The liver coordinates over 500 biochemical processes crucial for maintaining homeostasis, detoxification, and metabolism. Its specialized cells, arranged in hexagonal lobules, enable it to function as a highly efficient metabolic engine. However, diseases such as cirrhosis, fatty liver disease, and hepatitis present significant global health challenges. Traditional drug development is expensive and often ineffective at predicting human responses, driving interest in advanced in vitro liver models utilizing 3D bioprinting and microfluidics. These models strive to mimic the liver's complex microenvironment, improving drug screening and disease research. Despite its resilience, the liver is vulnerable to chronic illnesses, injuries, and cancers, leading to millions of deaths annually. Organ shortages hinder liver transplantation, highlighting the need for alternative treatments. Tissue engineering, employing polymer-based scaffolds and 3D bioprinting, shows promise. This review examines these innovative strategies, including liver organoids and liver tissue-on-chip technologies, to address the challenges of liver diseases.
{"title":"Scaffold-mediated liver regeneration: A comprehensive exploration of current advances.","authors":"Supriya Bhatt S, Jayanthi Krishna Kumar, Shurthi Laya, Goutam Thakur, Manasa Nune","doi":"10.1177/20417314241286092","DOIUrl":"https://doi.org/10.1177/20417314241286092","url":null,"abstract":"<p><p>The liver coordinates over 500 biochemical processes crucial for maintaining homeostasis, detoxification, and metabolism. Its specialized cells, arranged in hexagonal lobules, enable it to function as a highly efficient metabolic engine. However, diseases such as cirrhosis, fatty liver disease, and hepatitis present significant global health challenges. Traditional drug development is expensive and often ineffective at predicting human responses, driving interest in advanced in vitro liver models utilizing 3D bioprinting and microfluidics. These models strive to mimic the liver's complex microenvironment, improving drug screening and disease research. Despite its resilience, the liver is vulnerable to chronic illnesses, injuries, and cancers, leading to millions of deaths annually. Organ shortages hinder liver transplantation, highlighting the need for alternative treatments. Tissue engineering, employing polymer-based scaffolds and 3D bioprinting, shows promise. This review examines these innovative strategies, including liver organoids and liver tissue-on-chip technologies, to address the challenges of liver diseases.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"15 ","pages":"20417314241286092"},"PeriodicalIF":6.7,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475092/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11eCollection Date: 2024-01-01DOI: 10.1177/20417314241282131
Feifei Ni, Yangyang Chen, Ze Wang, Xin Zhang, Fei Gao, Zengwu Shao, Hong Wang
Graphene and its derivatives are widely used in tissue-engineering scaffolds, especially in the form of hydrogels. This is due to their biocompatibility, electrical conductivity, high surface area, and physicochemical versatility. They are also used in tissue engineering. Tissue engineering is suitable for 3D printing applications, and 3D printing makes it possible to construct 3D structures from 2D graphene, which is a revolutionary technology with promising applications in tissue and organ engineering. In this review, the recent literature in which graphene and its derivatives have been used as the major components of hydrogels is summarized. The application of graphene and its derivative-based hydrogels in tissue engineering is described in detail from different perspectives.
