Pub Date : 2024-11-04DOI: 10.1016/j.jics.2024.101459
Mustafa Durak , Ersin Yücel , Yasin Yücel
In this study, important process parameters in the synthesis of PbS films using a continuous flow reactor were optimized with a design of experiments approach. Flow rate, circulation time and temperature were selected as process parameters in coating with the flow-through chemical deposition method. A mathematical model was developed to predict the energy band gap of PbS chalcogenides deposited using a continuous flow reactor. According to the central composite design results for the chalcogenides, optimum process conditions were found to be flow rate: 146.9 mL/min, circulation time: 6.3 h and temperature: 30.3 °C. ANOVA results showed that the flow rate and reaction temperature parameters are important for the prediction model. In other words, it can be said that these parameters play an important role in controlling the Eg value of PbS. On the other hand, the average surface roughness (Ra: 8.78 nm) and RMS roughness (Rq: 11.34 nm) values of the PbS film synthesized under optimized conditions supported the smooth surface formation phenomenon. The energy band gap of the film-coated under optimal experimental conditions was measured as 2.18 eV and was estimated as 2.15 eV by the developed model. The developed model could predicted the Eg of PbS film with a relative error of 1.38 %. The closeness of the measured and predicted Eg values revealed the reliability of the developed mathematical model.
{"title":"Chemometric optimization of the continuous flow synthesis parameters of PbS thin films: Design of experiments (DOE) based mathematical modelling for energy band gap prediction of PbS coating","authors":"Mustafa Durak , Ersin Yücel , Yasin Yücel","doi":"10.1016/j.jics.2024.101459","DOIUrl":"10.1016/j.jics.2024.101459","url":null,"abstract":"<div><div>In this study, important process parameters in the synthesis of PbS films using a continuous flow reactor were optimized with a design of experiments approach. Flow rate, circulation time and temperature were selected as process parameters in coating with the flow-through chemical deposition method. A mathematical model was developed to predict the energy band gap of PbS chalcogenides deposited using a continuous flow reactor. According to the central composite design results for the chalcogenides, optimum process conditions were found to be flow rate: 146.9 mL/min, circulation time: 6.3 h and temperature: 30.3 °C. ANOVA results showed that the flow rate and reaction temperature parameters are important for the prediction model. In other words, it can be said that these parameters play an important role in controlling the Eg value of PbS. On the other hand, the average surface roughness (Ra: 8.78 nm) and RMS roughness (Rq: 11.34 nm) values of the PbS film synthesized under optimized conditions supported the smooth surface formation phenomenon. The energy band gap of the film-coated under optimal experimental conditions was measured as 2.18 eV and was estimated as 2.15 eV by the developed model. The developed model could predicted the Eg of PbS film with a relative error of 1.38 %. The closeness of the measured and predicted Eg values revealed the reliability of the developed mathematical model.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"101 12","pages":"Article 101459"},"PeriodicalIF":3.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Low-melting mixture solvents (LoMMSs) and ionic liquids (ILs) are regarded as green solvents for the recovery of lithium-ion batteries (LIBs) cathode with high sustainability. Unexpectedly, we find for the first time that the release of LoMMSs- or ILs-based carbon materials and LIBs recycling leachate into water can lead to significant pollution from dissolved organic matter (DOM). Moreover, COD, NH4–N and total P concentration in river from Jingjinji Region is relatively high due to the high concentration of DOM. This work would provide us a hint that the application of so-called green LoMMSs and ILs in materials preparation and LIBs recovery should be treated with high caution in order to minimize DOM pollution for the rivers in Jingjinji Region.
