首页 > 最新文献

Journal of the Indian Chemical Society最新文献

英文 中文
In silico identification and virtual screening to discover potent therapeutic phytochemicals against CMT2A 通过硅学鉴定和虚拟筛选发现针对 CMT2A 的强效治疗植物化学物质
IF 3.2 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-10 DOI: 10.1016/j.jics.2024.101403
Charcot-Marie-Tooth (CMT2A) neuropathies are a set of monogenic diseases that affect the peripheral nervous system. The pathogenesis of CMT2A, a disease caused by genetic mutations, is linked to impaired mitochondrial dynamics and axonal biology. Therapeutic options are still limited, with only a few drugs and other authorized or underdeveloped approaches. A ligand-based virtual screening methodology was used to identify the potential MFN promoters. The natural compound subset of the ZINC database (n = 559600) was obtained and filtered using a ligand-based virtual screening technique. The top 200 compounds were identified to have more than four features that matched the target compound. Pyrx software was used to analyze the molecular docking. Based on the number and type of important binding interactions and docking results, we selected top-20 compounds with the best binding affinities for the targeted protein. 3D-QSAR analyses were performed on potential ligands identified through molecular docking analyses to predict biological activity. The pEC50 and docking scores were used to identify the potential drugs. The ADMET analysis was used to assess the kinetic characteristics of the top two drugs. According to molecular dynamics simulation, the top compound ZINC000005313168 showed high conformational stability. Based on docking results and MD findings, the best in silico hits among the compounds investigated was ZINC000005313168. These findings suggest that the compound ZINC000005313168 could be used to treat CMT2A disease. Further in vivo and in vitro studies are required to consider the present analyses.
Charcot-Marie-Tooth 神经病(CMT2A)是一组影响周围神经系统的单基因疾病。CMT2A 是一种由基因突变引起的疾病,其发病机制与线粒体动力学和轴突生物学功能受损有关。治疗方案仍然有限,只有少数药物和其他已获授权或开发不足的方法。我们采用了一种基于配体的虚拟筛选方法来确定潜在的 MFN 启动子。通过配体虚拟筛选技术,获得了 ZINC 数据库的天然化合物子集(n = 559600)并对其进行筛选。筛选出的前 200 个化合物中,有四个以上的特征与目标化合物相匹配。使用 Pyrx 软件进行分子对接分析。根据重要结合相互作用的数量和类型以及对接结果,我们选出了与目标蛋白质结合亲和力最好的前 20 种化合物。我们对通过分子对接分析确定的潜在配体进行了 3D-QSAR 分析,以预测其生物活性。利用 pEC50 和对接得分来确定潜在药物。ADMET 分析用于评估前两种药物的动力学特征。分子动力学模拟结果表明,排名第一的化合物 ZINC000005313168 具有较高的构象稳定性。根据对接结果和分子动力学模拟结果,在所研究的化合物中,ZINC000005313168 的硅学命中率最高。这些发现表明 ZINC000005313168 可用于治疗 CMT2A 疾病。需要进一步的体内和体外研究来考虑本分析结果。
{"title":"In silico identification and virtual screening to discover potent therapeutic phytochemicals against CMT2A","authors":"","doi":"10.1016/j.jics.2024.101403","DOIUrl":"10.1016/j.jics.2024.101403","url":null,"abstract":"<div><div>Charcot-Marie-Tooth (CMT2A) neuropathies are a set of monogenic diseases that affect the peripheral nervous system. The pathogenesis of CMT2A, a disease caused by genetic mutations, is linked to impaired mitochondrial dynamics and axonal biology. Therapeutic options are still limited, with only a few drugs and other authorized or underdeveloped approaches. A ligand-based virtual screening methodology was used to identify the potential MFN promoters. The natural compound subset of the ZINC database (n = 559600) was obtained and filtered using a ligand-based virtual screening technique. The top 200 compounds were identified to have more than four features that matched the target compound. Pyrx software was used to analyze the molecular docking. Based on the number and type of important binding interactions and docking results, we selected top-20 compounds with the best binding affinities for the targeted protein. 3D-QSAR analyses were performed on potential ligands identified through molecular docking analyses to predict biological activity. The pEC50 and docking scores were used to identify the potential drugs. The ADMET analysis was used to assess the kinetic characteristics of the top two drugs. According to molecular dynamics simulation, the top compound ZINC000005313168 showed high conformational stability. Based on docking results and MD findings, the best in silico hits among the compounds investigated was ZINC000005313168. These findings suggest that the compound ZINC000005313168 could be used to treat CMT2A disease. Further <em>in vivo</em> and <em>in vitro</em> studies are required to consider the present analyses.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of nanofiller compositions for enhancing thermo-mechanical properties of epoxy-based composites through the application of response surface methodology with central composite design 通过应用响应面方法与中心复合设计,优化纳米填料成分以提高环氧基复合材料的热机械性能
IF 3.2 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-09 DOI: 10.1016/j.jics.2024.101417
An epoxy based composite of modified halloysite nanotubes (A) and modified fly ash (B) with improved thermo mechanical and morphological properties has been successfully fabricated. The primary objective of this study is to analyze the factors (composition of A and B) that significantly affect the properties of nanocomposites and to find out the best optimize values of these factors using Response Surface Methodology (RSM) with Central Composite Design(CCD). The enhancement of 80 percent in the tensile strength, nearly 240 percent of flexural strength, and nearly 166 percent in impact strength has been achieved at the optimal composition of A and B. The scanning electron microscopy (SEM) analysis in the present study highlight the importance of achieving proper dispersion and interaction with the polymer matrix in order to address issues like HNT aggregation. The efficient dispersion of A (3 wt%) and B (6 wt%) in the polymer is confirmed by SEM studies. In addition the TGA graph shows good thermal stability at 340 °C.
