,&nbsp;Amy Collick,&nbsp;Lara Fowler,&nbsp;Ellen Gilinsky,&nbsp;Andrew Miller,&nbsp;Gregory Noe,&nbsp;Leah H. Palm-Forster,&nbsp;Leonard Shabman,&nbsp;Theresa Wynn-Thompson","doi":"10.1111/1752-1688.70034","DOIUrl":"https://doi.org/10.1111/1752-1688.70034","url":null,"abstract":"<p>This document examines the Chesapeake Bay watershed response to nutrient and sediment reduction efforts under the Clean Water Act's total maximum daily load (TMDL) regulation. As the 2025 Chesapeake Bay TMDL deadline approaches, water quality goals remain unmet, primarily because of nonpoint source pollution, the largest remaining source of nutrients and sediment, and the primary obstacle to meeting the TMDL. We focus on the factors influencing the gap between the expected effect of management to reduce nonpoint source loads reaching the Bay and empirical evidence suggesting that decades of effort have not produced the expected improvement. This gap may be caused by both insufficient scale and type of implemented water quality management practices and by an overestimation of practice effectiveness. Reasons water quality goals remain unmet include legacy nutrients and lag times masking or delaying the effects of management efforts, areas with large nutrient mass imbalances contributing disproportionate loads, and the difficulty of incentivizing behavior change in voluntary nonpoint source programs. Closing the response gap may require fundamental changes to nonpoint source programs. Apart from seeking additional funding, nonpoint source programs could develop policies to more effectively incentivize behavior change, identify and target treatment of high loading areas with appropriate management actions, and address nutrient mass imbalances.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"61 3","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.70034","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144289300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying the Effects of National Water Model Freshwater Flux Predictions on Estuarine Hydrodynamic Forecasts 量化国家水模式淡水通量预测对河口水动力预测的影响
IF 2.6 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2025-06-14 DOI: 10.1111/1752-1688.70033
Nicholas Chin, David Kaplan, Maitane Olabarrieta, Viyaktha Hithaishi Hewageegana, Luming Shi

Accurate streamflow forecasts are critical for modeling and managing estuarine water quality, as freshwater fluxes significantly influence coastal dynamics. The National Water Model (NWM) provides high-resolution streamflow predictions, which are valuable for hydrodynamic modeling in poorly gauged coastal regions. However, inaccuracies in NWM forecasts can limit our ability to predict estuarine and nearshore water quality effectively. First, this study evaluates the accuracy of NWM predictions for 14 coastal reaches in southwest Florida's Charlotte Harbor and Caloosahatchee River estuaries from 2018 to 2024, where hydrologic management has impacted water quality. NWM forecasts showed varying bias and variance, with Nash-Sutcliffe efficiencies (NSE) ranging from −2.26 to 0.77. Next, hydrodynamic simulations for the flow-managed Caloosahatchee River Estuary (CRE) were performed using both NWM forecasts and observed streamflows, revealing that errors in NWM predictions during high-flow events caused significant deviations in the position of ecologically relevant isohalines, lasting weeks. Finally, to address these issues, a Long Short-Term Memory (LSTM) network was developed to bias-correct NWM forecasts, improving NSE from 0.41 to 0.53. However, the LSTM's inability to “learn” managed discharge schedules highlights the need for advanced data assimilation and simulation techniques in flow-managed coastal systems.

