首页 > 最新文献

Journal of Tissue Engineering最新文献

英文 中文
Position Paper Progress in the development of biomimetic engineered human tissues. 仿生工程人体组织的发展进展。
IF 8.2 1区 工程技术 Q1 Medicine Pub Date : 2023-01-01 DOI: 10.1177/20417314221145663
Umber Cheema

Tissue engineering (TE) is the multi-disciplinary approach to building 3D human tissue equivalents in the laboratory. The advancement of medical sciences and allied scientific disciplines have aspired to engineer human tissues for three decades. To date there is limited use of TE tissues/organs as replacement body parts in humans. This position paper outlines advances in engineering of specific tissues and organs with tissue-specific challenges. This paper outlines the technologies most successful for engineering tissues and key areas of advancement.

组织工程(TE)是多学科的方法来建立三维人体组织当量在实验室。三十年来,医学和相关科学学科的进步一直渴望对人体组织进行工程设计。迄今为止,TE组织/器官作为人体替代部位的使用有限。这一立场文件概述了与组织特异性挑战的特定组织和器官工程的进展。本文概述了工程组织中最成功的技术和发展的关键领域。
{"title":"Position Paper Progress in the development of biomimetic engineered human tissues.","authors":"Umber Cheema","doi":"10.1177/20417314221145663","DOIUrl":"https://doi.org/10.1177/20417314221145663","url":null,"abstract":"<p><p>Tissue engineering (TE) is the multi-disciplinary approach to building 3D human tissue equivalents in the laboratory. The advancement of medical sciences and allied scientific disciplines have aspired to engineer human tissues for three decades. To date there is limited use of TE tissues/organs as replacement body parts in humans. This position paper outlines advances in engineering of specific tissues and organs with tissue-specific challenges. This paper outlines the technologies most successful for engineering tissues and key areas of advancement.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":null,"pages":null},"PeriodicalIF":8.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9395400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Mechanically activated mesenchymal-derived bone cells drive vessel formation via an extracellular vesicle mediated mechanism. 机械活化的间充质骨细胞通过细胞外囊泡介导机制驱动血管形成。
IF 8.2 1区 工程技术 Q1 Medicine Pub Date : 2023-01-01 DOI: 10.1177/20417314231186918
N Shen, M Maggio, I Woods, M C Lowry, R Almasri, C Gorgun, K F Eichholz, E Stavenschi, K Hokamp, F M Roche, L O'Driscoll, D A Hoey

Blood vessel formation is an important initial step for bone formation during development as well as during remodelling and repair in the adult skeleton. This results in a heavily vascularized tissue where endothelial cells and skeletal cells are constantly in crosstalk to facilitate homeostasis, a process that is mediated by numerous environmental signals, including mechanical loading. Breakdown in this communication can lead to disease and/or poor fracture repair. Therefore, this study aimed to determine the role of mature bone cells in regulating angiogenesis, how this is influenced by a dynamic mechanical environment, and understand the mechanism by which this could occur. Herein, we demonstrate that both osteoblasts and osteocytes coordinate endothelial cell proliferation, migration, and blood vessel formation via a mechanically dependent paracrine mechanism. Moreover, we identified that this process is mediated via the secretion of extracellular vesicles (EVs), as isolated EVs from mechanically stimulated bone cells elicited the same response as seen with the full secretome, while the EV-depleted secretome did not elicit any effect. Despite mechanically activated bone cell-derived EVs (MA-EVs) driving a similar response to VEGF treatment, MA-EVs contain minimal quantities of this angiogenic factor. Lastly, a miRNA screen identified mechanoresponsive miRNAs packaged within MA-EVs which are linked with angiogenesis. Taken together, this study has highlighted an important mechanism in osteogenic-angiogenic coupling in bone and has identified the mechanically activated bone cell-derived EVs as a therapeutic to promote angiogenesis and potentially bone repair.