低熔点混合溶剂(LoMMSs)和离子液体(ILs)被认为是回收锂离子电池(LIBs)正极的绿色溶剂,具有很高的可持续性。意外的是,我们首次发现基于 LoMMSs 或 ILs 的碳材料和锂离子电池回收浸出液释放到水中会导致严重的溶解有机物(DOM)污染。此外,由于 DOM 浓度较高,京津冀地区河流中的 COD、NH4-N 和总磷浓度也相对较高。这项工作提示我们,在材料制备和惰性离子交换树脂回收中应用所谓的绿色 LoMMSs 和 ILs 时应高度谨慎,以尽量减少 DOM 对京津冀地区河流的污染。
{"title":"Green low-melting mixture solvents/ionic liquids-based carbon materials and lithium-ion batteries recycling leachate unexpectedly cause water pollution from dissolved organic matter","authors":"Chong Liu, Xiaoxue Han, Qing Zhang, Zhuojia Shi, Yuqing Zhang, Yu Chen","doi":"10.1016/j.jics.2024.101458","DOIUrl":"10.1016/j.jics.2024.101458","url":null,"abstract":"<div><div>Low-melting mixture solvents (LoMMSs) and ionic liquids (ILs) are regarded as green solvents for the recovery of lithium-ion batteries (LIBs) cathode with high sustainability. Unexpectedly, we find for the first time that the release of LoMMSs- or ILs-based carbon materials and LIBs recycling leachate into water can lead to significant pollution from dissolved organic matter (DOM). Moreover, COD, NH<sub>4</sub>–N and total P concentration in river from Jingjinji Region is relatively high due to the high concentration of DOM. This work would provide us a hint that the application of so-called green LoMMSs and ILs in materials preparation and LIBs recovery should be treated with high caution in order to minimize DOM pollution for the rivers in Jingjinji Region.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"101 12","pages":"Article 101458"},"PeriodicalIF":3.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The synthesis and utilization of Fe2O3 nanoparticles are increasing due to their low cost, environmentally friendly, and biocompatible nature. Antimicrobial resistance is noticed as a global health concern by the community. Multidrug therapy and improper treatment of any disease cause an exponential increase in resistant microbial species. Therefore, improving the treatment schemes for curing different types of contagious ailments caused by microbes is essential. An economical co-precipitation technique was utilized for the preparation of Fe2O3 nanoparticles. The Fe2O3 nanostructures were analyzed by FTIR, ultraviolet–visible spectroscopy, XRD, and TEM techniques. The Fe2O3 nanoparticle's dimensions were determined to be 28.72 nm. A toxicity study of these Fe2O3 nanoparticles was carried out against a Gram-negative bacterium Vibrio vulnificus and showed toxic properties towards the Vibrio vulnificus. The antibacterial properties of these Fe2O3 nanoparticles were contrasted with commonly used antibiotics, including chloramphenicol, streptomycin, ampicillin, penicillin, Tetracycline, sulphatriad, Co-Trimoxazole, Clindamycin, Oxacillin, Erythromycin, and Chloramphenicol, etc., and found to be comparable in some cases even better antibacterial activity.
{"title":"Evaluation of antibacterial efficacy of iron oxide nanoparticles against Vibrio vulnificus: A comparative study with standard antibiotics","authors":"Poonam Sangwan , Harish Kumar , Abhiruchi Yadav , Jyoti Rani , Sudesh , Meenakshi , Ramesh Kumar","doi":"10.1016/j.jics.2024.101457","DOIUrl":"10.1016/j.jics.2024.101457","url":null,"abstract":"<div><div>The synthesis and utilization of Fe<sub>2</sub>O<sub>3</sub> nanoparticles are increasing due to their low cost, environmentally friendly, and biocompatible nature. Antimicrobial resistance is noticed as a global health concern by the community. Multidrug therapy and improper treatment of any disease cause an exponential increase in resistant microbial species. Therefore, improving the treatment schemes for curing different types of contagious ailments caused by microbes is essential. An economical co-precipitation technique was utilized for the preparation of Fe<sub>2</sub>O<sub>3</sub> nanoparticles. The Fe<sub>2</sub>O<sub>3</sub> nanostructures were analyzed by FTIR, ultraviolet–visible spectroscopy, XRD, and TEM techniques. The Fe<sub>2</sub>O<sub>3</sub> nanoparticle's dimensions were determined to be 28.72 nm. A toxicity study of these Fe<sub>2</sub>O<sub>3</sub> nanoparticles was carried out against a Gram-negative bacterium <em>Vibrio vulnificus</em> and showed toxic properties towards the <em>Vibrio vulnificus</em>. The antibacterial properties of these Fe<sub>2</sub>O<sub>3</sub> nanoparticles were contrasted with commonly used antibiotics, including chloramphenicol, streptomycin, ampicillin, penicillin, Tetracycline, sulphatriad, Co-Trimoxazole, Clindamycin, Oxacillin, Erythromycin, and Chloramphenicol, etc., and found to be comparable in some cases even better antibacterial activity.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"101 12","pages":"Article 101457"},"PeriodicalIF":3.2,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.jics.2024.101448
D. Vidhya , G. Susithra , S. Ramalingam , Niraj Kumar , Muthukkumaran Karthikeyan
The utilization of computational solvation models for crystals proves effective in determining the amalgamation of molecular structures within the crystal medium, offering valuable insights into optimized crystal properties. This study focuses on identifying the arrangement of molecular strips within the crystal, crucial for recognizing active planes and the presence of non-linear optical (NLO) properties. To delve into the crystal's intricacies, a computational model was developed, and conformational analysis was conducted to ensure NLO property. The synthesis of the CdSO4-doped L-Valine metallo-organic complex crystal was achieved through the melt-freezing technique. The computational model was constructed to elucidate the formation of sub-planes within a confirmed orthorhombic crystal lattice. Mapping the molecular charge distribution with the dispersion of charge gradient facilitated the identification of chemical potential inhibition and its equipotential nodal domains. The estimation of electron density potential over critical points of the core carbons provided further insights. Chemical dynamics on the electron content of molecules for NLO properties were investigated by screening control parameters. The inelastic scattering ability of heteronuclear bonds for enhancing boosting potential was observed. Interactive frontier orbitals of degenerate energy states were illustrated, and the chemical potential of molecular zones was analyzed in-depth.