{"title":"Graphene derivative based hydrogels in biomedical applications.","authors":"Feifei Ni, Yangyang Chen, Ze Wang, Xin Zhang, Fei Gao, Zengwu Shao, Hong Wang","doi":"10.1177/20417314241282131","DOIUrl":"10.1177/20417314241282131","url":null,"abstract":"<p><p>Graphene and its derivatives are widely used in tissue-engineering scaffolds, especially in the form of hydrogels. This is due to their biocompatibility, electrical conductivity, high surface area, and physicochemical versatility. They are also used in tissue engineering. Tissue engineering is suitable for 3D printing applications, and 3D printing makes it possible to construct 3D structures from 2D graphene, which is a revolutionary technology with promising applications in tissue and organ engineering. In this review, the recent literature in which graphene and its derivatives have been used as the major components of hydrogels is summarized. The application of graphene and its derivative-based hydrogels in tissue engineering is described in detail from different perspectives.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"15 ","pages":"20417314241282131"},"PeriodicalIF":6.7,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490963/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05eCollection Date: 2024-01-01DOI: 10.1177/20417314241286606
Huixin Shi, Yang Yang, Hao Xing, Jialin Jia, Wei Xiong, Shu Guo, Shude Yang
Exosomes are nano-sized extracellular vesicles (EVs) released by diverse types of cells, which affect the functions of targeted cells by transporting bioactive substances. As the main component of exosomes, non-coding RNA (ncRNA) is demonstrated to impact multiple pathways participating in bone healing. Herein, this review first introduces the biogenesis and secretion of exosomes, and elucidates the role of the main cargo in exosomes, ncRNAs, in mediating intercellular communication. Subsequently, the potential molecular mechanism of exosomes accelerating bone healing is elucidated from the following four aspects: macrophage polarization, vascularization, osteogenesis and osteoclastogenesis. Then, we systematically introduce construction strategies based on modified exosomes in bone regeneration field. Finally, the clinical trials of exosomes for bone healing and the challenges of exosome-based therapies in the biomedical field are briefly introduced, providing solid theoretical frameworks and optimization methods for the clinical application of exosomes in orthopedics.
{"title":"Exosomal non-coding RNAs: Emerging insights into therapeutic potential and mechanisms in bone healing.","authors":"Huixin Shi, Yang Yang, Hao Xing, Jialin Jia, Wei Xiong, Shu Guo, Shude Yang","doi":"10.1177/20417314241286606","DOIUrl":"10.1177/20417314241286606","url":null,"abstract":"<p><p>Exosomes are nano-sized extracellular vesicles (EVs) released by diverse types of cells, which affect the functions of targeted cells by transporting bioactive substances. As the main component of exosomes, non-coding RNA (ncRNA) is demonstrated to impact multiple pathways participating in bone healing. Herein, this review first introduces the biogenesis and secretion of exosomes, and elucidates the role of the main cargo in exosomes, ncRNAs, in mediating intercellular communication. Subsequently, the potential molecular mechanism of exosomes accelerating bone healing is elucidated from the following four aspects: macrophage polarization, vascularization, osteogenesis and osteoclastogenesis. Then, we systematically introduce construction strategies based on modified exosomes in bone regeneration field. Finally, the clinical trials of exosomes for bone healing and the challenges of exosome-based therapies in the biomedical field are briefly introduced, providing solid theoretical frameworks and optimization methods for the clinical application of exosomes in orthopedics.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"15 ","pages":"20417314241286606"},"PeriodicalIF":6.7,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456177/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-29eCollection Date: 2024-01-01DOI: 10.1177/20417314241280359
Nur Izzah Md Fadilah, Nurul Aqilah Shahabudin, Raniya Adiba Mohd Razif, Arka Sanyal, Anushikha Ghosh, Khairul Idzwan Baharin, Haslina Ahmad, Manira Maarof, Antonella Motta, Mh Busra Fauzi
Short sequences of amino acids called peptides have a wide range of biological functions and the potential to treat a number of diseases. Bioactive peptides can be derived from different sources, including marine organisms, and synthetic design, making them versatile candidates for production of therapeutic agents. Their therapeutic effects span across areas such as antimicrobial activity, cells proliferation and migration, synthesis of collagen, and more. This current review explores the fascinating realm of bioactive peptides as promising therapeutic agents for skin wound healing. This review focuses on the multifaceted biological effects of specific peptides, shedding light on their potential to revolutionize the field of dermatology and regenerative medicine. It delves into how these peptides stimulate collagen synthesis, inhibit inflammation, and accelerate tissue regeneration, ultimately contributing to the effective repair of skin wounds. The findings underscore the significant role several types of bioactive peptides can play in enhancing wound healing processes and offer promising insights for improving the quality of life for individuals with skin injuries and dermatological conditions. The versatility of peptides allows for the development of tailored treatments catering to specific wound types and patient needs. As continuing to delve deeper into the realm of bioactive peptides, there is immense potential for further exploration and innovation. Future endeavors may involve the optimization of peptide formulations, elucidation of underlying molecular and cellular mechanisms.