成功制备了一种基于环氧树脂的改性海泡石纳米管(A)和改性粉煤灰(B)复合材料,该复合材料具有更好的热机械性能和形态学性能。本研究的主要目的是分析对纳米复合材料性能有显著影响的因素(A 和 B 的组成),并利用响应面方法(RSM)和中央复合设计(CCD)找出这些因素的最佳优化值。本研究中的扫描电子显微镜(SEM)分析强调了实现适当分散以及与聚合物基质相互作用的重要性,以解决 HNT 聚集等问题。扫描电子显微镜研究证实了 A(3 wt%)和 B(6 wt%)在聚合物中的有效分散。此外,TGA 曲线图显示在 340 °C 下具有良好的热稳定性。
{"title":"Optimization of nanofiller compositions for enhancing thermo-mechanical properties of epoxy-based composites through the application of response surface methodology with central composite design","authors":"","doi":"10.1016/j.jics.2024.101417","DOIUrl":"10.1016/j.jics.2024.101417","url":null,"abstract":"<div><div>An epoxy based composite of modified halloysite nanotubes (A) and modified fly ash (B) with improved thermo mechanical and morphological properties has been successfully fabricated. The primary objective of this study is to analyze the factors (composition of A and B) that significantly affect the properties of nanocomposites and to find out the best optimize values of these factors using Response Surface Methodology (RSM) with Central Composite Design(CCD). The enhancement of 80 percent in the tensile strength, nearly 240 percent of flexural strength, and nearly 166 percent in impact strength has been achieved at the optimal composition of A and B. The scanning electron microscopy (SEM) analysis in the present study highlight the importance of achieving proper dispersion and interaction with the polymer matrix in order to address issues like HNT aggregation. The efficient dispersion of A (3 wt%) and B (6 wt%) in the polymer is confirmed by SEM studies. In addition the TGA graph shows good thermal stability at 340 °C.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phyto-mediated fabrication of cerium oxide nanoparticles using Mollugo oppositifolia L aqueous leaf extract: Antibacterial, antitonicity, and molecular docking studies 利用 Mollugo oppositifolia L 水叶提取物以植物为媒介制造氧化铈纳米颗粒:抗菌、抗粘性和分子对接研究
IF 3.2 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-09 DOI: 10.1016/j.jics.2024.101399
The use of bio-processes for synthesizing metal oxide nanoparticles represents a forefront area of research in nanotechnology. This study introduces a rapid and eco-friendly approach for producing cerium oxide nanoparticles (CeO2 NPs) utilizing the aqueous extract of Mollugo oppositifolia L leaves as a catalyst. The synthesized CeO2 NPs underwent comprehensive characterization through scanning electron microscopy (SEM), X-ray diffraction (XRD), ultraviolet–visible spectroscopy (UV–Vis), and Fourier transform infrared spectroscopy (FT-IR). Furthermore, the antimicrobial activity of the CeO2 NPs was assessed in vitro against various bacterial strains, demonstrating a concentration-dependent inhibition zone when exposed to concentrations ranging from 25 to 100 μg/mL. Antitonicity activity results of the synthesized CeO2 NPs revealed significant activity. Further molecular docking studies also revealed that the synthesized CeO2 NPs have better docking ability compared to control Streptomycin in E. coli topoisomerase II DNA gyrase B (PDB ID:1KZN).
利用生物工艺合成金属氧化物纳米粒子是纳米技术的一个前沿研究领域。本研究介绍了一种利用 Mollugo oppositifolia L 叶片的水提取物作为催化剂生产氧化铈纳米粒子(CeO2 NPs)的快速、环保方法。通过扫描电子显微镜(SEM)、X 射线衍射(XRD)、紫外可见光谱(UV-Vis)和傅立叶变换红外光谱(FT-IR)对合成的 CeO2 NPs 进行了综合表征。此外,还在体外评估了 CeO2 NPs 对各种细菌菌株的抗菌活性,结果表明,在 25 至 100 μg/mL 的浓度范围内,抑制区的大小与浓度有关。合成的 CeO2 NPs 的抗凝活性结果显示了显著的活性。进一步的分子对接研究还发现,与对照组链霉素相比,合成的 CeO2 NPs 在大肠杆菌拓扑异构酶 II DNA 回旋酶 B(PDB ID:1KZN)中具有更好的对接能力。
{"title":"Phyto-mediated fabrication of cerium oxide nanoparticles using Mollugo oppositifolia L aqueous leaf extract: Antibacterial, antitonicity, and molecular docking studies","authors":"","doi":"10.1016/j.jics.2024.101399","DOIUrl":"10.1016/j.jics.2024.101399","url":null,"abstract":"<div><div>The use of bio-processes for synthesizing metal oxide nanoparticles represents a forefront area of research in nanotechnology. This study introduces a rapid and eco-friendly approach for producing cerium oxide nanoparticles (CeO<sub>2</sub> NPs) utilizing the aqueous extract of <em>Mollugo oppositifolia</em> L leaves as a catalyst. The synthesized CeO<sub>2</sub> NPs underwent comprehensive characterization through scanning electron microscopy (SEM), X-ray diffraction (XRD), ultraviolet–visible spectroscopy (UV–Vis), and Fourier transform infrared spectroscopy (FT-IR). Furthermore, the antimicrobial activity of the CeO<sub>2</sub> NPs was assessed in vitro against various bacterial strains, demonstrating a concentration-dependent inhibition zone when exposed to concentrations ranging from 25 to 100 μg/mL. Antitonicity activity results of the synthesized CeO<sub>2</sub> NPs revealed significant activity. Further molecular docking studies also revealed that the synthesized CeO<sub>2</sub> NPs have better docking ability compared to control Streptomycin in <em>E. coli</em> topoisomerase II DNA gyrase B (PDB ID:1KZN).</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic charge-transfer dynamics of novel benzothiadiazole-based donor materials for higher power conversion efficiency: From structural engineering to efficiency assessment in non-fullerene organic solar cells 基于苯并噻二唑的新型供体材料的协同电荷转移动力学可提高功率转换效率:从结构工程到非富勒烯有机太阳能电池的效率评估