{"title":"Solvation modeling and optical properties of CdSO4-Doped L-Valine crystals","authors":"D. Vidhya , G. Susithra , S. Ramalingam , Niraj Kumar , Muthukkumaran Karthikeyan","doi":"10.1016/j.jics.2024.101448","DOIUrl":"10.1016/j.jics.2024.101448","url":null,"abstract":"<div><div>The utilization of computational solvation models for crystals proves effective in determining the amalgamation of molecular structures within the crystal medium, offering valuable insights into optimized crystal properties. This study focuses on identifying the arrangement of molecular strips within the crystal, crucial for recognizing active planes and the presence of non-linear optical (NLO) properties. To delve into the crystal's intricacies, a computational model was developed, and conformational analysis was conducted to ensure NLO property. The synthesis of the CdSO<sub>4</sub>-doped L-Valine metallo-organic complex crystal was achieved through the melt-freezing technique. The computational model was constructed to elucidate the formation of sub-planes within a confirmed orthorhombic crystal lattice. Mapping the molecular charge distribution with the dispersion of charge gradient facilitated the identification of chemical potential inhibition and its equipotential nodal domains. The estimation of electron density potential over critical points of the core carbons provided further insights. Chemical dynamics on the electron content of molecules for NLO properties were investigated by screening control parameters. The inelastic scattering ability of heteronuclear bonds for enhancing boosting potential was observed. Interactive frontier orbitals of degenerate energy states were illustrated, and the chemical potential of molecular zones was analyzed in-depth.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"101 11","pages":"Article 101448"},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.jics.2024.101453
V.S. Neeraj, M. Yashwanth, B. Pavan Kalyan, Arunagiri Appusamy, Karuppan Muthukumar
This study investigates the electrochemical treatment of kitchen wastewater (KW) using a PbO₂-coated graphite (G-PbO₂) electrode prepared via ultrasound-assisted electrochemical deposition. The G-PbO2 electrode was characterised through various techniques, including X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM), confirming the successful deposition of PbO₂ and enhanced catalytic activity. Under optimal conditions (current density 0.75 Adm−2, electrolyte concentration 1.5 gL-1, electrode distance 2 cm, and pH 3), the G-PbO₂ electrode achieved a 94 % COD reduction with an energy consumption of 0.002 kWh gCOD−1. These results highlight the superior performance of the electrode in COD removal, accompanied by low energy consumption.