血管的形成是成人骨骼发育、重塑和修复过程中骨形成的重要初始步骤。这导致了一个血管化程度很高的组织,内皮细胞和骨骼细胞不断地相互作用,以促进体内平衡,这一过程是由许多环境信号介导的,包括机械负荷。这种交流的中断可导致疾病和/或骨折修复不良。因此,本研究旨在确定成熟骨细胞在调节血管生成中的作用,这是如何受到动态机械环境的影响,并了解其发生的机制。在此,我们证明成骨细胞和骨细胞通过机械依赖的旁分泌机制协调内皮细胞增殖、迁移和血管形成。此外,我们发现这一过程是通过细胞外囊泡(EVs)的分泌介导的,因为从机械刺激的骨细胞中分离出的EVs引起了与完整分泌组相同的反应,而ev耗尽的分泌组则没有引起任何影响。尽管机械活化的骨细胞源性EVs (MA-EVs)对VEGF治疗有类似的反应,但MA-EVs含有极少量的这种血管生成因子。最后,miRNA筛选鉴定了包装在ma - ev中的机械反应性miRNA,这些miRNA与血管生成有关。综上所述,本研究强调了骨中成骨-血管生成耦合的重要机制,并确定了机械激活的骨细胞来源的EVs作为促进血管生成和潜在骨修复的治疗方法。
{"title":"Mechanically activated mesenchymal-derived bone cells drive vessel formation via an extracellular vesicle mediated mechanism.","authors":"N Shen,&nbsp;M Maggio,&nbsp;I Woods,&nbsp;M C Lowry,&nbsp;R Almasri,&nbsp;C Gorgun,&nbsp;K F Eichholz,&nbsp;E Stavenschi,&nbsp;K Hokamp,&nbsp;F M Roche,&nbsp;L O'Driscoll,&nbsp;D A Hoey","doi":"10.1177/20417314231186918","DOIUrl":"https://doi.org/10.1177/20417314231186918","url":null,"abstract":"<p><p>Blood vessel formation is an important initial step for bone formation during development as well as during remodelling and repair in the adult skeleton. This results in a heavily vascularized tissue where endothelial cells and skeletal cells are constantly in crosstalk to facilitate homeostasis, a process that is mediated by numerous environmental signals, including mechanical loading. Breakdown in this communication can lead to disease and/or poor fracture repair. Therefore, this study aimed to determine the role of mature bone cells in regulating angiogenesis, how this is influenced by a dynamic mechanical environment, and understand the mechanism by which this could occur. Herein, we demonstrate that both osteoblasts and osteocytes coordinate endothelial cell proliferation, migration, and blood vessel formation via a mechanically dependent paracrine mechanism. Moreover, we identified that this process is mediated via the secretion of extracellular vesicles (EVs), as isolated EVs from mechanically stimulated bone cells elicited the same response as seen with the full secretome, while the EV-depleted secretome did not elicit any effect. Despite mechanically activated bone cell-derived EVs (MA-EVs) driving a similar response to VEGF treatment, MA-EVs contain minimal quantities of this angiogenic factor. Lastly, a miRNA screen identified mechanoresponsive miRNAs packaged within MA-EVs which are linked with angiogenesis. Taken together, this study has highlighted an important mechanism in osteogenic-angiogenic coupling in bone and has identified the mechanically activated bone cell-derived EVs as a therapeutic to promote angiogenesis and potentially bone repair.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":null,"pages":null},"PeriodicalIF":8.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10467237/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10668860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Hypoxia-tolerant apical-out intestinal organoids to model host-microbiome interactions. 耐缺氧的尖向外肠道类器官模拟宿主-微生物组相互作用。
IF 8.2 1区 工程技术 Q1 Medicine Pub Date : 2023-01-01 DOI: 10.1177/20417314221149208
Panagiota Kakni, Barry Jutten, Daniel Teixeira Oliveira Carvalho, John Penders, Roman Truckenmüller, Pamela Habibovic, Stefan Giselbrecht

Microbiome is an integral part of the gut and is essential for its proper function. Imbalances of the microbiota can be devastating and have been linked with several gastrointestinal conditions. Current gastrointestinal models do not fully reflect the in vivo situation. Thus, it is important to establish more advanced in vitro models to study host-microbiome/pathogen interactions. Here, we developed for the first time an apical-out human small intestinal organoid model in hypoxia, where the apical surface is directly accessible and exposed to a hypoxic environment. These organoids mimic the intestinal cell composition, structure and functions and provide easy access to the apical surface. Co-cultures with the anaerobic strains Lactobacillus casei and Bifidobacterium longum showed successful colonization and probiotic benefits on the organoids. These novel hypoxia-tolerant apical-out small intestinal organoids will pave the way for unraveling unknown mechanisms related to host-microbiome interactions and serve as a tool to develop microbiome-related probiotics and therapeutics.

微生物群是肠道的一个组成部分,对肠道的正常功能至关重要。微生物群的不平衡可能是毁灭性的,并与几种胃肠道疾病有关。目前的胃肠道模型不能完全反映体内情况。因此,建立更先进的体外模型来研究宿主-微生物组/病原体的相互作用是很重要的。在这里,我们首次开发了缺氧条件下的人类小肠类器官模型,其中根尖表面可以直接接触并暴露在缺氧环境中。这些类器官模拟了肠细胞的组成、结构和功能,并提供了进入肠根尖表面的便利。与厌氧菌株干酪乳杆菌和长双歧杆菌共培养显示出在类器官上成功定植和益生菌效益。这些新型耐缺氧的尖向外小肠类器官将为揭示宿主-微生物组相互作用的未知机制铺平道路,并作为开发微生物组相关益生菌和治疗的工具。
{"title":"Hypoxia-tolerant apical-out intestinal organoids to model host-microbiome interactions.","authors":"Panagiota Kakni,&nbsp;Barry Jutten,&nbsp;Daniel Teixeira Oliveira Carvalho,&nbsp;John Penders,&nbsp;Roman Truckenmüller,&nbsp;Pamela Habibovic,&nbsp;Stefan Giselbrecht","doi":"10.1177/20417314221149208","DOIUrl":"https://doi.org/10.1177/20417314221149208","url":null,"abstract":"<p><p>Microbiome is an integral part of the gut and is essential for its proper function. Imbalances of the microbiota can be devastating and have been linked with several gastrointestinal conditions. Current gastrointestinal models do not fully reflect the in vivo situation. Thus, it is important to establish more advanced in vitro models to study host-microbiome/pathogen interactions. Here, we developed for the first time an apical-out human small intestinal organoid model in hypoxia, where the apical surface is directly accessible and exposed to a hypoxic environment. These organoids mimic the intestinal cell composition, structure and functions and provide easy access to the apical surface. Co-cultures with the anaerobic strains <i>Lactobacillus casei</i> and <i>Bifidobacterium longum</i> showed successful colonization and probiotic benefits on the organoids. These novel hypoxia-tolerant apical-out small intestinal organoids will pave the way for unraveling unknown mechanisms related to host-microbiome interactions and serve as a tool to develop microbiome-related probiotics and therapeutics.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":null,"pages":null},"PeriodicalIF":8.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/85/d4/10.1177_20417314221149208.PMC9869231.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10677635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A survey to evaluate parameters governing the selection and application of extracellular vesicle isolation methods. 细胞外囊泡分离方法的选择和应用参数的评价。
IF 8.2 1区 工程技术 Q1 Medicine Pub Date : 2023-01-01 DOI: 10.1177/20417314231155114
Soraya Williams, Aveen R Jalal, Mark P Lewis, Owen G Davies