{"title":"Discovery of bioactive peptides as therapeutic agents for skin wound repair.","authors":"Nur Izzah Md Fadilah, Nurul Aqilah Shahabudin, Raniya Adiba Mohd Razif, Arka Sanyal, Anushikha Ghosh, Khairul Idzwan Baharin, Haslina Ahmad, Manira Maarof, Antonella Motta, Mh Busra Fauzi","doi":"10.1177/20417314241280359","DOIUrl":"https://doi.org/10.1177/20417314241280359","url":null,"abstract":"<p><p>Short sequences of amino acids called peptides have a wide range of biological functions and the potential to treat a number of diseases. Bioactive peptides can be derived from different sources, including marine organisms, and synthetic design, making them versatile candidates for production of therapeutic agents. Their therapeutic effects span across areas such as antimicrobial activity, cells proliferation and migration, synthesis of collagen, and more. This current review explores the fascinating realm of bioactive peptides as promising therapeutic agents for skin wound healing. This review focuses on the multifaceted biological effects of specific peptides, shedding light on their potential to revolutionize the field of dermatology and regenerative medicine. It delves into how these peptides stimulate collagen synthesis, inhibit inflammation, and accelerate tissue regeneration, ultimately contributing to the effective repair of skin wounds. The findings underscore the significant role several types of bioactive peptides can play in enhancing wound healing processes and offer promising insights for improving the quality of life for individuals with skin injuries and dermatological conditions. The versatility of peptides allows for the development of tailored treatments catering to specific wound types and patient needs. As continuing to delve deeper into the realm of bioactive peptides, there is immense potential for further exploration and innovation. Future endeavors may involve the optimization of peptide formulations, elucidation of underlying molecular and cellular mechanisms.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"15 ","pages":"20417314241280359"},"PeriodicalIF":6.7,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468004/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27eCollection Date: 2024-01-01DOI: 10.1177/20417314241280961
Lei Hu, Dongmei Cheng, Xin Yuan, Zhenhua Gao, Qiao Yi, Bin Zhao, Fulan Wei, Junji Xu, Zhipeng Fan, Yi Liu, Xiumei Wang, Fuzhai Cui, Chunmei Zhang, Jinsong Wang, Songlin Wang
Stem cell-mediated bio-root regeneration is an alternative tooth replacement strategy; however, physiologically functional bio-root regeneration with distinctive dentin structure remains challenging. In this study, the distinct arrangements of collagen fibril bundles were identified that account for hierarchical structural differences between dentin, cementum, and alveolar bone. Thus, an "engineered pre-dentin" was fabricated, which was a dentin hierarchical structure mimicking collagen (MC) scaffold, with well-aligned hierarchical mineralized collagen fibril bundles. The results revealed that it has a stronger effect on promoting biological root regeneration in nude mice and miniature pigs with dental pulp stem cell (DPSC) and periodontal ligament stem cell (PDLSC) sheets compared to hydroxyapatite tricalcium phosphate (HA/TCP). The success rate in the MC group was also higher than that in the HA/TCP group (67% and 33%, respectively). In conclusion, the hierarchical dentin-mimicking scaffold can enhance the regeneration of bio-roots, which provides a promising strategy for tooth regeneration.