{"title":"Improved kitchen wastewater treatment using PbO2-coated graphite electrode","authors":"V.S. Neeraj, M. Yashwanth, B. Pavan Kalyan, Arunagiri Appusamy, Karuppan Muthukumar","doi":"10.1016/j.jics.2024.101453","DOIUrl":"10.1016/j.jics.2024.101453","url":null,"abstract":"<div><div>This study investigates the electrochemical treatment of kitchen wastewater (KW) using a PbO₂-coated graphite (G-PbO₂) electrode prepared via ultrasound-assisted electrochemical deposition. The G-PbO<sub>2</sub> electrode was characterised through various techniques, including X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM), confirming the successful deposition of PbO₂ and enhanced catalytic activity. Under optimal conditions (current density 0.75 Adm<sup>−2</sup>, electrolyte concentration 1.5 gL<sup>-1</sup>, electrode distance 2 cm, and pH 3), the G-PbO₂ electrode achieved a 94 % COD reduction with an energy consumption of 0.002 kWh gCOD<sup>−1</sup>. These results highlight the superior performance of the electrode in COD removal, accompanied by low energy consumption.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"101 11","pages":"Article 101453"},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The above current study intends to identify new prospects for developing viable epilepsy treatments. To attain this purpose, the created P-carboxylammonium di-hydrogen monohydrate called (I). The research reveals the existence of both intermolecular (O–H⋯O) as well as N–H⋯O intramolecular hydrogen bonding in crystal packing patterns. As the fingerprint plots illustrate the different sorts of interactions and the hybrid system's relative abundance of each, However, the molecular docking results clearly demonstrate five typical hydrogen bonds, with the best binding posture of −4.757 kcal/mol for Lys244, Val272, Arg241, and Glu273 proteins when docked with (I) ligand. As a result, we may deduce that if the (I) ligand is a pharmaceutical used to treat epilepsy, it will probably be more potent than the conventional medication. As a result, (I) was simulated using molecular dynamics (MD) and is proposed as a viable therapeutic target for antiepileptic therapy. Reduced Density Gradient (RDG) analysis, highlighted the presence of significant non-covalent interactions (NCI) that contribute to the stability and structural integrity of the compound, emphasizing the importance of these interactions in the context of its potential applications, particularly in drug design and molecular interactions. Finally, the ELF and LOL analyses collectively enhance the understanding of the electronic structure of compound I, revealing critical information about electron distribution, localization, and the nature of interactions within the molecular framework. These insights are essential for predicting the compound's reactivity and potential applications in fields such as pharmaceuticals and materials science.
{"title":"Morphology studies, optic proprieties, hirschfeld electrostatic potential mapping, docking molecular anti-inflammatory, and dynamic molecular approaches of hybrid phosphate","authors":"Abdellatif Rafik , Burak Tuzun , Hafid Zouihri , Alireza Poustforoosh , Rachid Hsissou , Ahmed A. Elhenaey , Taoufiq Guedira","doi":"10.1016/j.jics.2024.101419","DOIUrl":"10.1016/j.jics.2024.101419","url":null,"abstract":"<div><div>The above current study intends to identify new prospects for developing viable epilepsy treatments. To attain this purpose, the created P-carboxylammonium di-hydrogen monohydrate called (I). The research reveals the existence of both intermolecular (O–H⋯O) as well as N–H⋯O intramolecular hydrogen bonding in crystal packing patterns. As the fingerprint plots illustrate the different sorts of interactions and the hybrid system's relative abundance of each, However, the molecular docking results clearly demonstrate five typical hydrogen bonds, with the best binding posture of −4.757 kcal/mol for Lys244, Val272, Arg241, and Glu273 proteins when docked with (I) ligand. As a result, we may deduce that if the (I) ligand is a pharmaceutical used to treat epilepsy, it will probably be more potent than the conventional medication. As a result, (I) was simulated using molecular dynamics (MD) and is proposed as a viable therapeutic target for antiepileptic therapy. Reduced Density Gradient (RDG) analysis, highlighted the presence of significant non-covalent interactions (<strong>NCI</strong>) that contribute to the stability and structural integrity of the compound, emphasizing the importance of these interactions in the context of its potential applications, particularly in drug design and molecular interactions. Finally, the ELF and LOL analyses collectively enhance the understanding of the electronic structure of compound <strong>I</strong>, revealing critical information about electron distribution, localization, and the nature of interactions within the molecular framework. These insights are essential for predicting the compound's reactivity and potential applications in fields such as pharmaceuticals and materials science.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"101 11","pages":"Article 101419"},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Currently, the use of henna-based herbal black hair dyes is widespread in the community. However, it is important to note that these dyes cannot be classified as completely natural due to the addition of various ingredients to enhance their effectiveness. Most black hair dyes use paraphenylenediamine (PPD) to get a black hue, however, PPD is widely recognized as a contact sensitizer. The toxicity of heavy metals is also prevalent in the cosmetics sector. These metallic elements can permeate the skin and provide widespread exposure throughout the body. Hair dye requires an alkaline pH value because of reactions that occur during the dyeing process, which is incompatible with scalp pH. The varying concentrations of these chemicals and their frequency of usage can result in diverse health issues. The present research implemented High-Performance Liquid Chromatography and Atomic Absorption Spectrometry to quantify the concentrations of PPD and heavy metals (Pb, Cd, and Fe) in seven frequently used brands in Sri Lanka. The lead content in the examined samples exhibited variability, ranging from 0.04 ± 0.01 ppm to 0.28 ± 0.14 ppm. However, all the samples remained below the allowed level of 2 ppm according to the BVL standard. Regarding Cd, certain examined materials surpassed the acceptable thresholds, while others did not and varied between 0 ppm and 2.33 ± 1.92 ppm. Iron was found at a significantly higher concentration compared to the other two heavy metals. A significant quantity of PPD was detected, exceeding the allowable threshold of 6 % according to the European Union legislation. All the samples that were analyzed had a pH value within the alkaline range. The study indicates that herbal dyes generated from natural materials may contain harmful compounds, such as a high concentration of PPD in herbal black hair color potentially inducing sensitization.