准确的流量预报对于模拟和管理河口水质至关重要,因为淡水通量显著影响海岸动态。国家水模型(NWM)提供了高分辨率的流量预测,这对于在测量差的沿海地区进行水动力学建模是有价值的。然而,NWM预报的不准确性会限制我们有效预测河口和近岸水质的能力。首先,本研究评估了2018年至2024年NWM对佛罗里达州西南部夏洛特港和卡卢萨哈奇河河口14个沿海河段预测的准确性,其中水文管理影响了水质。NWM预测显示出不同的偏差和方差,Nash-Sutcliffe效率(NSE)范围为- 2.26至0.77。接下来,利用NWM预报和观测到的河流流量,对流量管理的Caloosahatchee河河口(CRE)进行了水动力学模拟,结果表明,在高流量事件期间,NWM预测的误差会导致生态相关等盐线位置的显著偏差,持续数周。最后,为了解决这些问题,我们开发了一个长短期记忆(LSTM)网络来纠正NWM预测的偏差,将NSE从0.41提高到0.53。然而,LSTM无法“学习”管理排放计划,这凸显了在流动管理的海岸系统中需要先进的数据同化和模拟技术。
{"title":"Quantifying the Effects of National Water Model Freshwater Flux Predictions on Estuarine Hydrodynamic Forecasts","authors":"Nicholas Chin,&nbsp;David Kaplan,&nbsp;Maitane Olabarrieta,&nbsp;Viyaktha Hithaishi Hewageegana,&nbsp;Luming Shi","doi":"10.1111/1752-1688.70033","DOIUrl":"https://doi.org/10.1111/1752-1688.70033","url":null,"abstract":"<div>\u0000 \u0000 <p>Accurate streamflow forecasts are critical for modeling and managing estuarine water quality, as freshwater fluxes significantly influence coastal dynamics. The National Water Model (NWM) provides high-resolution streamflow predictions, which are valuable for hydrodynamic modeling in poorly gauged coastal regions. However, inaccuracies in NWM forecasts can limit our ability to predict estuarine and nearshore water quality effectively. First, this study evaluates the accuracy of NWM predictions for 14 coastal reaches in southwest Florida's Charlotte Harbor and Caloosahatchee River estuaries from 2018 to 2024, where hydrologic management has impacted water quality. NWM forecasts showed varying bias and variance, with Nash-Sutcliffe efficiencies (NSE) ranging from −2.26 to 0.77. Next, hydrodynamic simulations for the flow-managed Caloosahatchee River Estuary (CRE) were performed using both NWM forecasts and observed streamflows, revealing that errors in NWM predictions during high-flow events caused significant deviations in the position of ecologically relevant isohalines, lasting weeks. Finally, to address these issues, a Long Short-Term Memory (LSTM) network was developed to bias-correct NWM forecasts, improving NSE from 0.41 to 0.53. However, the LSTM's inability to “learn” managed discharge schedules highlights the need for advanced data assimilation and simulation techniques in flow-managed coastal systems.</p>\u0000 </div>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"61 3","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144289299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of the Water Resource Tax on Efficiency of Industrial Water Resources Use: Evidence From Hebei Province, China 水资源税对工业水资源利用效率的影响:来自河北省的证据
IF 2.6 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2025-06-04 DOI: 10.1111/1752-1688.70024
Ming Chen, Qin Wang, Yifan Li, Yutong Zhao

China is facing a serious water shortage. The government's implementation of a water resource tax policy is an important step in the ecological protection of water resources. This paper constructs a stochastic frontier production function model to measure the industrial water resource utilization efficiency in Hebei Province under the consideration of water resource tax. Then, this paper constructs a model of the impact of water resource tax policy on industrial water resource utilization efficiency using the double difference method to evaluate the causal effect of the policy. The research findings of this article are: (1) Through discontinuity regression, it was found that the water resources tax policy has a significant positive correlation with the improvement of water resource utilization efficiency in Hebei Province. The implementation of the water resources tax policy has successfully improved the industrial water resource utilization in Hebei Province. (2) Although the implementation of the water resources tax policy has improved the efficiency of industrial water use in Hebei Province, the overall efficiency of industrial water use in Hebei Province is still low, and many problems have arisen during the advancement of the water resources tax policy. In response to the problems that occurred during the pilot period in Hebei Province, this article proposes some policy solutions to accelerate the advancement of water resource tax policies across the country.

中国正面临严重的水资源短缺。政府实施水资源税政策是水资源生态保护的重要举措。本文构建了一个随机前沿生产函数模型,对考虑水资源税的河北省工业水资源利用效率进行测度。然后,运用双差法构建水资源税政策对工业水资源利用效率影响的模型,对政策的因果效应进行评价。本文的研究结果如下:(1)通过不连续回归,发现水资源税政策与河北省水资源利用效率的提高存在显著的正相关关系。水资源税政策的实施成功地提高了河北省工业水资源的利用率。(2)虽然水利税政策的实施提高了河北省工业用水效率,但河北省工业用水的整体效率仍然较低,在水利税政策的推进过程中出现了许多问题。针对河北省试点期间出现的问题,本文提出了加快水资源税政策在全国范围内推进的政策对策。
{"title":"Impact of the Water Resource Tax on Efficiency of Industrial Water Resources Use: Evidence From Hebei Province, China","authors":"Ming Chen,&nbsp;Qin Wang,&nbsp;Yifan Li,&nbsp;Yutong Zhao","doi":"10.1111/1752-1688.70024","DOIUrl":"https://doi.org/10.1111/1752-1688.70024","url":null,"abstract":"<div>\u0000 \u0000 <p>China is facing a serious water shortage. The government's implementation of a water resource tax policy is an important step in the ecological protection of water resources. This paper constructs a stochastic frontier production function model to measure the industrial water resource utilization efficiency in Hebei Province under the consideration of water resource tax. Then, this paper constructs a model of the impact of water resource tax policy on industrial water resource utilization efficiency using the double difference method to evaluate the causal effect of the policy. The research findings of this article are: (1) Through discontinuity regression, it was found that the water resources tax policy has a significant positive correlation with the improvement of water resource utilization efficiency in Hebei Province. The implementation of the water resources tax policy has successfully improved the industrial water resource utilization in Hebei Province. (2) Although the implementation of the water resources tax policy has improved the efficiency of industrial water use in Hebei Province, the overall efficiency of industrial water use in Hebei Province is still low, and many problems have arisen during the advancement of the water resources tax policy. In response to the problems that occurred during the pilot period in Hebei Province, this article proposes some policy solutions to accelerate the advancement of water resource tax policies across the country.</p>\u0000 </div>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"61 3","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144214080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Pilot Study for Water Storage and Carbon Variability in an Irrigation Pond of the Southeastern Plains, USA 美国东南平原灌溉池储水量和碳变率的初步研究
IF 2.6 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2025-06-04 DOI: 10.1111/1752-1688.70026
Andrea Albright, Alisa W. Coffin, Oliva Pisani, David D. Bosch, Timothy C. Strickland