Extracellular vesicles (EVs) continue to gain interest across the scientific community for diagnostic and therapeutic applications. As EV applications diversify, it is essential that researchers are aware of challenges, in particular the compatibility of EV isolation methods with downstream applications and their clinical translation. We report outcomes of the first cross-comparison study looking to determine parameters (EV source, starting volume, operator experience, application and implementation parameters such as cost and scalability) governing the selection of popular EV isolation methods across disciplines. Our findings highlighted an increased clinical focus, with 36% of respondents applying EVs in therapeutics and diagnostics. Data indicated preferential selection of ultracentrifugation for therapeutic applications, precipitation reagents in clinical settings and size exclusion chromatography for diagnostic applications utilising biofluids. Method selection was influenced by operator experience, with increased method diversity when EV research was not the respondents primary focus. Application and implementation criteria were indicated to be major influencers in method selection, with UC and SEC chosen for their abilities to process large and small volumes, respectively. Overall, we identified parameters influencing method selection across the breadth of EV science, providing a valuable overview of practical considerations for the effective translation of research outcomes.

细胞外囊泡(EVs)在诊断和治疗方面的应用不断引起科学界的兴趣。随着EV应用的多样化,研究人员必须意识到挑战,特别是EV分离方法与下游应用及其临床转化的兼容性。我们报告了第一项交叉比较研究的结果,该研究旨在确定跨学科流行的EV隔离方法选择的参数(EV源、启动量、操作员经验、应用和实施参数,如成本和可扩展性)。我们的研究结果突出了临床关注的增加,36%的受访者将ev应用于治疗和诊断。数据表明,在治疗应用中优先选择超离心,在临床环境中选择沉淀试剂,在利用生物流体的诊断应用中选择粒径排除色谱。方法选择受操作者经验的影响,当EV研究不是被调查者的主要关注点时,方法的多样性增加。应用和实施标准被认为是方法选择的主要影响因素,UC和SEC分别因其处理大量和少量数据的能力而被选择。总体而言,我们确定了影响EV科学范围内方法选择的参数,为有效翻译研究成果提供了有价值的实际考虑因素概述。
{"title":"A survey to evaluate parameters governing the selection and application of extracellular vesicle isolation methods.","authors":"Soraya Williams,&nbsp;Aveen R Jalal,&nbsp;Mark P Lewis,&nbsp;Owen G Davies","doi":"10.1177/20417314231155114","DOIUrl":"https://doi.org/10.1177/20417314231155114","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) continue to gain interest across the scientific community for diagnostic and therapeutic applications. As EV applications diversify, it is essential that researchers are aware of challenges, in particular the compatibility of EV isolation methods with downstream applications and their clinical translation. We report outcomes of the first cross-comparison study looking to determine parameters (EV source, starting volume, operator experience, application and implementation parameters such as cost and scalability) governing the selection of popular EV isolation methods across disciplines. Our findings highlighted an increased clinical focus, with 36% of respondents applying EVs in therapeutics and diagnostics. Data indicated preferential selection of ultracentrifugation for therapeutic applications, precipitation reagents in clinical settings and size exclusion chromatography for diagnostic applications utilising biofluids. Method selection was influenced by operator experience, with increased method diversity when EV research was not the respondents primary focus. Application and implementation criteria were indicated to be major influencers in method selection, with UC and SEC chosen for their abilities to process large and small volumes, respectively. Overall, we identified parameters influencing method selection across the breadth of EV science, providing a valuable overview of practical considerations for the effective translation of research outcomes.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":null,"pages":null},"PeriodicalIF":8.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9996742/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9104715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Targeting connexin 43 expression via scaffold mediated delivery of antisense oligodeoxynucleotide preserves neurons, enhances axonal extension, reduces astrocyte and microglial activation after spinal cord injury. 通过支架介导的反义寡脱氧核苷酸递送靶向连接蛋白43的表达,保护神经元,增强轴突延伸,减少脊髓损伤后星形胶质细胞和小胶质细胞的激活。
IF 8.2 1区 工程技术 Q1 Medicine Pub Date : 2023-01-01 DOI: 10.1177/20417314221145789
Jiah Shin Chin, Ulla Milbreta, David L Becker, Sing Yian Chew

Injury to the central nervous system (CNS) provokes an inflammatory reaction and secondary damage that result in further tissue damage and destruction of neurons away from the injury site. Upon injury, expression of connexin 43 (Cx43), a gap junction protein, upregulates and is responsible for the spread and amplification of cell death signals through these gap junctions. In this study, we hypothesise that the downregulation of Cx43 by scaffold-mediated controlled delivery of antisense oligodeoxynucleotide (asODN), would minimise secondary injuries and cell death, and thereby support tissue regeneration after nerve injuries. Specifically, using spinal cord injury (SCI) as a proof-of-principle, we utilised a fibre-hydrogel scaffold for sustained delivery of Cx43asODN, while providing synergistic topographical cues to guide axonal ingrowth. Correspondingly, scaffolds loaded with Cx43asODN, in the presence of NT-3, suppressed Cx43 up-regulation after complete transection SCI in rats. These scaffolds facilitated the sustained release of Cx43asODN for up to 25 days. Importantly, asODN treatment preserved neurons around the injury site, promoted axonal extension, decreased glial scarring, and reduced microglial activation after SCI. Our results suggest that implantation of such scaffold-mediated asODN delivery platform could serve as an effective alternative SCI therapeutic approach.