{"title":"Analysis and quantification of selected heavy metals and paraphenylenediamine in commercially available herbal black hair dyes in Sri Lanka","authors":"Thilini Fonseka , Chalani Akmeemana , Pahan Indika Godakumbura , Bupani Asiri Perera","doi":"10.1016/j.jics.2024.101451","DOIUrl":"10.1016/j.jics.2024.101451","url":null,"abstract":"<div><div>Currently, the use of henna-based herbal black hair dyes is widespread in the community. However, it is important to note that these dyes cannot be classified as completely natural due to the addition of various ingredients to enhance their effectiveness. Most black hair dyes use paraphenylenediamine (PPD) to get a black hue, however, PPD is widely recognized as a contact sensitizer. The toxicity of heavy metals is also prevalent in the cosmetics sector. These metallic elements can permeate the skin and provide widespread exposure throughout the body. Hair dye requires an alkaline pH value because of reactions that occur during the dyeing process, which is incompatible with scalp pH. The varying concentrations of these chemicals and their frequency of usage can result in diverse health issues. The present research implemented High-Performance Liquid Chromatography and Atomic Absorption Spectrometry to quantify the concentrations of PPD and heavy metals (Pb, Cd, and Fe) in seven frequently used brands in Sri Lanka. The lead content in the examined samples exhibited variability, ranging from 0.04 ± 0.01 ppm to 0.28 ± 0.14 ppm. However, all the samples remained below the allowed level of 2 ppm according to the BVL standard. Regarding Cd, certain examined materials surpassed the acceptable thresholds, while others did not and varied between 0 ppm and 2.33 ± 1.92 ppm. Iron was found at a significantly higher concentration compared to the other two heavy metals. A significant quantity of PPD was detected, exceeding the allowable threshold of 6 % according to the European Union legislation. All the samples that were analyzed had a pH value within the alkaline range. The study indicates that herbal dyes generated from natural materials may contain harmful compounds, such as a high concentration of PPD in herbal black hair color potentially inducing sensitization.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"101 11","pages":"Article 101451"},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, infections and the escalating resistance to antimicrobial drugs have emerged as significant health concerns. Due to their remarkable effectiveness and minimal potential for bacteria to develop resistance, copper-based nanomaterials are being considered as prospective alternatives to conventional antibiotics. In this study, copper pyrophosphate nanoflakes were synthesized using a simple hydrothermal technique with an inorganic phosphate source. These nanoflakes, characterized by a high aspect ratio, exert a substantial impact on bacterial cell walls, effectively eliminating microbial pathogens. X-ray diffraction (XRD) analysis confirmed the monoclinic phase of the copper pyrophosphate nanomaterial, while the band gap energy of 2.7 eV was estimated from the Tauc plot. Additionally, the antimicrobial efficacy of Cu2P2O7 was evaluated against various gram-negative, gram-positive, and fungal pathogens at different concentrations. Notably, all tested bacterial strains exhibited moderate antimicrobial effects at concentrations of 5 mg/mL. For instance, S. aureus and E. coli displayed a 13 mm zone of inhibition, demonstrating excellent activity and lower cytotoxicity. These findings underscore the potential of Cu2P2O7 as a promising candidate for the development of novel drugs targeting pathogenic bacteria affecting human health.