{"title":"Engineered pre-dentin with well-aligned hierarchical mineralized collagen fibril bundles promote bio-root regeneration.","authors":"Lei Hu, Dongmei Cheng, Xin Yuan, Zhenhua Gao, Qiao Yi, Bin Zhao, Fulan Wei, Junji Xu, Zhipeng Fan, Yi Liu, Xiumei Wang, Fuzhai Cui, Chunmei Zhang, Jinsong Wang, Songlin Wang","doi":"10.1177/20417314241280961","DOIUrl":"https://doi.org/10.1177/20417314241280961","url":null,"abstract":"<p><p>Stem cell-mediated bio-root regeneration is an alternative tooth replacement strategy; however, physiologically functional bio-root regeneration with distinctive dentin structure remains challenging. In this study, the distinct arrangements of collagen fibril bundles were identified that account for hierarchical structural differences between dentin, cementum, and alveolar bone. Thus, an \"engineered pre-dentin\" was fabricated, which was a dentin hierarchical structure mimicking collagen (MC) scaffold, with well-aligned hierarchical mineralized collagen fibril bundles. The results revealed that it has a stronger effect on promoting biological root regeneration in nude mice and miniature pigs with dental pulp stem cell (DPSC) and periodontal ligament stem cell (PDLSC) sheets compared to hydroxyapatite tricalcium phosphate (HA/TCP). The success rate in the MC group was also higher than that in the HA/TCP group (67% and 33%, respectively). In conclusion, the hierarchical dentin-mimicking scaffold can enhance the regeneration of bio-roots, which provides a promising strategy for tooth regeneration.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"15 ","pages":"20417314241280961"},"PeriodicalIF":6.7,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459519/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24eCollection Date: 2024-01-01DOI: 10.1177/20417314241279935
Seungho Jeon, Tae Min Kim, Gitae Kwon, Junyoung Park, Sung Young Park, Seoung Hoon Lee, Eun-Jung Jin
This study investigated the therapeutic potential of a manganese dioxide-polymer dot (MnO2-PD)-incorporated hydrogel, designated as M-PD hydrogel, for modulating reactive oxygen species (ROS) within the osteoarthritis (OA) environment. Our research highlights the ability of the hydrogel to scavenge ROS, thereby influencing the differentiation of osteoclasts and protecting chondrocytes, offering a novel approach to osteoarthritis (OA) management. Our results indicated that the M-PD hydrogel increased electrical resistance and fluorescence recovery in the presence of osteoclasts, correlating with decreased ROS levels and suppressed expression of osteoclast differentiation markers. Coculture experiments revealed the protective effects of the hydrogel on chondrocytes by reducing the expression of matrix-degrading enzymes. In vivo application in burr holes and/or OA-induced mice revealed a significant reduction in osteoclast formation and cartilage destruction, suggesting the dual therapeutic action of the hydrogel in altering the joint microenvironment. These findings highlight the potential of targeting ROS in osteoclasts as a comprehensive therapeutic approach, offering not only symptomatic relief but also targeting the underlying mechanisms of disease progression in OA.
本研究调查了二氧化锰聚合物点(MnO2-PD)包裹的水凝胶(命名为M-PD水凝胶)在调节骨关节炎(OA)环境中活性氧(ROS)方面的治疗潜力。我们的研究强调了水凝胶清除 ROS 的能力,从而影响破骨细胞的分化并保护软骨细胞,为骨关节炎(OA)的治疗提供了一种新方法。我们的研究结果表明,在破骨细胞存在的情况下,M-PD 水凝胶增加了电阻和荧光恢复,这与 ROS 水平降低和破骨细胞分化标记表达受抑制有关。共培养实验揭示了水凝胶通过减少基质降解酶的表达对软骨细胞的保护作用。水凝胶在毛刺孔和/或 OA 诱导的小鼠体内的应用显示,破骨细胞的形成和软骨的破坏显著减少,这表明水凝胶在改变关节微环境方面具有双重治疗作用。这些发现凸显了靶向破骨细胞中的 ROS 作为一种综合治疗方法的潜力,它不仅能缓解症状,还能针对 OA 疾病进展的潜在机制。
{"title":"Targeting ROS in osteoclasts within the OA environment: A novel therapeutic strategy for osteoarthritis management.","authors":"Seungho Jeon, Tae Min Kim, Gitae Kwon, Junyoung Park, Sung Young Park, Seoung Hoon Lee, Eun-Jung Jin","doi":"10.1177/20417314241279935","DOIUrl":"10.1177/20417314241279935","url":null,"abstract":"<p><p>This study investigated the therapeutic potential of a manganese dioxide-polymer dot (MnO2-PD)-incorporated hydrogel, designated as M-PD hydrogel, for modulating reactive oxygen species (ROS) within the osteoarthritis (OA) environment. Our research highlights the ability of the hydrogel to scavenge ROS, thereby influencing the differentiation of osteoclasts and protecting chondrocytes, offering