中枢神经系统(CNS)损伤引起炎症反应和继发性损伤,导致进一步的组织损伤和远离损伤部位的神经元破坏。损伤后,一种间隙连接蛋白connexin 43 (Cx43)的表达上调,并负责通过这些间隙连接传播和扩增细胞死亡信号。在这项研究中,我们假设通过支架介导的反义寡脱氧核苷酸(asODN)的控制递送下调Cx43,可以最大限度地减少继发性损伤和细胞死亡,从而支持神经损伤后的组织再生。具体来说,利用脊髓损伤(SCI)作为原理证明,我们利用纤维-水凝胶支架持续递送Cx43asODN,同时提供协同的地形线索来引导轴突长进。相应的,在NT-3存在的情况下,负载Cx43asODN的支架可以抑制大鼠完全性脊髓损伤后Cx43的上调。这些支架促进Cx43asODN的持续释放长达25天。重要的是,asODN处理保存了损伤部位周围的神经元,促进了轴突延伸,减少了神经胶质瘢痕,减少了脊髓损伤后的小胶质细胞激活。我们的研究结果表明,植入这种支架介导的asODN传递平台可以作为一种有效的替代SCI治疗方法。
{"title":"Targeting connexin 43 expression via scaffold mediated delivery of antisense oligodeoxynucleotide preserves neurons, enhances axonal extension, reduces astrocyte and microglial activation after spinal cord injury.","authors":"Jiah Shin Chin,&nbsp;Ulla Milbreta,&nbsp;David L Becker,&nbsp;Sing Yian Chew","doi":"10.1177/20417314221145789","DOIUrl":"https://doi.org/10.1177/20417314221145789","url":null,"abstract":"<p><p>Injury to the central nervous system (CNS) provokes an inflammatory reaction and secondary damage that result in further tissue damage and destruction of neurons away from the injury site. Upon injury, expression of connexin 43 (Cx43), a gap junction protein, upregulates and is responsible for the spread and amplification of cell death signals through these gap junctions. In this study, we hypothesise that the downregulation of Cx43 by scaffold-mediated controlled delivery of antisense oligodeoxynucleotide (asODN), would minimise secondary injuries and cell death, and thereby support tissue regeneration after nerve injuries. Specifically, using spinal cord injury (SCI) as a proof-of-principle, we utilised a fibre-hydrogel scaffold for sustained delivery of Cx43asODN, while providing synergistic topographical cues to guide axonal ingrowth. Correspondingly, scaffolds loaded with Cx43asODN, in the presence of NT-3, suppressed Cx43 up-regulation after complete transection SCI in rats. These scaffolds facilitated the sustained release of Cx43asODN for up to 25 days. Importantly, asODN treatment preserved neurons around the injury site, promoted axonal extension, decreased glial scarring, and reduced microglial activation after SCI. Our results suggest that implantation of such scaffold-mediated asODN delivery platform could serve as an effective alternative SCI therapeutic approach.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":null,"pages":null},"PeriodicalIF":8.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6e/0c/10.1177_20417314221145789.PMC9926388.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10748981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Modified black phosphorus quantum dots promotes spinal cord injury repair by targeting the AKT signaling pathway. 修饰黑磷量子点通过靶向AKT信号通路促进脊髓损伤修复。
IF 8.2 1区 工程技术 Q1 Medicine Pub Date : 2023-01-01 DOI: 10.1177/20417314231180033
Dong-Mei Xie, Chuanwei Sun, Qingqiang Tu, Suyi Li, Yu Zhang, Xifan Mei, Yuanlong Li

Spinal cord injury (SCI) is a serious refractory disease of the central nervous system (CNS), which mostly caused by high-energy trauma. Existing interventions such as hormone shock and surgery are insufficient options, which relate to the secondary inflammation and neuronal dysfunction. Hydrogel with neuron-protective behaviors attracts tremendous attention, and black phosphorus quantum dots (BPQDs) encapsulating with Epigallocatechin-3-gallate (EGCG) hydrogels (E@BP) is designed for inflammatory modulation and SCI treatment in this study. E@BP displays good stability, biocompatibility and safety profiles. E@BP incubation alleviates lipopolysaccharide (LPS)-induced inflammation of primary neurons and enhances neuronal regeneration in vitro. Furthermore, E@BP reconstructs structural versus functional integrity of spinal cord tracts, which promotes recovery of motor neuron function in SCI rats after transplantation. Importantly, E@BP restarts the cell cycle and induces nerve regeneration. Moreover, E@BP diminishes local inflammation of SCI tissues, characterized by reducing accumulation of astrocyte, microglia, macrophages, and oligodendrocytes. Indeed, a common underlying mechanism of E@BP regulating neural regenerative and inflammatory responses is to promote the phosphorylation of key proteins related to AKT signaling pathway. Together, E@BP probably repairs SCI by reducing inflammation and promoting neuronal regeneration via the AKT signaling pathway.