IF 3.2 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-09 DOI: 10.1016/j.jics.2024.101418
In the realm of organic solar cell technology, current research is dedicated to enhancing the photovoltaic properties of donor-π-acceptor (D-π-A) materials to achieve higher power conversion efficiencies (PCE). This optimization focuses particularly on fine-tuning the conduction band and electrolytic characteristics to maximize performance. Addressing the growing demand for novel materials with enhanced optoelectronic properties in organic photovoltaic research, our proposed compound BT05, one of nine new benzothiadiazole-based D-π-A donor molecules (BT01-BT09), exhibits a power conversion efficiency (PCE) of 25 %, surpassing the 18 % PCE of the reference compound BTD-OMe. TD-DFT and DFT simulations illuminate how donor modifications enhance the photovoltaic characteristics of the proposed molecules. Higher open-circuit voltage (VOC) of 1.74–2.26 V, increase in binding energy (∼1.997), λmax (470–476 nm), reduction in energy gap (4.25–4.65 eV), also validates the PCE results and confirm the usefulness of designed molecules (BT01-BT09). Moreover, DHOMO and ALUMO, TDM, reorganization energy λe (0.0124–0.0134) and λh (0.0094–0.0098), and NPA results also confirm that BT01-BT09 molecules unlock the organic solar cell's potential and advance sustainable energy solutions through innovative technology. Among all developed compounds, BT05 displays higher VOC (2.26 V), 87 % fill-factor, and 25 % PCE; hence, it is recommended in future solar cell applications.
在有机太阳能电池技术领域,目前的研究致力于提高供体-π-受体(D-π-A)材料的光伏特性,以实现更高的功率转换效率(PCE)。这种优化尤其侧重于微调导带和电解特性,以最大限度地提高性能。为了满足有机光伏研究领域对具有增强光电特性的新型材料日益增长的需求,我们提出的化合物 BT05 是九种新的苯并噻二唑基 D-π-A 给体分子(BT01-BT09)之一,其功率转换效率(PCE)达到 25%,超过了参考化合物 BTD-OMe 的 18%。TD-DFT 和 DFT 模拟揭示了供体修饰如何增强拟议分子的光伏特性。更高的开路电压(VOC)(1.74-2.26 V)、结合能的增加(∼1.997)、λmax(470-476 nm)、能隙的减小(4.25-4.65 eV)也验证了 PCE 的结果,并证实了所设计分子 (BT01-BT09) 的实用性。此外,DHOMO 和 ALUMO、TDM、重组能 λe (0.0124-0.0134)和 λh(0.0094-0.0098)以及 NPA 结果也证实了 BT01-BT09 分子释放了有机太阳能电池的潜力,并通过创新技术推进了可持续能源解决方案。在所有已开发的化合物中,BT05 显示出更高的 VOC(2.26 V)、87 % 的填充因子和 25 % 的 PCE;因此,建议将其用于未来的太阳能电池应用中。
{"title":"Synergistic charge-transfer dynamics of novel benzothiadiazole-based donor materials for higher power conversion efficiency: From structural engineering to efficiency assessment in non-fullerene organic solar cells","authors":"","doi":"10.1016/j.jics.2024.101418","DOIUrl":"10.1016/j.jics.2024.101418","url":null,"abstract":"<div><div>In the realm of organic solar cell technology, current research is dedicated to enhancing the photovoltaic properties of donor-π-acceptor (D-π-A) materials to achieve higher power conversion efficiencies (PCE). This optimization focuses particularly on fine-tuning the conduction band and electrolytic characteristics to maximize performance. Addressing the growing demand for novel materials with enhanced optoelectronic properties in organic photovoltaic research, our proposed compound BT05, one of nine new benzothiadiazole-based D-π-A donor molecules (BT01-BT09), exhibits a power conversion efficiency (PCE) of 25 %, surpassing the 18 % PCE of the reference compound BTD-OMe. TD-DFT and DFT simulations illuminate how donor modifications enhance the photovoltaic characteristics of the proposed molecules. Higher open-circuit voltage (V<sub>OC</sub>) of 1.74–2.26 V, increase in binding energy (∼1.997), <em>λ</em><sub>max</sub> (470–476 nm), reduction in energy gap (4.25–4.65 eV), also validates the PCE results and confirm the usefulness of designed molecules (BT01-BT09). Moreover, D<sub>HOMO</sub> and A<sub>LUMO,</sub> TDM, reorganization energy <em>λ</em><sub>e</sub> (0.0124–0.0134) and <em>λ</em><sub>h</sub> (0.0094–0.0098), and NPA results also confirm that BT01-BT09 molecules unlock the organic solar cell's potential and advance sustainable energy solutions through innovative technology. Among all developed compounds, BT05 displays higher V<sub>OC</sub> (2.26 V), 87 % fill-factor, and 25 % PCE; hence, it is recommended in future solar cell applications.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, spectral characterization and biological activities of o,o'-dihydroxyazo compounds containing gallic acid: Molecular docking and dynamics simulation and MM-PBSA studies 含有没食子酸的 o,o'-二羟基偶氮化合物的合成、光谱表征和生物活性:分子对接和动力学模拟以及 MM-PBSA 研究
IF 3.2 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-09 DOI: 10.1016/j.jics.2024.101414