a novel approach to osteoarthritis (OA) management. Our results indicated that the M-PD hydrogel increased electrical resistance and fluorescence recovery in the presence of osteoclasts, correlating with decreased ROS levels and suppressed expression of osteoclast differentiation markers. Coculture experiments revealed the protective effects of the hydrogel on chondrocytes by reducing the expression of matrix-degrading enzymes. In vivo application in burr holes and/or OA-induced mice revealed a significant reduction in osteoclast formation and cartilage destruction, suggesting the dual therapeutic action of the hydrogel in altering the joint microenvironment. These findings highlight the potential of targeting ROS in osteoclasts as a comprehensive therapeutic approach, offering not only symptomatic relief but also targeting the underlying mechanisms of disease progression in OA.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"15 ","pages":"20417314241279935"},"PeriodicalIF":6.7,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526208/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24eCollection Date: 2024-01-01DOI: 10.1177/20417314241282476
Sang Yoon Lee, Huynh Dai Phuc, Soong Ho Um, Rosaire Mongrain, Jeong-Kee Yoon, Suk Ho Bhang
Three-dimensional (3D) bioprinting has emerged as a promising strategy for fabricating complex tissue analogs with intricate architectures, such as vascular networks. Achieving this necessitates bioink formulations that possess highly printable properties and provide a cell-friendly microenvironment mimicking the native extracellular matrix. Rapid advancements in printing techniques continue to expand the capabilities of researchers, enabling them to overcome existing biological barriers. This review offers a comprehensive examination of ultraviolet-based 3D bioprinting, renowned for its exceptional precision compared to other techniques, and explores its applications in inducing angiogenesis across diverse tissue models related to hypoxia. The high-precision and rapid photocuring capabilities of 3D bioprinting are essential for accurately replicating the intricate complexity of vascular networks and extending the diffusion limits for nutrients and gases. Addressing the lack of vascular structure is crucial in hypoxia-related diseases, as it can significantly improve oxygen delivery and overall tissue health. Consequently, high-resolution 3D bioprinting facilitates the creation of vascular structures within three-dimensional engineered tissues, offering a potential solution for addressing hypoxia-related diseases. Emphasis is placed on fundamental components essential for successful 3D bioprinting, including cell types, bioink compositions, and growth factors highlighted in recent studies. The insights provided in this review underscore the promising prospects of leveraging 3D printing technologies for addressing hypoxia-related diseases through the stimulation of angiogenesis, complementing the therapeutic efficacy of cell therapy.
{"title":"Photocuring 3D printing technology as an advanced tool for promoting angiogenesis in hypoxia-related diseases.","authors":"Sang Yoon Lee, Huynh Dai Phuc, Soong Ho Um, Rosaire Mongrain, Jeong-Kee Yoon, Suk Ho Bhang","doi":"10.1177/20417314241282476","DOIUrl":"https://doi.org/10.1177/20417314241282476","url":null,"abstract":"<p><p>Three-dimensional (3D) bioprinting has emerged as a promising strategy for fabricating complex tissue analogs with intricate architectures, such as vascular networks. Achieving this necessitates bioink formulations that possess highly printable properties and provide a cell-friendly microenvironment mimicking the native extracellular matrix. Rapid advancements in printing techniques continue to expand the capabilities of researchers, enabling them to overcome existing biological barriers. This review offers a comprehensive examination of ultraviolet-based 3D bioprinting, renowned for its exceptional precision compared to other techniques, and explores its applications in inducing angiogenesis across diverse tissue models related to hypoxia. The high-precision and rapid photocuring capabilities of 3D bioprinting are essential for accurately replicating the intricate complexity of vascular networks and extending the diffusion limits