脊髓损伤(SCI)是一种严重的中枢神经系统(CNS)顽固性疾病,多由高能创伤引起。现有的干预措施,如激素休克和手术是不够的选择,这涉及到继发性炎症和神经功能障碍。具有神经元保护作用的水凝胶引起了人们的极大关注,本研究设计了包封表没食子儿茶素-3-没食子酸酯(EGCG)水凝胶的黑磷量子点(BPQDs) (E@BP)用于炎症调节和脊髓损伤治疗。E@BP具有良好的稳定性、生物相容性和安全性。E@BP孵育可减轻脂多糖(LPS)诱导的原代神经元炎症,增强体外神经元再生。此外,E@BP重建脊髓束结构和功能的完整性,促进脊髓损伤大鼠移植后运动神经元功能的恢复。重要的是,E@BP重新启动细胞周期并诱导神经再生。此外,E@BP可减轻脊髓损伤组织的局部炎症,其特征是减少星形胶质细胞、小胶质细胞、巨噬细胞和少突胶质细胞的积累。事实上,E@BP调节神经再生和炎症反应的共同潜在机制是促进AKT信号通路相关关键蛋白的磷酸化。总之,E@BP可能通过AKT信号通路减少炎症和促进神经元再生来修复脊髓损伤。
{"title":"Modified black phosphorus quantum dots promotes spinal cord injury repair by targeting the AKT signaling pathway.","authors":"Dong-Mei Xie,&nbsp;Chuanwei Sun,&nbsp;Qingqiang Tu,&nbsp;Suyi Li,&nbsp;Yu Zhang,&nbsp;Xifan Mei,&nbsp;Yuanlong Li","doi":"10.1177/20417314231180033","DOIUrl":"https://doi.org/10.1177/20417314231180033","url":null,"abstract":"<p><p>Spinal cord injury (SCI) is a serious refractory disease of the central nervous system (CNS), which mostly caused by high-energy trauma. Existing interventions such as hormone shock and surgery are insufficient options, which relate to the secondary inflammation and neuronal dysfunction. Hydrogel with neuron-protective behaviors attracts tremendous attention, and black phosphorus quantum dots (BPQDs) encapsulating with Epigallocatechin-3-gallate (EGCG) hydrogels (E@BP) is designed for inflammatory modulation and SCI treatment in this study. E@BP displays good stability, biocompatibility and safety profiles. E@BP incubation alleviates lipopolysaccharide (LPS)-induced inflammation of primary neurons and enhances neuronal regeneration in vitro. Furthermore, E@BP reconstructs structural versus functional integrity of spinal cord tracts, which promotes recovery of motor neuron function in SCI rats after transplantation. Importantly, E@BP restarts the cell cycle and induces nerve regeneration. Moreover, E@BP diminishes local inflammation of SCI tissues, characterized by reducing accumulation of astrocyte, microglia, macrophages, and oligodendrocytes. Indeed, a common underlying mechanism of E@BP regulating neural regenerative and inflammatory responses is to promote the phosphorylation of key proteins related to AKT signaling pathway. Together, E@BP probably repairs SCI by reducing inflammation and promoting neuronal regeneration via the AKT signaling pathway.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":null,"pages":null},"PeriodicalIF":8.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d5/62/10.1177_20417314231180033.PMC10272649.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10291236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Technological advances in fibrin for tissue engineering. 组织工程中纤维蛋白的技术进展。
IF 8.2 1区 工程技术 Q1 Medicine Pub Date : 2023-01-01 DOI: 10.1177/20417314231190288
Raúl Sanz-Horta, Ana Matesanz, Alberto Gallardo, Helmut Reinecke, José Luis Jorcano, Pablo Acedo, Diego Velasco, Carlos Elvira

Fibrin is a promising natural polymer that is widely used for diverse applications, such as hemostatic glue, carrier for drug and cell delivery, and matrix for tissue engineering. Despite the significant advances in the use of fibrin for bioengineering and biomedical applications, some of its characteristics must be improved for suitability for general use. For example, fibrin hydrogels tend to shrink and degrade quickly after polymerization, particularly when they contain embedded cells. In addition, their poor mechanical properties and batch-to-batch variability affect their handling, long-term stability, standardization, and reliability. One of the most widely used approaches to improve their properties has been modification of the structure and composition of fibrin hydrogels. In this review, recent advances in composite fibrin scaffolds, chemically modified fibrin hydrogels, interpenetrated polymer network (IPN) hydrogels composed of fibrin and other synthetic or natural polymers are critically reviewed, focusing on their use for tissue engineering.

纤维蛋白是一种很有前途的天然高分子材料,在止血胶、药物和细胞传递载体、组织工程基质等方面有着广泛的应用。尽管纤维蛋白在生物工程和生物医学应用方面取得了重大进展,但它的一些特性必须得到改善,才能适用于一般用途。例如,纤维蛋白水凝胶倾向于在聚合后迅速收缩和降解,特别是当它们含有嵌入的细胞时。此外,它们较差的机械性能和批次间的可变性影响了它们的处理、长期稳定性、标准化和可靠性。改善纤维蛋白水凝胶性能的最广泛应用的方法之一是改变纤维蛋白水凝胶的结构和组成。本文综述了复合纤维蛋白支架、化学修饰纤维蛋白水凝胶、纤维蛋白和其他合成或天然聚合物组成的互渗透聚合物网络(IPN)水凝胶的最新进展,重点介绍了它们在组织工程中的应用。
{"title":"Technological advances in fibrin for tissue engineering.","authors":"Raúl Sanz-Horta,&nbsp;Ana Matesanz,&nbsp;Alberto Gallardo,&nbsp;Helmut Reinecke,&nbsp;José Luis Jorcano,&nbsp;Pablo Acedo,&nbsp;Diego Velasco,&nbsp;Carlos Elvira","doi":"10.1177/20417314231190288","DOIUrl":"https://doi.org/10.1177/20417314231190288","url":null,"abstract":"<p><p>Fibrin is a promising natural polymer that is widely used for diverse applications, such as hemostatic glue, carrier for drug and cell delivery, and matrix for tissue engineering. Despite the significant advances in the use of fibrin for bioengineering and biomedical applications, some of its characteristics must be improved for suitability for general use. For example, fibrin hydrogels tend to shrink and degrade quickly after polymerization, particularly when they contain embedded cells. In addition, their poor mechanical properties and batch-to-batch variability affect their handling, long-term stability, standardization, and reliability. One of the most widely used approaches to improve their properties has been modification of the structure and composition of fibrin hydrogels. In this review, recent advances in composite fibrin scaffolds, chemically modified fibrin hydrogels, interpenetrated polymer network (IPN) hydrogels composed of fibrin and other synthetic or natural polymers are critically reviewed, focusing on their use for tissue engineering.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":null,"pages":null},"PeriodicalIF":8.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/29/ea/10.1177_20417314231190288.PMC10426312.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10355843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Tissue engineering in growth plate cartilage regeneration: Mechanisms to therapeutic strategies. 组织工程在生长板软骨再生:机制和治疗策略。
IF 8.2 1区 工程技术 Q1 Medicine Pub Date : 2023-01-01 DOI: 10.1177/20417314231187956
Ruoyi Guo, Hanjie Zhuang, Xiuning Chen, Yulong Ben, Minjie Fan, Yiwei Wang, Pengfei Zheng