In the investigation, diazonium derivatives of 2-aminophenol, 2-amino-4-methylphenol, 2-amino-4-chlorophenol, and 2-amino-5-nitrophenol reacted with gallic acid to produce four distinct o,o'-dihydroxyazo compounds. Description of the o,o'-dihydroxyazo compounds that were produced identified the substituent spectrum data using UV–Vis, FT-IR, NMR spectroscopy and MS spectrometry methods. The UV–Vis behaviors of compounds in ethanol and DMSO were noted at various pH values. The antioxidant, antimicrobial, and urease inhibitory activities of the compounds were determined spectrophotometrically and compared to standard compounds. The DPPH˙ scavenging and metal chelating activities of compound 4b were 2.17 ± 0.04 and 11.62 ± 0.64 μg/mL, respectively. Compounds exhibited an effective antibacterial activity against B. cereus. The urease inhibition capacity of compound 4c (IC50: 4.79 ± 0.01 μg/mL) was more effective than thiourea (IC50: 20.04 ± 0.16 μg/mL). Moreover, molecular docking calculations were used to assess the urease inhibition potentials, inhibition kinetics, and interactions of the synthesized compounds with antimicrobial enzymes and urease. The compounds had substantial impacts on density functional theory (DFT), molecular electrostatic potential (MEP), inhibition kinetics, enzyme inhibition, and PASS prediction tests. For this reason, molecular dynamics simulation and MM-PBSA energy calculation were performed to assess the compounds' stability during urease binding.
As a result, the effective pharmacological properties of the newly synthesized o,o'-dihydroxyazo compounds were revealed by different in vitro bioactivity tests and in silico calculations.
在这项研究中,2-氨基苯酚、2-氨基-4-甲基苯酚、2-氨基-4-氯苯酚和 2-氨基-5-硝基苯酚的重氮衍生物与没食子酸反应生成了四种不同的 o,o'-二羟基偶氮化合物。在描述所生成的 o,o'-二羟基偶氮化合物时,使用了紫外可见光谱、傅立叶变换红外光谱、核磁共振光谱和质谱分析方法确定了取代基光谱数据。在不同的 pH 值下,化合物在乙醇和二甲基亚砜中的紫外可见光行为受到关注。用分光光度法测定了化合物的抗氧化、抗菌和抑制脲酶活性,并与标准化合物进行了比较。化合物 4b 的 DPPH˙清除活性和金属螯合活性分别为 2.17 ± 0.04 和 11.62 ± 0.64 μg/mL。化合物对蜡样芽孢杆菌具有有效的抗菌活性。化合物 4c 的脲酶抑制能力(IC50:4.79 ± 0.01 μg/mL)比硫脲(IC50:20.04 ± 0.16 μg/mL)更有效。此外,还利用分子对接计算评估了合成化合物的脲酶抑制潜力、抑制动力学以及与抗菌酶和脲酶的相互作用。这些化合物对密度泛函理论(DFT)、分子静电位(MEP)、抑制动力学、酶抑制和 PASS 预测测试产生了重大影响。因此,通过不同的体外生物活性测试和硅学计算,揭示了新合成的 o,o'-二羟基偶氮化合物的有效药理特性。
{"title":"Synthesis, spectral characterization and biological activities of o,o'-dihydroxyazo compounds containing gallic acid: Molecular docking and dynamics simulation and MM-PBSA studies","authors":"","doi":"10.1016/j.jics.2024.101414","DOIUrl":"10.1016/j.jics.2024.101414","url":null,"abstract":"<div><div>In the investigation, diazonium derivatives of 2-aminophenol, 2-amino-4-methylphenol, 2-amino-4-chlorophenol, and 2-amino-5-nitrophenol reacted with gallic acid to produce four distinct <em>o,o</em><em>'</em>-dihydroxyazo compounds. Description of the <em>o,o'</em>-dihydroxyazo compounds that were produced identified the substituent spectrum data using UV–Vis, FT-IR, NMR spectroscopy and MS spectrometry methods. The UV–Vis behaviors of compounds in ethanol and DMSO were noted at various pH values. The antioxidant, antimicrobial, and urease inhibitory activities of the compounds were determined spectrophotometrically and compared to standard compounds. The DPPH˙ scavenging and metal chelating activities of compound 4b were 2.17 ± 0.04 and 11.62 ± 0.64 μg/mL, respectively. Compounds exhibited an effective antibacterial activity against <em>B. cereus</em>. The urease inhibition capacity of compound 4c (IC<sub>50</sub>: 4.79 ± 0.01 μg/mL) was more effective than thiourea (IC<sub>50</sub>: 20.04 ± 0.16 μg/mL). Moreover, molecular docking calculations were used to assess the urease inhibition potentials, inhibition kinetics, and interactions of the synthesized compounds with antimicrobial enzymes and urease. The compounds had substantial impacts on density functional theory (DFT), molecular electrostatic potential (MEP), inhibition kinetics, enzyme inhibition, and PASS prediction tests. For this reason, molecular dynamics simulation and MM-PBSA energy calculation were performed to assess the compounds' stability during urease binding.</div><div>As a result, the effective pharmacological properties of the newly synthesized <em>o,o'</em>-dihydroxyazo compounds were revealed by different <em>in vitro</em> bioactivity tests and <em>in silico</em> calculations.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An improved amperometric cholesterol biosensor based on cholesterol oxidase nanostructures for pre-diagnosis of myocardial infarction 基于胆固醇氧化酶纳米结构的改进型安培胆固醇生物传感器,用于心肌梗死的预诊断
IF 3.2 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-06 DOI: 10.1016/j.jics.2024.101415
Cholesterol plays a pivotal role in human health, serving as a crucial biomarker for cardiovascular diseases, including myocardial infarction. This study presents the development of an innovative amperometric cholesterol biosensor that enhances the detection and quantification of cholesterol levels in serum. The biosensor integrates cholesterol oxidase (ChOx) nanoparticles with a modified electrode, leveraging the unique properties of platinum nanoparticles (PtNPs) and graphene nanosheets (GNs) to improve sensitivity and stability. The synthesis of PtNPs was achieved using Camellia sinensis extract, while graphene oxide was reduced to form GNs. At 2.39 mg/mL or above is deemed a biomarker for cardiovascular disorders, peripheral artery disease, heart attack, diabetes mellitus, strokes, and hypertension. The