for nutrients and gases. Addressing the lack of vascular structure is crucial in hypoxia-related diseases, as it can significantly improve oxygen delivery and overall tissue health. Consequently, high-resolution 3D bioprinting facilitates the creation of vascular structures within three-dimensional engineered tissues, offering a potential solution for addressing hypoxia-related diseases. Emphasis is placed on fundamental components essential for successful 3D bioprinting, including cell types, bioink compositions, and growth factors highlighted in recent studies. The insights provided in this review underscore the promising prospects of leveraging 3D printing technologies for addressing hypoxia-related diseases through the stimulation of angiogenesis, complementing the therapeutic efficacy of cell therapy.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"15 ","pages":"20417314241282476"},"PeriodicalIF":6.7,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437565/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142349130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23eCollection Date: 2024-01-01DOI: 10.1177/20417314241268917
De-Yong Li, Yu-Meng Li, Dan-Yi Lv, Tian Deng, Xin Zeng, Lu You, Qiu-Yu Pang, Yi Li, Bing-Mei Zhu
Impaired wound healing poses a significant burden on the healthcare system and patients. Stem cell therapy has demonstrated promising potential in the treatment of wounds. However, its clinical application is hindered by the low efficiency of cell homing. In this study, we successfully integrated P-selectin glycoprotein ligand-1 (PSGL-1) into the genome of human adipose-derived mesenchymal stem cells (ADSCs) using a Cas9-AAV6-based genome editing tool platform. Our findings revealed that PSGL-1 knock-in enhanced the binding of ADSCs to platelets and their adhesion to the injured site. Moreover, the intravenous infusion of PSGL-1-engineered ADSCs (KI-ADSCs) significantly improved the homing efficiency and residence rate at the site of skin lesions in mice. Mechanistically, PSGL-1 knock-in promotes the release of some therapeutic cytokines by activating the canonical WNT/β-catenin signaling pathway and accelerates the healing of wounds by promoting angiogenesis, re-epithelialization, and granulation tissue formation at the wound site. This study provides a novel strategy to simultaneously address the problem of poor migration and adhesion of mesenchymal stem cells (MSCs).
{"title":"Enhanced interaction between genome-edited mesenchymal stem cells and platelets improves wound healing in mice.","authors":"De-Yong Li, Yu-Meng Li, Dan-Yi Lv, Tian Deng, Xin Zeng, Lu You, Qiu-Yu Pang, Yi Li, Bing-Mei Zhu","doi":"10.1177/20417314241268917","DOIUrl":"https://doi.org/10.1177/20417314241268917","url":null,"abstract":"<p><p>Impaired wound healing poses a significant burden on the healthcare system and patients. Stem cell therapy has demonstrated promising potential in the treatment of wounds. However, its clinical application is hindered by the low efficiency of cell homing. In this study, we successfully integrated P-selectin glycoprotein ligand-1 (<i>PSGL-1</i>) into the genome of human adipose-derived mesenchymal stem cells (ADSCs) using a Cas9-AAV6-based genome editing tool platform. Our findings revealed that <i>PSGL-1</i> knock-in enhanced the binding of ADSCs to platelets and their adhesion to the injured site. Moreover, the intravenous infusion of <i>PSGL-1</i> <i>-engineered</i> ADSCs (KI-ADSCs) significantly improved the homing efficiency and residence rate at the site of skin lesions in mice. Mechanistically, <i>PSGL-1</i> knock-in promotes the release of some therapeutic cytokines by activating the canonical WNT/β-catenin signaling pathway and accelerates the healing of wounds by promoting angiogenesis, re-epithelialization, and granulation tissue formation at the wound site. This study provides a novel strategy to simultaneously address the problem of poor migration and adhesion of mesenchymal stem cells (MSCs).</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"15 ","pages":"20417314241268917"},"PeriodicalIF":6.7,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425747/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142349129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18eCollection Date: 2024-01-01DOI: 10.1177/20417314241268912