The repair of growth plate injuries is a highly complex process that involves precise spatiotemporal regulation of multiple cell types. While significant progress has been made in understanding the pathological mechanisms underlying growth plate injuries, effectively regulating this process to regenerate the injured growth plate cartilage remains a challenge. Tissue engineering technology has emerged as a promising therapeutic approach for achieving tissue regeneration through the use of functional biological materials, seed cells and biological factors, and it is now widely applied to the regeneration of bone and cartilage. However, due to the unique structure and function of growth plate cartilage, distinct strategies are required for effective regeneration. Thus, this review provides an overview of current research on the application of tissue engineering to promote growth plate regeneration. It aims to elucidates the underlying mechanisms by which tissue engineering promotes growth plate regeneration and to provide novel insights and therapeutic strategies for future research on the regeneration of growth plate.

生长板损伤的修复是一个高度复杂的过程,涉及多种细胞类型的精确时空调控。虽然在了解生长板损伤的病理机制方面取得了重大进展,但有效调节这一过程以使受伤的生长板软骨再生仍然是一个挑战。组织工程技术作为一种很有前途的治疗方法,通过使用功能性生物材料、种子细胞和生物因子来实现组织再生,目前已广泛应用于骨和软骨的再生。然而,由于生长板软骨独特的结构和功能,需要不同的策略来实现有效的再生。因此,本文就组织工程促进生长板再生的研究现状作一综述。旨在阐明组织工程促进生长板再生的潜在机制,并为未来生长板再生的研究提供新的见解和治疗策略。
{"title":"Tissue engineering in growth plate cartilage regeneration: Mechanisms to therapeutic strategies.","authors":"Ruoyi Guo,&nbsp;Hanjie Zhuang,&nbsp;Xiuning Chen,&nbsp;Yulong Ben,&nbsp;Minjie Fan,&nbsp;Yiwei Wang,&nbsp;Pengfei Zheng","doi":"10.1177/20417314231187956","DOIUrl":"https://doi.org/10.1177/20417314231187956","url":null,"abstract":"<p><p>The repair of growth plate injuries is a highly complex process that involves precise spatiotemporal regulation of multiple cell types. While significant progress has been made in understanding the pathological mechanisms underlying growth plate injuries, effectively regulating this process to regenerate the injured growth plate cartilage remains a challenge. Tissue engineering technology has emerged as a promising therapeutic approach for achieving tissue regeneration through the use of functional biological materials, seed cells and biological factors, and it is now widely applied to the regeneration of bone and cartilage. However, due to the unique structure and function of growth plate cartilage, distinct strategies are required for effective regeneration. Thus, this review provides an overview of current research on the application of tissue engineering to promote growth plate regeneration. It aims to elucidates the underlying mechanisms by which tissue engineering promotes growth plate regeneration and to provide novel insights and therapeutic strategies for future research on the regeneration of growth plate.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":null,"pages":null},"PeriodicalIF":8.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f7/be/10.1177_20417314231187956.PMC10359656.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10301443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Augmented effect of fibroblast growth factor 18 in bone morphogenetic protein 2-induced calvarial bone healing by activation of CCL2/CCR2 axis on M2 macrophage polarization. 成纤维细胞生长因子18通过激活CCL2/CCR2轴对M2巨噬细胞极化增强骨形态发生蛋白2诱导头颅骨愈合的作用。
IF 8.2 1区 工程技术 Q1 Medicine Pub Date : 2023-01-01 DOI: 10.1177/20417314231187960
Worachat Namangkalakul, Shigenori Nagai, Chengxue Jin, Ken-Ichi Nakahama, Yuki Yoshimoto, Satoshi Ueha, Kazunari Akiyoshi, Kouji Matsushima, Tomoki Nakashima, Masaki Takechi, Sachiko Iseki

Fibroblast growth factor (FGF) signaling plays essential roles in various biological events. FGF18 is one of the ligands to be associated with osteogenesis, chondrogenesis and bone healing. The mouse critical-sized calvarial defect healing induced by the bone morphogenetic protein 2 (BMP2)-hydrogel is stabilized when FGF18 is added. Here, we aimed to investigate the role of FGF18 in the calvarial bone healing model. We first found that FGF18 + BMP2 hydrogel application to the calvarial bone defect increased the expression of anti-inflammatory markers, including those related to tissue healing M2 macrophage (M2-Mø) prior to mineralized bone formation. The depletion of macrophages with clodronate liposome hindered the FGF18 effect. We then examined how FGF18 induces M2-Mø polarization by using mouse primary bone marrow (BM) cells composed of macrophage precursors and BM stromal cells (BMSCs). In vitro studies demonstrated that FGF18 indirectly induces M2-Mø polarization by affecting BMSCs. Whole transcriptome analysis and neutralizing antibody treatment of BMSC cultured with FGF18 revealed that chemoattractant chemokine (c-c motif) ligand 2 (CCL2) is the major mediator for M2-Mø polarization. Finally, FGF18-augmented activity toward favorable bone healing with BMP2 was diminished in the calvarial defect in Ccr2-deleted mice. Altogether, we suggest a novel role of FGF18 in M2-Mø modulation via stimulation of CCL2 production in calvarial bone healing.