{"title":"Exploring the antimicrobial activity of hydrothermally synthesized copper pyrophosphate nanoflakes","authors":"Ravi Aswini , Nandhagopal Manivannan , Annamalai Padmanaban , Hector Valdes , Kathirvelu Dhandapani , Arunachalam SaravanaVadivu , Perumal Rameshkumar , Abdurahman Hajinur Hirad","doi":"10.1016/j.jics.2024.101429","DOIUrl":"10.1016/j.jics.2024.101429","url":null,"abstract":"<div><div>In recent years, infections and the escalating resistance to antimicrobial drugs have emerged as significant health concerns. Due to their remarkable effectiveness and minimal potential for bacteria to develop resistance, copper-based nanomaterials are being considered as prospective alternatives to conventional antibiotics. In this study, copper pyrophosphate nanoflakes were synthesized using a simple hydrothermal technique with an inorganic phosphate source. These nanoflakes, characterized by a high aspect ratio, exert a substantial impact on bacterial cell walls, effectively eliminating microbial pathogens. X-ray diffraction (XRD) analysis confirmed the monoclinic phase of the copper pyrophosphate nanomaterial, while the band gap energy of 2.7 eV was estimated from the Tauc plot. Additionally, the antimicrobial efficacy of Cu<sub>2</sub>P<sub>2</sub>O<sub>7</sub> was evaluated against various gram-negative, gram-positive, and fungal pathogens at different concentrations. Notably, all tested bacterial strains exhibited moderate antimicrobial effects at concentrations of 5 mg/mL. For instance, <em>S. aureus</em> and <em>E. coli</em> displayed a 13 mm zone of inhibition, demonstrating excellent activity and lower cytotoxicity. These findings underscore the potential of Cu<sub>2</sub>P<sub>2</sub>O<sub>7</sub> as a promising candidate for the development of novel drugs targeting pathogenic bacteria affecting human health.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"101 11","pages":"Article 101429"},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, our research group has synthesized about two hundred different dihalogenated vinyldiazenes. The analysis revealed that the type (conformation) of the compounds is the same-"bike stop", but the properties and nature of intermolecular interactions are different. The concepts of the nature of halogen-halogen relationships recommended by IUPAC (2013) do not explain the nature of the observed intermolecular interactions in the synthesized systems. In this paper, for the first time, using the examples of the compounds presented below, an algorithm is built for the relationship between the structure of synthesized compounds and their properties, and the nature of non-covalent interactions involving the chlorine atom.
The molecules presented in this paper were studied by the DFT method using the hybrid potential of B3LYP with the Gaussian 09 software package. The extended basis 6-311++G(d,p) with polarization and diffusion functions was used for calculations. Conducted NBO analysis of atomic charge populations. Calculations of the structural parameters of the synthesized systems were carried out in order to study the reactivity, molecular properties and identify the nature of non-covalent interactions involving the halogen atom. It has been established that the Cl–C–Cl triad has a flat geometry and is capable of forming atypical non-covalent interactions both with each other and with various coplanar systems.