Lijuan Shi, Yiwen Xu, Jingying Li, Li He, Kaiyu Li, Shigang Yin, Minhai Nie, Xuqian Liu
Our prior research has effectively developed tissue-engineered vascularized oral mucosa equivalents (VOME); however, challenges such as low repeatability and stability, as well as the inability to accurately replicate the complexity of real blood vessels, were encountered. Therefore, this study aimed to screen the VOME and native oral mucosa vascular homeostasis phenotypes by tandem mass tag-tagged proteomics associated with laser capture microdissection and human angiogenesis antibody array technology. Then, lentiviruses were constructed and stably transfected with vascular endothelial-like cells (VELCs) to detect angiogenic capacity. HE, EdU Apollo tracer staining, immunofluorescence staining, scanning electron microscopy, biomechanical testing, and a small animal ultrasound imaging system were used to analyze the characteristics of vascularization homeostasis and monitor functional regeneration of the vascularized homeostatic phenotypic oral mucosal equivalents (VHPOME). The results showed that PGAM1, COL5A1, ANG, and RNH1 are potential specific angiogenesis phenotypes. High expression of PGAM1, COL5A1, and ANG and/or low expression of RNH1 can promote the angiogenesis of VOME. ANG/shRNH1 has the most significant tube-like structure-formation ability. The expression of PGAM1, COL5A1, and ANG in the VHPOME group was higher than that of the control group, and the expression of RNH1 was lower than that of the control group. COL5A1/ANG can significantly improve the mechanical properties. The blood flow signal was most significant in the ANG/shRNH1 group. PGAM1, COL5A1, ANG, shRNH1, PGAM1/ANG, COL5A1/ANG, PGAM1/shRNH1, PGAM1/shRNH1, COL5A1/shRNH1, and ANG/shRNH1 may be the targets for establishing vascularization homeostasis and functional regeneration of oral mucosal equivalent genes (groups), and ANG/shRNH1 has the most significant effect.
{"title":"Vascularized characteristics and functional regeneration of three-dimensional cell reconstruction of oral mucosa equivalents based on vascular homeostasis phenotypic modification.","authors":"Lijuan Shi, Yiwen Xu, Jingying Li, Li He, Kaiyu Li, Shigang Yin, Minhai Nie, Xuqian Liu","doi":"10.1177/20417314241268912","DOIUrl":"https://doi.org/10.1177/20417314241268912","url":null,"abstract":"<p><p>Our prior research has effectively developed tissue-engineered vascularized oral mucosa equivalents (VOME); however, challenges such as low repeatability and stability, as well as the inability to accurately replicate the complexity of real blood vessels, were encountered. Therefore, this study aimed to screen the VOME and native oral mucosa vascular homeostasis phenotypes by tandem mass tag-tagged proteomics associated with laser capture microdissection and human angiogenesis antibody array technology. Then, lentiviruses were constructed and stably transfected with vascular endothelial-like cells (VELCs) to detect angiogenic capacity. HE, EdU Apollo tracer staining, immunofluorescence staining, scanning electron microscopy, biomechanical testing, and a small animal ultrasound imaging system were used to analyze the characteristics of vascularization homeostasis and monitor functional regeneration of the vascularized homeostatic phenotypic oral mucosal equivalents (VHPOME). The results showed that PGAM1, COL5A1, ANG, and RNH1 are potential specific angiogenesis phenotypes. High expression of PGAM1, COL5A1, and ANG and/or low expression of RNH1 can promote the angiogenesis of VOME. ANG/shRNH1 has the most significant tube-like structure-formation ability. The expression of PGAM1, COL5A1, and ANG in the VHPOME group was higher than that of the control group, and the expression of RNH1 was lower than that of the control group. COL5A1/ANG can significantly improve the mechanical properties. The blood flow signal was most significant in the ANG/shRNH1 group. PGAM1, COL5A1, ANG, shRNH1, PGAM1/ANG, COL5A1/ANG, PGAM1/shRNH1, PGAM1/shRNH1, COL5A1/shRNH1, and ANG/shRNH1 may be the targets for establishing vascularization homeostasis and functional regeneration of oral mucosal equivalent genes (groups), and ANG/shRNH1 has the most significant effect.