成纤维细胞生长因子(Fibroblast growth factor, FGF)信号在多种生物事件中起着重要作用。FGF18是与成骨、软骨形成和骨愈合相关的配体之一。加入FGF18后,骨形态发生蛋白2 (bone morphogenetic protein 2, BMP2)-水凝胶诱导的小鼠临界尺寸颅骨缺损愈合得到稳定。在这里,我们的目的是研究FGF18在颅骨骨愈合模型中的作用。我们首先发现,将FGF18 + BMP2水凝胶应用于颅骨骨缺损可增加抗炎标志物的表达,包括矿化骨形成前与组织愈合相关的M2巨噬细胞(M2- moo)的表达。氯膦酸脂质体对巨噬细胞的消耗阻碍了FGF18的作用。然后,我们通过使用由巨噬细胞前体和骨髓基质细胞组成的小鼠原代骨髓(BM)细胞,研究了FGF18如何诱导m2 - moo极化。体外研究表明,FGF18通过影响骨髓间充质干细胞间接诱导m2 - moj极化。FGF18培养的骨髓间充质干细胞的全转录组分析和中和抗体处理表明,趋化因子趋化因子(c-c motif)配体2 (CCL2)是m2 - moo极化的主要介质。最后,在ccr2缺失小鼠颅骨缺损中,fgf18增强的BMP2促进骨愈合的活性减弱。总之,我们提出了FGF18在头颅骨愈合过程中通过刺激CCL2产生来调节m2 - mo_2的新作用。
{"title":"Augmented effect of fibroblast growth factor 18 in bone morphogenetic protein 2-induced calvarial bone healing by activation of CCL2/CCR2 axis on M2 macrophage polarization.","authors":"Worachat Namangkalakul,&nbsp;Shigenori Nagai,&nbsp;Chengxue Jin,&nbsp;Ken-Ichi Nakahama,&nbsp;Yuki Yoshimoto,&nbsp;Satoshi Ueha,&nbsp;Kazunari Akiyoshi,&nbsp;Kouji Matsushima,&nbsp;Tomoki Nakashima,&nbsp;Masaki Takechi,&nbsp;Sachiko Iseki","doi":"10.1177/20417314231187960","DOIUrl":"https://doi.org/10.1177/20417314231187960","url":null,"abstract":"<p><p>Fibroblast growth factor (FGF) signaling plays essential roles in various biological events. FGF18 is one of the ligands to be associated with osteogenesis, chondrogenesis and bone healing. The mouse critical-sized calvarial defect healing induced by the bone morphogenetic protein 2 (BMP2)-hydrogel is stabilized when FGF18 is added. Here, we aimed to investigate the role of FGF18 in the calvarial bone healing model. We first found that FGF18 + BMP2 hydrogel application to the calvarial bone defect increased the expression of anti-inflammatory markers, including those related to tissue healing M2 macrophage (M2-Mø) prior to mineralized bone formation. The depletion of macrophages with clodronate liposome hindered the FGF18 effect. We then examined how FGF18 induces M2-Mø polarization by using mouse primary bone marrow (BM) cells composed of macrophage precursors and BM stromal cells (BMSCs). In vitro studies demonstrated that FGF18 indirectly induces M2-Mø polarization by affecting BMSCs. Whole transcriptome analysis and neutralizing antibody treatment of BMSC cultured with FGF18 revealed that chemoattractant chemokine (c-c motif) ligand 2 (CCL2) is the major mediator for M2-Mø polarization. Finally, FGF18-augmented activity toward favorable bone healing with BMP2 was diminished in the calvarial defect in <i>Ccr2-</i>deleted mice. Altogether, we suggest a novel role of FGF18 in M2-Mø modulation via stimulation of CCL2 production in calvarial bone healing.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":null,"pages":null},"PeriodicalIF":8.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c2/72/10.1177_20417314231187960.PMC10387695.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10304672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Promoting angiogenesis and diabetic wound healing through delivery of protein transduction domain-BMP2 formulated nanoparticles with hydrogel. 通过递送蛋白质转导结构域bmp2配方纳米颗粒与水凝胶促进血管生成和糖尿病伤口愈合。
IF 8.2 1区 工程技术 Q1 Medicine Pub Date : 2023-01-01 DOI: 10.1177/20417314231190641
Jae Wan Suh, Kyoung-Mi Lee, Eun Ae Ko, Dong Suk Yoon, Kwang Hwan Park, Hyun Sil Kim, Jong In Yook, Nam Hee Kim, Jin Woo Lee