Farm ponds are a common feature of agricultural landscapes for irrigation of crops. Yet small water bodies have been ignored as reservoirs and carbon balance features despite their ubiquity in the global landscape. These ponds contain surface water from precipitation and runoff, but in South Georgia, USA, groundwater supplementation is required to maintain a supply for irrigation. Key characteristics of these ponds, such as capacity and dynamics describing fluxes in quantity and quality, are not well known. In this area, irrigation ponds supplemented by groundwater have water quality issues that affect producers. In a pilot study to address this knowledge gap, storage dynamics and water quality, that is, dissolved organic carbon (DOC), were characterized from measurements of a regionally typical irrigation pond in 2022. Field surveys of pond depth and terrain were fused to create a topobathymetric elevation model of the pond and its environs. The pond has a volume of 5.06 +/- 0.29 ha-m that was used for irrigation during the growing season and was mostly replaced with groundwater. Concentrations of DOC ranged from 1.77 to 19.9 mg/L. Dissolved organic matter (DOM) indices reveal a shift from terrestrial-derived DOM earlier in the year to more microbial-derived DOM later. Together this integrated analysis of an irrigation pond in South Georgia analyzes water inflows and outflows, quantifies DOC, characterizes DOM, and models pond storage volumes.

农场池塘是农业景观的共同特征,用于灌溉作物。然而,尽管小水体在全球景观中无处不在,但它们作为水库和碳平衡特征却被忽视了。这些池塘含有来自降水和径流的地表水,但在美国南乔治亚州,需要补充地下水来维持灌溉供应。这些池塘的关键特征,例如描述数量和质量通量的容量和动力学,并不为人所熟知。在这个地区,由地下水补充的灌溉池塘存在影响生产者的水质问题。在一项解决这一知识差距的试点研究中,通过2022年对一个区域典型灌溉池塘的测量,对储存动态和水质(即溶解有机碳(DOC))进行了表征。对池塘深度和地形的实地调查融合在一起,创建了池塘及其周围的地形高程模型。池塘的容积为5.06 +/- 0.29 hm -m,在生长季节用于灌溉,大部分被地下水取代。DOC的浓度在1.77 ~ 19.9 mg/L之间。溶解有机物(DOM)指数显示,从今年早些时候的陆地来源的DOM到后来更多的微生物来源的DOM的转变。对南乔治亚州一个灌溉池塘的综合分析分析了水的流入和流出,量化了DOC,表征了DOM,并建立了池塘储水量模型。
{"title":"A Pilot Study for Water Storage and Carbon Variability in an Irrigation Pond of the Southeastern Plains, USA","authors":"Andrea Albright,&nbsp;Alisa W. Coffin,&nbsp;Oliva Pisani,&nbsp;David D. Bosch,&nbsp;Timothy C. Strickland","doi":"10.1111/1752-1688.70026","DOIUrl":"https://doi.org/10.1111/1752-1688.70026","url":null,"abstract":"<p>Farm ponds are a common feature of agricultural landscapes for irrigation of crops. Yet small water bodies have been ignored as reservoirs and carbon balance features despite their ubiquity in the global landscape. These ponds contain surface water from precipitation and runoff, but in South Georgia, USA, groundwater supplementation is required to maintain a supply for irrigation. Key characteristics of these ponds, such as capacity and dynamics describing fluxes in quantity and quality, are not well known. In this area, irrigation ponds supplemented by groundwater have water quality issues that affect producers. In a pilot study to address this knowledge gap, storage dynamics and water quality, that is, dissolved organic carbon (DOC), were characterized from measurements of a regionally typical irrigation pond in 2022. Field surveys of pond depth and terrain were fused to create a topobathymetric elevation model of the pond and its environs. The pond has a volume of 5.06 +/- 0.29 ha-m that was used for irrigation during the growing season and was mostly replaced with groundwater. Concentrations of DOC ranged from 1.77 to 19.9 mg/L. Dissolved organic matter (DOM) indices reveal a shift from terrestrial-derived DOM earlier in the year to more microbial-derived DOM later. Together this integrated analysis of an irrigation pond in South Georgia analyzes water inflows and outflows, quantifies DOC, characterizes DOM, and models pond storage volumes.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"61 3","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.70026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144214081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intersection of Hydrologic Change and Hydropower in the United States: Needs for Future Research and Practice 美国水文变化与水电的交集:对未来研究和实践的需求
IF 2.6 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2025-06-04 DOI: 10.1111/1752-1688.70020
Erich T. Hester, Nathalie Voisin, Natalie A. Griffiths, Shih-Chieh Kao