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"15 ","pages":"20417314241268912"},"PeriodicalIF":6.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412212/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142289999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Articular cartilage defect therapy is still dissatisfactory in clinic. Direct cell implantation faces challenges, such as tumorigenicity, immunogenicity, and uncontrollability. Extracellular vesicles (EVs) based cell-free therapy becomes a promising alternative approach for cartilage regeneration. Even though, EVs from different cells exhibit heterogeneous characteristics and effects. The aim of the study was to discover the functions of EVs from the cells during chondrogenesis timeline on cartilage regeneration. Here, bone marrow mesenchymal stem cells (BMSCs)-EVs, juvenile chondrocytes-EVs, and adult chondrocytes-EVs were used to represent the EVs at different differentiation stages, and fibroblast-EVs as surrounding signals were also joined to compare. Fibroblasts-EVs showed the worst effect on chondrogenesis. While juvenile chondrocyte-EVs and adult chondrocyte-EVs showed comparable effect on chondrogenic differentiation as BMSCs-EVs, BMSCs-EVs showed the best effect on cell proliferation and migration. Moreover, the amount of EVs secreted from BMSCs were much more than that from chondrocytes. An injectable decellularized extracellular matrix (dECM) hydrogel from small intestinal submucosa (SIS) was fabricated as the EVs delivery platform with natural matrix microenvironment. In a rat model, BMSCs-EVs loaded SIS hydrogel was injected into the articular cartilage defects and significantly enhanced cartilage regeneration in vivo. Furthermore, protein proteomics revealed BMSCs-EVs specifically upregulated multiple metabolic and biosynthetic processes, which might be the potential mechanism. Thus, injectable SIS hydrogel loaded with BMSCs-EVs might be a promising therapeutic way for articular cartilage defect.
{"title":"EVs from cells at the early stages of chondrogenesis delivered by injectable SIS dECM promote cartilage regeneration.","authors":"Weilai Zhu, Jiaying Shi, Bowen Weng, Zhenger Zhou, Xufeng Mao, Senhao Pan, Jing Peng, Chi Zhang, Haijiao Mao, Mei Li, Jiyuan Zhao","doi":"10.1177/20417314241268189","DOIUrl":"10.1177/20417314241268189","url":null,"abstract":"<p><p>Articular cartilage defect therapy is still dissatisfactory in clinic. Direct cell implantation faces challenges, such as tumorigenicity, immunogenicity, and uncontrollability. Extracellular vesicles (EVs) based cell-free therapy becomes a promising alternative approach for cartilage regeneration. Even though, EVs from different cells exhibit heterogeneous characteristics and effects. The aim of the study was to discover the functions of EVs from the cells during chondrogenesis timeline on cartilage regeneration. Here, bone marrow mesenchymal stem cells (BMSCs)-EVs, juvenile chondrocytes-EVs, and adult chondrocytes-EVs were used to represent the EVs at different differentiation stages, and fibroblast-EVs as surrounding signals were also joined to compare. Fibroblasts-EVs showed the worst effect on chondrogenesis. While juvenile chondrocyte-EVs and adult chondrocyte-EVs showed comparable effect on chondrogenic differentiation as BMSCs-EVs, BMSCs-EVs showed the best effect on cell proliferation and migration. Moreover, the amount of EVs secreted from BMSCs were much more than that from chondrocytes. An injectable decellularized extracellular matrix (dECM) hydrogel from small intestinal submucosa (SIS) was fabricated as the EVs delivery platform with natural matrix microenvironment. In a rat model, BMSCs-EVs loaded SIS hydrogel was injected into the articular cartilage defects and significantly enhanced cartilage regeneration in vivo. Furthermore, protein proteomics revealed BMSCs-EVs specifically upregulated multiple metabolic and biosynthetic processes, which might be the potential mechanism. Thus, injectable SIS hydrogel loaded with BMSCs-EVs might be a promising therapeutic way for articular cartilage defect.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"15 ","pages":"20417314241268189"},"PeriodicalIF":6.7,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329914/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}