Decreased angiogenesis contributes to delayed wound healing in diabetic patients. Recombinant human bone morphogenetic protein-2 (rhBMP2) has also been demonstrated to promote angiogenesis. However, the short half-lives of soluble growth factors, including rhBMP2, limit their use in wound-healing applications. To address this limitation, we propose a novel delivery model using a protein transduction domain (PTD) formulated in a lipid nanoparticle (LNP). We aimed to determine whether a gelatin hydrogel dressing loaded with LNP-formulated PTD-BMP2 (LNP-PTD-BMP2) could enhance the angiogenic function of BMP2 and improve diabetic wound healing. In vitro, compared to the control and rhBMP2, LNP-PTD-BMP2 induced greater tube formation in human umbilical vein endothelial cells and increased the cell recruitment capacity of HaCaT cells. We inflicted large, full-thickness back skin wounds on streptozotocin-induced diabetic mice and applied gelatin hydrogel (GH) cross-linked by microbial transglutaminase containing rhBMP2, LNP-PTD-BMP2, or a control to these wounds. Wounds treated with LNP-PTD-BMP2-loaded GH exhibited enhanced wound closure, increased re-epithelialization rates, and higher collagen deposition than those with other treatments. Moreover, LNP-PTD-BMP2-loaded GH treatment resulted in more CD31- and α-SMA-positive cells, indicating greater neovascularization capacity than rhBMP2-loaded GH or GH treatments alone. Furthermore, in vivo near-infrared fluorescence revealed that LNP-PTD-BMP2 has a longer half-life than rhBMP2 and that BMP2 localizes around wounds. In conclusion, LNP-PTD-BMP2-loaded GH is a viable treatment option for diabetic wounds.

糖尿病患者血管生成减少导致伤口愈合延迟。重组人骨形态发生蛋白-2 (rhBMP2)也被证明可以促进血管生成。然而,包括rhBMP2在内的可溶性生长因子的半衰期较短,限制了它们在伤口愈合应用中的应用。为了解决这一限制,我们提出了一种新的递送模型,使用在脂质纳米颗粒(LNP)中配制的蛋白质转导结构域(PTD)。我们的目的是确定明胶水凝胶敷料装载lnp配方的PTD-BMP2 (LNP-PTD-BMP2)是否可以增强BMP2的血管生成功能并改善糖尿病伤口愈合。在体外实验中,与对照和rhBMP2相比,lnp - ppd - bmp2诱导人脐静脉内皮细胞更大的管状形成,并增加HaCaT细胞的细胞募集能力。我们对链脲霉素诱导的糖尿病小鼠背部皮肤造成大的全层伤口,并将含有rhBMP2、LNP-PTD-BMP2的微生物转谷氨酰胺酶交联的明胶水凝胶(GH)涂在这些伤口上。与其他治疗相比,使用负载lnp - ppd - bmp - 2的GH治疗的伤口表现出更强的伤口愈合、更高的再上皮化率和更高的胶原沉积。此外,lnp - ppd - bmp2负载GH处理导致更多的CD31-和α- sma阳性细胞,表明比rhbmp2负载GH或单独GH处理更大的新生血管能力。此外,体内近红外荧光显示LNP-PTD-BMP2的半衰期比rhBMP2长,并且BMP2定位于伤口周围。总之,lnp - ptd - bmp2负载GH是治疗糖尿病伤口的可行选择。
{"title":"Promoting angiogenesis and diabetic wound healing through delivery of protein transduction domain-BMP2 formulated nanoparticles with hydrogel.","authors":"Jae Wan Suh,&nbsp;Kyoung-Mi Lee,&nbsp;Eun Ae Ko,&nbsp;Dong Suk Yoon,&nbsp;Kwang Hwan Park,&nbsp;Hyun Sil Kim,&nbsp;Jong In Yook,&nbsp;Nam Hee Kim,&nbsp;Jin Woo Lee","doi":"10.1177/20417314231190641","DOIUrl":"https://doi.org/10.1177/20417314231190641","url":null,"abstract":"<p><p>Decreased angiogenesis contributes to delayed wound healing in diabetic patients. Recombinant human bone morphogenetic protein-2 (rhBMP2) has also been demonstrated to promote angiogenesis. However, the short half-lives of soluble growth factors, including rhBMP2, limit their use in wound-healing applications. To address this limitation, we propose a novel delivery model using a protein transduction domain (PTD) formulated in a lipid nanoparticle (LNP). We aimed to determine whether a gelatin hydrogel dressing loaded with LNP-formulated PTD-BMP2 (LNP-PTD-BMP2) could enhance the angiogenic function of BMP2 and improve diabetic wound healing. In vitro, compared to the control and rhBMP2, LNP-PTD-BMP2 induced greater tube formation in human umbilical vein endothelial cells and increased the cell recruitment capacity of HaCaT cells. We inflicted large, full-thickness back skin wounds on streptozotocin-induced diabetic mice and applied gelatin hydrogel (GH) cross-linked by microbial transglutaminase containing rhBMP2, LNP-PTD-BMP2, or a control to these wounds. Wounds treated with LNP-PTD-BMP2-loaded GH exhibited enhanced wound closure, increased re-epithelialization rates, and higher collagen deposition than those with other treatments. Moreover, LNP-PTD-BMP2-loaded GH treatment resulted in more CD31- and α-SMA-positive cells, indicating greater neovascularization capacity than rhBMP2-loaded GH or GH treatments alone. Furthermore, in vivo near-infrared fluorescence revealed that LNP-PTD-BMP2 has a longer half-life than rhBMP2 and that BMP2 localizes around wounds. In conclusion, LNP-PTD-BMP2-loaded GH is a viable treatment option for diabetic wounds.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":null,"pages":null},"PeriodicalIF":8.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/67/f6/10.1177_20417314231190641.PMC10434183.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10305939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Tissue Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1