monitoring of serum cholesterol level is therefore very significant. In the present study, an innovative amperometric cholesterol biosensor was constructed by immobilizing nanoparticles of cholesterol oxidase onto a pencil graphite (PG) electrode modified with graphene nanosheets (GNs), platinum nanoparticles (PtNPs), and chitosan (CHIT). At various stages of construction, the modified electrode was characterized by employing electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) spectroscopy. The biosensor responded best when run at 0.14Vs-1 at optimal pH and temperature of 8.0 and 35°C respectively. The biosensor has a wide linear range (0.1mg/mL-7.5 mg/mL), with great sensitivity (0.89 mA cm−1mgmL−1) and a low limit of detection (0.97 mg/mL). This research not only contributes to the field of biosensing but also offers a promising tool for the early diagnosis of cholesterol-related health issues, paving the way for enhanced cardiovascular disease management.
胆固醇在人类健康中起着举足轻重的作用,是心血管疾病(包括心肌梗塞)的重要生物标志物。本研究介绍了一种创新型安培胆固醇生物传感器的开发情况,该传感器可提高对血清中胆固醇水平的检测和定量。该生物传感器将胆固醇氧化酶(ChOx)纳米粒子与改良电极整合在一起,利用铂纳米粒子(PtNPs)和石墨烯纳米片(GNs)的独特性能提高灵敏度和稳定性。铂纳米粒子是用山茶提取物合成的,而氧化石墨烯则被还原成 GNs。2.39毫克/毫升或以上的胆固醇被认为是心血管疾病、外周动脉疾病、心脏病、糖尿病、中风和高血压的生物标志物。因此,监测血清胆固醇水平意义重大。在本研究中,通过将胆固醇氧化酶纳米颗粒固定在用石墨烯纳米片(GNs)、铂纳米颗粒(PtNPs)和壳聚糖(CHIT)修饰的铅笔石墨(PG)电极上,构建了一种创新的安培胆固醇生物传感器。在构建的不同阶段,采用电阻抗光谱法(EIS)、循环伏安法(CV)、扫描电子显微镜(SEM)和能量色散 X 射线光谱法(EDX)对改性电极进行了表征。生物传感器在最佳 pH 值为 0.14Vs-1 和温度分别为 8.0 和 35°C 的条件下运行时反应最佳。该生物传感器的线性范围宽(0.1 毫克/毫升-7.5 毫克/毫升),灵敏度高(0.89 毫安厘米-1 毫克毫升-1),检测限低(0.97 毫克/毫升)。这项研究不仅为生物传感领域做出了贡献,还为胆固醇相关健康问题的早期诊断提供了一种前景广阔的工具,为加强心血管疾病管理铺平了道路。
{"title":"An improved amperometric cholesterol biosensor based on cholesterol oxidase nanostructures for pre-diagnosis of myocardial infarction","authors":"","doi":"10.1016/j.jics.2024.101415","DOIUrl":"10.1016/j.jics.2024.101415","url":null,"abstract":"<div><div>Cholesterol plays a pivotal role in human health, serving as a crucial biomarker for cardiovascular diseases, including myocardial infarction. This study presents the development of an innovative amperometric cholesterol biosensor that enhances the detection and quantification of cholesterol levels in serum. The biosensor integrates cholesterol oxidase (ChOx) nanoparticles with a modified electrode, leveraging the unique properties of platinum nanoparticles (PtNPs) and graphene nanosheets (GNs) to improve sensitivity and stability. The synthesis of PtNPs was achieved using Camellia sinensis extract, while graphene oxide was reduced to form GNs. At 2.39 mg/mL or above is deemed a biomarker for cardiovascular disorders, peripheral artery disease, heart attack, diabetes mellitus, strokes, and hypertension. The monitoring of serum cholesterol level is therefore very significant. In the present study, an innovative amperometric cholesterol biosensor was constructed by immobilizing nanoparticles of cholesterol oxidase onto a pencil graphite (PG) electrode modified with graphene nanosheets (GNs), platinum nanoparticles (PtNPs), and chitosan (CHIT). At various stages of construction, the modified electrode was characterized by employing electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) spectroscopy. The biosensor responded best when run at 0.14Vs<sup>-1</sup> at optimal pH and temperature of 8.0 and 35°C respectively. The biosensor has a wide linear range (0.1mg/mL-7.5 mg/mL), with great sensitivity (0.89 mA cm<sup>−1</sup>mgmL<sup>−1</sup>) and a low limit of detection (0.97 mg/mL). This research not only contributes to the field of biosensing but also offers a promising tool for the early diagnosis of cholesterol-related health issues, paving the way for enhanced cardiovascular disease management.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extraction of mandelic acid with tri-octyl-phosphine oxide (TOPO) in different solvents: Equilibrium and neural network analysis 用三辛基氧化膦(TOPO)在不同溶剂中萃取扁桃酸:平衡和神经网络分析
IF 3.2 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-05 DOI: 10.1016/j.jics.2024.101412
Mandelic acid is an important carboxylic acid used in pharmaceutical industries. It is also important to use it as a purified form. In this study, selective extraction of mandelic acid was done by tri-octyl-phosphine oxide (TOPO) diluted in different solvents such as methyl isobutyl ketone, 1-octanol, octyl acetate, dimethyl phthalate, 2-octanone, cyclohexane and toluene. The high selectivity of mandelic acid from aqueous solution was supported by thermodynamic parameters (loading factor, distribution coefficient, and extraction efficiency). The obtained values for each solvent were applied to the Neural Network Analysis to predict phase equilibrium behaviour in ternary systems. The results showed the highest mandelic acid extraction efficiency (93.65 %) and distribution coefficient (14.74) were attained with the organic phase mixture prepared with MIBK and TOPO. Also, it was found that extraction efficiencies increased with increasing TOPO amount in the medium for all studied solvents.