Hydropower is crucial for electric-grid stability in the context of variable renewables but faces threats from changing hydrology. Here, we summarize the state of the science at the intersection of hydropower operations and planning, hydrologic science, and climate. We focus on the United States, outlining research, development, and training needs. Key knowledge gaps include the risk that intensification of compound extreme events poses to future generation, as well as uncertainties surrounding greenhouse gas emissions from hydropower reservoirs with relevance to hydropower's role in energy decarbonization. Quantifying such impacts and reducing uncertainty are critical where possible, but remaining irreducible or deep uncertainty will require new approaches. Future monitoring and modeling methods must provide a better understanding of the complexity inherent in large watersheds that is critical to managing both hydropower and watersheds in the context of hydrologic change. Yet, research and development will have little impact if they do not inform practice. Standardization and consolidation of platforms are essential for data, modeling, and tool translation to local scales and small operators. An enhanced industry-academia dialog is pivotal for fostering a robust pipeline of hydropower professionals. Collaboration among researchers, policymakers, authorities, and industry stakeholders emerges as a recurring theme, highlighting the imperative for collective efforts.

在可再生能源多变的背景下,水电对电网的稳定至关重要,但面临着水文变化的威胁。在这里,我们总结了水电运行与规划、水文科学和气候交叉领域的科学现状。我们以美国为重点,概述了研究、开发和培训需求。主要的知识缺口包括复合极端事件的加剧对未来发电构成的风险,以及水电在能源脱碳中的作用与水电水库温室气体排放有关的不确定性。在可能的情况下,量化这些影响和减少不确定性至关重要,但仍然无法减少或深度不确定性将需要新的方法。未来的监测和建模方法必须更好地理解大流域固有的复杂性,这对于在水文变化的背景下管理水电和流域至关重要。然而,如果研究和开发不能为实践提供信息,它们就不会产生什么影响。平台的标准化和整合对于数据、建模和工具转换到本地规模和小型运营商至关重要。加强产学研之间的对话对于培养强大的水电专业人才至关重要。研究人员、政策制定者、当局和行业利益相关者之间的合作成为一个反复出现的主题,突出了集体努力的必要性。
{"title":"Intersection of Hydrologic Change and Hydropower in the United States: Needs for Future Research and Practice","authors":"Erich T. Hester,&nbsp;Nathalie Voisin,&nbsp;Natalie A. Griffiths,&nbsp;Shih-Chieh Kao","doi":"10.1111/1752-1688.70020","DOIUrl":"https://doi.org/10.1111/1752-1688.70020","url":null,"abstract":"<p>Hydropower is crucial for electric-grid stability in the context of variable renewables but faces threats from changing hydrology. Here, we summarize the state of the science at the intersection of hydropower operations and planning, hydrologic science, and climate. We focus on the United States, outlining research, development, and training needs. Key knowledge gaps include the risk that intensification of compound extreme events poses to future generation, as well as uncertainties surrounding greenhouse gas emissions from hydropower reservoirs with relevance to hydropower's role in energy decarbonization. Quantifying such impacts and reducing uncertainty are critical where possible, but remaining irreducible or deep uncertainty will require new approaches. Future monitoring and modeling methods must provide a better understanding of the complexity inherent in large watersheds that is critical to managing both hydropower and watersheds in the context of hydrologic change. Yet, research and development will have little impact if they do not inform practice. Standardization and consolidation of platforms are essential for data, modeling, and tool translation to local scales and small operators. An enhanced industry-academia dialog is pivotal for fostering a robust pipeline of hydropower professionals. Collaboration among researchers, policymakers, authorities, and industry stakeholders emerges as a recurring theme, highlighting the imperative for collective efforts.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"61 3","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.70020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144213880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of The American Water Resources Association
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1