Co-pyrolysis technology offers a viable solution for utilizing biomass and waste plastics as a valuable energy resource, to support waste management, energy supply and environmental protection. In this paper, co-pyrolysis of poplar tree (PT) and polystyrene (PS) at mixture ratios of 0:1, 3:1, 2:1, 1:1, 1:2, 1:3 and 1:0 under different pyrolysis temperatures (450, 550, 650, and 700 °C), using different catalysts (HZSM-5, MCM-41, Fe/HZSM-5, and Cu/HZSM-5) were investigated using gas chromatography/mass spectrometry (Py-GC/MS) diagnostics for determining products distribution and synergistic effects. The results showed that PT performed best at a pyrolysis temperature of 650 °C, whereas PS performed best at 550 °C. The relative amount of aromatics in the co-pyrolysis products of PT and PS was highest at 550 °C that showed positive synergistic effects. The synergistic effects from the co-pyrolysis of PT and PS were significantly different at different mixture ratios of the PT and PS feedstocks. At mixture ratios of 1:1 and 1:2, the relative amounts of polycyclic aromatic hydrocarbons (PAHs) and monocyclic aromatic hydrocarbons (MAH) were higher and showed positive synergistic effects. The catalysts promoted the generation of MAH and inhibited the PAHs formation in the co-pyrolysis. The Fe/HZSM-5 catalyst provided the most significant effect on MAH showing the highest relative amounts. The results showed that highest yield of monocyclic aromatic hydrocarbons can be achieved from the pyrolysis of PT and PS materials at 1:1 mixture ratio using Fe/HZSM-5 catalyst, at a reaction temperature of 550 °C.