扁桃酸是一种重要的羧酸,可用于制药业。以纯化的形式使用它也很重要。本研究采用三辛基氧化膦(TOPO)在不同溶剂(如甲基异丁基酮、1-辛醇、乙酸辛酯、邻苯二甲酸二甲酯、2-辛酮、环己烷和甲苯)中稀释的方法对扁桃酸进行选择性萃取。从水溶液中萃取扁桃酸的高选择性得到了热力学参数(负载系数、分配系数和萃取效率)的支持。所获得的每种溶剂的数值都被应用于神经网络分析法,以预测三元体系中的相平衡行为。结果表明,用 MIBK 和 TOPO 制备的有机相混合物的扁桃酸萃取效率(93.65%)和分配系数(14.74)最高。此外,还发现在所有研究溶剂中,萃取效率随着介质中 TOPO 含量的增加而提高。
{"title":"Extraction of mandelic acid with tri-octyl-phosphine oxide (TOPO) in different solvents: Equilibrium and neural network analysis","authors":"","doi":"10.1016/j.jics.2024.101412","DOIUrl":"10.1016/j.jics.2024.101412","url":null,"abstract":"<div><div>Mandelic acid is an important carboxylic acid used in pharmaceutical industries. It is also important to use it as a purified form. In this study, selective extraction of mandelic acid was done by tri-octyl-phosphine oxide (TOPO) diluted in different solvents such as methyl isobutyl ketone, 1-octanol, octyl acetate, dimethyl phthalate, 2-octanone, cyclohexane and toluene. The high selectivity of mandelic acid from aqueous solution was supported by thermodynamic parameters (loading factor, distribution coefficient, and extraction efficiency). The obtained values for each solvent were applied to the Neural Network Analysis to predict phase equilibrium behaviour in ternary systems. The results showed the highest mandelic acid extraction efficiency (93.65 %) and distribution coefficient (14.74) were attained with the organic phase mixture prepared with MIBK and TOPO. Also, it was found that extraction efficiencies increased with increasing TOPO amount in the medium for all studied solvents.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and fabrication OF Cu2O@MoS2/r-Go dendrite binary electrode for quasi – Symmetric capacitor- sustainable approach 设计和制造用于准对称电容器的 Cu2O@MoS2/r-Go 树枝状二元电极--可持续方法
IF 3.2 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-05 DOI: 10.1016/j.jics.2024.101411
Modified hummers method to synthesise GO from powdered graphite and sodium molybdate, then green synthesised Cu2O/MoS2/rGO nanostructure prepared by economical microwave approach. XRD analysis proved that Cu2O and MoS2/rGO were present in the sample. FTIR spectra revealed a Cu2O group at around 620 cm−1, whilst EDAX analysis revealed Mo, Cu, S, O, and C characteristic bands. rGO material resembles the SEM image of Cu2O/MoS2-rGo in appearance, with dendritic morphologies of Cu2O and MoS2 sheets on its exterior. When applied to nearby r-GO sheet formations, MoS2 thins down the layers. Incorporating rGO, a conductive material, into the MoS2/rGO composite greatly enhanced its capacity to store charges. Improved storage properties of the composite led to charge-discharge curves that were more symmetrical than those of pure MoS2. The significant heterostructure of 2D materials is responsible for their remarkable cyclic stability. Supercapacitors with a Cu2O/MoS2/r-GO nanostructure as manufactured are safe for use with batteries. Building 2D and 3D heterostructures to improve energy storage systems of the future is the goal of this endeavor.