{"title":"Study of halogen interactions in dichlorovinyldiazenes: Structural analysis, DFT simulation and molecular modeling","authors":"Ulviyya Askerova , Namiq Shikhaliyev , Abel Maharramov , Khatira Garazadeh , Svetlana Demukhamedova , Gulnara Akverdieva , Irada Aliyeva , Afsun Sujayev","doi":"10.1016/j.jics.2024.101447","DOIUrl":"10.1016/j.jics.2024.101447","url":null,"abstract":"<div><div>In recent years, our research group has synthesized about two hundred different dihalogenated vinyldiazenes. The analysis revealed that the type (conformation) of the compounds is the same-\"bike stop\", but the properties and nature of intermolecular interactions are different. The concepts of the nature of halogen-halogen relationships recommended by IUPAC (2013) do not explain the nature of the observed intermolecular interactions in the synthesized systems. In this paper, for the first time, using the examples of the compounds presented below, an algorithm is built for the relationship between the structure of synthesized compounds and their properties, and the nature of non-covalent interactions involving the chlorine atom.</div><div>The molecules presented in this paper were studied by the DFT method using the hybrid potential of B3LYP with the Gaussian 09 software package. The extended basis 6-311++G(d,p) with polarization and diffusion functions was used for calculations. Conducted NBO analysis of atomic charge populations. Calculations of the structural parameters of the synthesized systems were carried out in order to study the reactivity, molecular properties and identify the nature of non-covalent interactions involving the halogen atom. It has been established that the Cl–C–Cl triad has a flat geometry and is capable of forming atypical non-covalent interactions both with each other and with various coplanar systems.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"101 11","pages":"Article 101447"},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.jics.2024.101443
Lokesh Kumar S , V. Puneeth , Sumaiya Tabassum , Santhosh Govindaraju
Sustainable chemistry centers on substituting perilous solvents and materials with eco-conscious alternatives. Deep eutectic solvents (DES) hold substantial potential in this arena. This inquiry includes the formulation of three-component eutectic solvents and an exhaustive scrutiny of their physical and chemical attributes. These encompass solubility, boiling point, pH, density, viscosity, surface tension, refractive index, contact angle, conductivity, Fourier-transform infrared spectroscopy, polarized optical microscopy, thermogravimetric analysis, and differential scanning calorimetry. Furthermore, a biological exploration featured two bacterial strains and two fungal strains. The entire spectrum of ten three-component DES was administered to these microorganisms to discern plausible impacts. In addition, the biomedical promise of these DES was unveiled through anticancer assays employing MCF-7 and HeLa cell lines. The outcomes were favorable, underscoring robust anticancer potency, thereby hinting at future oncological utility. These interdisciplinary endeavors envelop the progression of sustainable solvent innovation, meticulous physicochemical scrutiny, microbial analysis, and anticancer appraisal. This study propels inventive resolutions with ecological and biomedical reverberations by amalgamating these distinct yet interconnected facets.
可持续化学的核心是用具有生态意识的替代品取代危险溶剂和材料。深共晶溶剂 (DES) 在这一领域具有巨大潜力。这项研究包括配制三组份共晶溶剂,并对其物理和化学属性进行详尽审查。这些属性包括溶解度、沸点、pH 值、密度、粘度、表面张力、折射率、接触角、电导率、傅立叶变换红外光谱、偏振光学显微镜、热重分析和差示扫描量热法。此外,还对两种细菌菌株和两种真菌菌株进行了生物学研究。对这些微生物施用了十种三组分 DES 的整个光谱,以确定其可能产生的影响。此外,还通过使用 MCF-7 和 HeLa 细胞系进行抗癌试验,揭示了这些 DES 的生物医学前景。结果良好,显示出强大的抗癌效力,从而为未来的肿瘤学用途埋下了伏笔。这些跨学科的努力涵盖了可持续溶剂创新、细致的物理化学检查、微生物分析和抗癌评估的进展。这项研究通过将这些不同但相互关联的方面结合起来,推动了具有生态和生物医学反响的发明性解决方案。
{"title":"Comprehensive study of the physicochemical properties of three-component deep eutectic solvents and their implications for microbial and anticancerous activity","authors":"Lokesh Kumar S , V. Puneeth , Sumaiya Tabassum , Santhosh Govindaraju","doi":"10.1016/j.jics.2024.101443","DOIUrl":"10.1016/j.jics.2024.101443","url":null,"abstract":"<div><div>Sustainable chemistry centers on substituting perilous solvents and materials with eco-conscious alternatives. Deep eutectic solvents (DES) hold substantial potential in this arena. This inquiry includes the formulation of three-component eutectic solvents and an exhaustive scrutiny of their physical and chemical attributes. These encompass solubility, boiling point, pH, density, viscosity, surface tension, refractive index, contact angle, conductivity, Fourier-transform infrared spectroscopy, polarized optical microscopy, thermogravimetric analysis, and differential scanning calorimetry. Furthermore, a biological exploration featured two bacterial strains and two fungal strains. The entire spectrum of ten three-component DES was administered to these microorganisms to discern plausible impacts. In addition, the biomedical promise of these DES was unveiled through anticancer assays employing MCF-7 and HeLa cell lines. The outcomes were favorable, underscoring robust anticancer potency, thereby hinting at future oncological utility. These interdisciplinary endeavors envelop the progression of sustainable solvent innovation, meticulous physicochemical scrutiny, microbial analysis, and anticancer appraisal. This study propels inventive resolutions with ecological and biomedical reverberations by amalgamating these distinct yet interconnected facets.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"101 11","pages":"Article 101443"},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}