改良嗡嗡法从石墨粉和钼酸钠中合成 GO,然后用经济的微波方法制备出绿色合成的 Cu2O/MoS2/rGO 纳米结构。XRD 分析表明,样品中存在 Cu2O 和 MoS2/rGO。傅立叶变换红外光谱显示了 620 cm-1 左右的 Cu2O 基团,而 EDAX 分析则显示了 Mo、Cu、S、O 和 C 特征带。当应用到附近的 r-GO 片层上时,MoS2 会使片层变薄。在 MoS2/rGO 复合材料中加入导电材料 rGO 可大大提高其存储电荷的能力。复合材料存储性能的提高使其充放电曲线比纯 MoS2 更为对称。二维材料的重要异质结构是其显著循环稳定性的原因。采用 Cu2O/MoS2/r-GO 纳米结构制造的超级电容器可安全地与电池一起使用。建立二维和三维异质结构以改进未来的能量存储系统是这项研究的目标。
{"title":"Design and fabrication OF Cu2O@MoS2/r-Go dendrite binary electrode for quasi – Symmetric capacitor- sustainable approach","authors":"","doi":"10.1016/j.jics.2024.101411","DOIUrl":"10.1016/j.jics.2024.101411","url":null,"abstract":"<div><div>Modified hummers method to synthesise GO from powdered graphite and sodium molybdate, then green synthesised Cu<sub>2</sub>O/MoS<sub>2</sub>/rGO nanostructure prepared by economical microwave approach. XRD analysis proved that Cu<sub>2</sub>O and MoS<sub>2</sub>/rGO were present in the sample. FTIR spectra revealed a Cu<sub>2</sub>O group at around 620 cm<sup>−1</sup>, whilst EDAX analysis revealed Mo, Cu, S, O, and C characteristic bands. rGO material resembles the SEM image of Cu<sub>2</sub>O/MoS<sub>2</sub>-rGo in appearance, with dendritic morphologies of Cu<sub>2</sub>O and MoS<sub>2</sub> sheets on its exterior. When applied to nearby r-GO sheet formations, MoS2 thins down the layers. Incorporating rGO, a conductive material, into the MoS<sub>2</sub>/rGO composite greatly enhanced its capacity to store charges. Improved storage properties of the composite led to charge-discharge curves that were more symmetrical than those of pure MoS<sub>2</sub>. The significant heterostructure of 2D materials is responsible for their remarkable cyclic stability. Supercapacitors with a Cu<sub>2</sub>O/MoS<sub>2</sub>/r-GO nanostructure as manufactured are safe for use with batteries. Building 2D and 3D heterostructures to improve energy storage systems of the future is the goal of this endeavor.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of halloysite thermal decomposition through differential thermal analysis (DTA): Mechanism and kinetics assessment 通过差热分析 (DTA) 研究埃洛石的热分解:机制和动力学评估
IF 3.2 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-05 DOI: 10.1016/j.jics.2024.101413
The study focused on analysing the kinetics of halloysite decomposition using the differential thermal analysis (DTA) technique. Tests were carried out across a temperature span from ambient temperature to 1673 K, employing heating rates spanning from 5 to 20 °C.min−1. X-ray diffraction and Fourier transform infrared spectroscopy (FT-IR) were utilized to identify the phases formed at different temperatures. Activation energies for halloysite decomposition were determined through isothermal and non-isothermal treatments, yielding values of approximately 151.68 kJ mol−1 and 173.14 kJ mol−1, respectively. The Ligero method's Avrami constant parameter (n) and the Matusita method's numerical factor parameter (m), linked to crystal growth dimensions, were both around 1.5. These findings indicate that the degradation of halloysite is primarily governed by bulk nucleation, succeeded by the 3-dimensional growth of meta-halloysite characterized by polyhedron-like structure, regulated by diffusion from a consistent number of nuclei. The frequency factor for halloysite dehydroxylation was established at 8.48 × 10⁸ s⁻1.
研究重点是利用差热分析(DTA)技术分析埃洛石的分解动力学。测试的温度跨度从环境温度到 1673 K,加热速率从 5 到 20 °C.min-1 不等。利用 X 射线衍射和傅立叶变换红外光谱(FT-IR)来确定在不同温度下形成的相。通过等温和非等温处理确定了埃洛石分解的活化能,其值分别约为 151.68 kJ mol-1 和 173.14 kJ mol-1。与晶体生长尺寸相关的 Ligero 方法的阿夫拉米常数参数(n)和 Matusita 方法的数值因子参数(m)都在 1.5 左右。这些研究结果表明,埃洛石的降解主要是由块状成核决定的,随后是以多面体结构为特征的元埃洛石的三维生长,并由数量一致的晶核扩散调节。埃洛石脱羟基的频率因子被确定为 8.48 × 10⁸ s-1。
{"title":"Investigation of halloysite thermal decomposition through differential thermal analysis (DTA): Mechanism and kinetics assessment","authors":"","doi":"10.1016/j.jics.2024.101413","DOIUrl":"10.1016/j.jics.2024.101413","url":null,"abstract":"<div><div>The study focused on analysing the kinetics of halloysite decomposition using the differential thermal analysis (DTA) technique. Tests were carried out across a temperature span from ambient temperature to 1673 K, employing heating rates spanning from 5 to 20 °C.min<sup>−1</sup>. X-ray diffraction and Fourier transform infrared spectroscopy (FT-IR) were utilized to identify the phases formed at different temperatures. Activation energies for halloysite decomposition were determined through isothermal and non-isothermal treatments, yielding values of approximately 151.68 kJ mol<sup>−1</sup> and 173.14 kJ mol<sup>−1</sup>, respectively. The Ligero method's Avrami constant parameter (<span><math><mrow><mi>n</mi></mrow></math></span>) and the Matusita method's numerical factor parameter (<span><math><mrow><mi>m</mi></mrow></math></span>), linked to crystal growth dimensions, were both around 1.5. These findings indicate that the degradation of halloysite is primarily governed by bulk nucleation, succeeded by the 3-dimensional growth of <em>meta</em>-halloysite characterized by polyhedron-like structure, regulated by diffusion from a consistent number of nuclei. The frequency factor for halloysite dehydroxylation was established at 8.48 × 10⁸ s⁻<sup>1</sup>.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A facile and green synthesis of corn cob-based graphene oxide and its modification with corn cob-K2CO3 for efficient removal of methylene blue dye: Adsorption mechanism, isotherm, and kinetic studies 玉米芯基氧化石墨烯的简便绿色合成及其与玉米芯-K2CO3的改性,用于高效去除亚甲基蓝染料:吸附机理、等温线和动力学研究
IF 3.2 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-04 DOI: 10.1016/j.jics.2024.101409
In recent years, the treatment of synthetic dyes has become an environmental concern. In this study, a single step calcination process was used to develop the inventive, simple, and inexpensive adsorbent CC-GO/CC-K2CO3 composite. The composite was employed for the treatment of methylene blue (MB), a cationic dye. Several characterization methods including powder XRD, FTIR, XPS, BET, FESEM, EDX, Raman, and HRTEM techniques were utilized for the analysis of the composite. The surface area and mean pore diameter of CC-GO/CC-K2CO3 were 32.651 m2 g−1 and 3.71 nm, respectively. The adsorption experiment showed that optimal parameters for the removal of MB dye are at an adsorbent dose of 60 mg, initial dye concentration of 80 mg/L, contact time of 150 min, and pH value of 12 at room temperature. Under optimized conditions, CC-GO evidences a removal efficiency of 70.34 ± 1.36 % while after incorporation with CC-K2CO3 the removal capacity sharply increases up to 98.10 ± 0.4 %. Kinetic and isotherm models were used to analyze the removal rate constant and equilibrium adsorption capacity under various adsorption environments. The adsorption study was found to follow the models of pseudo-second order kinetic and Freundlich isotherm. The CC-GO/CC-K2CO3 composite has the maximum adsorption capacity (MAC) of 160.77 mg/g established by the Langmuir isotherm. The prepared composite has demonstrated the capacity to be recycled up to three times with a gradual decrease in its adsorption behavior, exhibiting removal efficiency of 61.66 ± 2.04 %.
A cost estimation study of the composite was also performed to assess its cost effectiveness.
近年来,合成染料的处理已成为环境问题。在这项研究中,采用单步煅烧工艺开发出了具有创造性、简单且廉价的吸附剂 CC-GO/CC-K2CO3 复合材料。该复合材料用于处理阳离子染料亚甲基蓝(MB)。对该复合材料的分析采用了多种表征方法,包括粉末 XRD、FTIR、XPS、BET、FESEM、EDX、拉曼和 HRTEM 技术。CC-GO/CC-K2CO3 的表面积和平均孔径分别为 32.651 m2 g-1 和 3.71 nm。吸附实验表明,在室温下,吸附剂剂量为 60 毫克、初始染料浓度为 80 毫克/升、接触时间为 150 分钟、pH 值为 12 的条件下,去除 MB 染料的最佳参数为:吸附剂剂量为 60 毫克、初始染料浓度为 80 毫克/升、接触时间为 150 分钟、pH 值为 12。在优化条件下,CC-GO 的去除效率为 70.34 ± 1.36 %,而加入 CC-K2CO3 后,去除能力急剧增加到 98.10 ± 0.4 %。使用动力学和等温线模型分析了各种吸附环境下的去除率常数和平衡吸附容量。发现吸附研究遵循假二阶动力学模型和 Freundlich 等温线模型。根据 Langmuir 等温线,CC-GO/CC-K2CO3 复合材料的最大吸附容量(MAC)为 160.77 mg/g。所制备的复合材料在吸附行为逐渐减弱的情况下可循环使用三次,其去除效率为 61.66 ± 2.04 %。
{"title":"A facile and green synthesis of corn cob-based graphene oxide and its modification with corn cob-K2CO3 for efficient removal of methylene blue dye: Adsorption mechanism, isotherm, and kinetic studies","authors":"","doi":"10.1016/j.jics.2024.101409","DOIUrl":"10.1016/j.jics.2024.101409","url":null,"abstract":"<div><div>In recent years, the treatment of synthetic dyes has become an environmental concern. In this study, a single step calcination process was used to develop the inventive, simple, and inexpensive adsorbent CC-GO/CC-K<sub>2</sub>CO<sub>3</sub> composite. The composite was employed for the treatment of methylene blue (MB), a cationic dye. Several characterization methods including powder XRD, FTIR, XPS, BET, FESEM, EDX, Raman, and HRTEM techniques were utilized for the analysis of the composite. The surface area and mean pore diameter of CC-GO/CC-K<sub>2</sub>CO<sub>3</sub> were 32.651 m<sup>2</sup> g<sup>−1</sup> and 3.71 nm, respectively. The adsorption experiment showed that optimal parameters for the removal of MB dye are at an adsorbent dose of 60 mg, initial dye concentration of 80 mg/L, contact time of 150 min, and pH value of 12 at room temperature. Under optimized conditions, CC-GO evidences a removal efficiency of 70.34 ± 1.36 % while after incorporation with CC-K<sub>2</sub>CO<sub>3</sub> the removal capacity sharply increases up to 98.10 ± 0.4 %. Kinetic and isotherm models were used to analyze the removal rate constant and equilibrium adsorption capacity under various adsorption environments. The adsorption study was found to follow the models of pseudo-second order kinetic and Freundlich isotherm. The CC-GO/CC-K<sub>2</sub>CO<sub>3</sub> composite has the maximum adsorption capacity (MAC) of 160.77 mg/g established by the Langmuir isotherm. The prepared composite has demonstrated the capacity to be recycled up to three times with a gradual decrease in its adsorption behavior, exhibiting removal efficiency of 61.66 ± 2.04 %.</div><div>A cost estimation study of the composite was also performed to assess its cost effectiveness.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of the Indian Chemical Society
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1