首页 > 最新文献

Geobiology最新文献

英文 中文
Widespread seafloor anoxia during generation of the Ediacaran Shuram carbon isotope excursion 埃迪卡拉纪舒拉姆期碳同位素偏移生成期间广泛的海底缺氧
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2023-05-08 DOI: 10.1111/gbi.12557
Chadlin M. Ostrander, Christian J. Bjerrum, Anne-Sofie C. Ahm, Simon R. Stenger, Kristin D. Bergmann, Mohamed A. K. El-Ghali, Abdul R. Harthi, Zayana Aisri, Sune G. Nielsen

Reconstructing the oxygenation history of Earth's oceans during the Ediacaran period (635 to 539 million years ago) has been challenging, and this has led to a polarizing debate about the environmental conditions that played host to the rise of animals. One focal point of this debate is the largest negative inorganic C-isotope excursion recognized in the geologic record, the Shuram excursion, and whether this relic tracks the global-scale oxygenation of Earth's deep oceans. To help inform this debate, we conducted a detailed geochemical investigation of two siliciclastic-dominated successions from Oman deposited through the Shuram Formation. Iron speciation data from both successions indicate formation beneath an intermittently anoxic local water column. Authigenic thallium (Tl) isotopic compositions leached from both successions are indistinguishable from bulk upper continental crust (ε205TlA ≈ −2) and, by analogy with modern equivalents, likely representative of the ancient seawater ε205Tl value. A crustal seawater ε205Tl value requires limited manganese (Mn) oxide burial on the ancient seafloor, and by extension widely distributed anoxic sediment porewaters. This inference is supported by muted redox-sensitive element enrichments (V, Mo, and U) and consistent with some combination of widespread (a) bottom water anoxia and (b) high sedimentary organic matter loading. Contrary to a classical hypothesis, our interpretations place the Shuram excursion, and any coeval animal evolutionary events, in a predominantly anoxic global ocean.

重建埃迪卡拉纪时期(6.35亿至5.39亿年前)地球海洋的氧合历史一直具有挑战性,这导致了关于环境条件对动物崛起的影响的两极分化辩论。争论的焦点之一是地质记录中已知的最大的负无机c同位素偏移,即舒拉姆偏移,以及这个遗迹是否追踪了地球深海的全球氧化作用。为了为这一争论提供信息,我们对阿曼Shuram组沉积的两个以硅质塑料为主的序列进行了详细的地球化学调查。两个序列的铁形态数据表明,地层位于间歇性缺氧的局部水柱之下。从这两个序列中浸出的自生铊(Tl)同位素组成与大块大陆上地壳(ε205TlA≈−2)难以区分,并且与现代等价物类比,可能代表古代海水的ε205Tl值。地壳海水ε205Tl值要求古海底有有限的氧化锰埋藏,并有广泛分布的缺氧沉积孔隙水。这一推断得到了弱氧化还原敏感元素(V、Mo和U)富集的支持,并与广泛的(a)底水缺氧和(b)高沉积有机质负荷的某种组合相一致。与经典假设相反,我们的解释将舒拉姆之旅和任何同时期的动物进化事件置于一个主要缺氧的全球海洋中。
{"title":"Widespread seafloor anoxia during generation of the Ediacaran Shuram carbon isotope excursion","authors":"Chadlin M. Ostrander,&nbsp;Christian J. Bjerrum,&nbsp;Anne-Sofie C. Ahm,&nbsp;Simon R. Stenger,&nbsp;Kristin D. Bergmann,&nbsp;Mohamed A. K. El-Ghali,&nbsp;Abdul R. Harthi,&nbsp;Zayana Aisri,&nbsp;Sune G. Nielsen","doi":"10.1111/gbi.12557","DOIUrl":"https://doi.org/10.1111/gbi.12557","url":null,"abstract":"<p>Reconstructing the oxygenation history of Earth's oceans during the Ediacaran period (635 to 539 million years ago) has been challenging, and this has led to a polarizing debate about the environmental conditions that played host to the rise of animals. One focal point of this debate is the largest negative inorganic C-isotope excursion recognized in the geologic record, the Shuram excursion, and whether this relic tracks the global-scale oxygenation of Earth's deep oceans. To help inform this debate, we conducted a detailed geochemical investigation of two siliciclastic-dominated successions from Oman deposited through the Shuram Formation. Iron speciation data from both successions indicate formation beneath an intermittently anoxic local water column. Authigenic thallium (Tl) isotopic compositions leached from both successions are indistinguishable from bulk upper continental crust (ε<sup>205</sup>Tl<sub>A</sub> ≈ −2) and, by analogy with modern equivalents, likely representative of the ancient seawater ε<sup>205</sup>Tl value. A crustal seawater ε<sup>205</sup>Tl value requires limited manganese (Mn) oxide burial on the ancient seafloor, and by extension widely distributed anoxic sediment porewaters. This inference is supported by muted redox-sensitive element enrichments (V, Mo, and U) and consistent with some combination of widespread (a) bottom water anoxia and (b) high sedimentary organic matter loading. Contrary to a classical hypothesis, our interpretations place the Shuram excursion, and any coeval animal evolutionary events, in a predominantly anoxic global ocean.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 5","pages":"556-570"},"PeriodicalIF":3.7,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6155250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Featured Cover 特色介绍
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2023-04-11 DOI: 10.1111/gbi.12556

Cover

The cover image is based on the Research Article Effects of RuBisCO and CO2 concentration on cyanobacterial growth and carbon isotope fractionation by Amanda K. Garcia et al., https://doi.org/10.1111/gbi.12543

封面图片基于Amanda K. Garcia等人的研究文章《RuBisCO和CO2浓度对蓝藻生长和碳同位素分异的影响》,https://doi.org/10.1111/gbi.12543
{"title":"Featured Cover","authors":"","doi":"10.1111/gbi.12556","DOIUrl":"https://doi.org/10.1111/gbi.12556","url":null,"abstract":"<p>Cover</p><p>The cover image is based on the Research Article <i>Effects of RuBisCO and CO<sub>2</sub> concentration on cyanobacterial growth and carbon isotope fractionation</i> by Amanda K. Garcia et al., https://doi.org/10.1111/gbi.12543\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 3","pages":"i"},"PeriodicalIF":3.7,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12556","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5802399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial influence on dolomite and authigenic clay mineralisation in dolocrete profiles of NW Australia 微生物对澳大利亚西北部白云岩剖面白云岩和自生粘土矿化的影响
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2023-03-27 DOI: 10.1111/gbi.12555
Caroline C. Mather, Heta M. Lampinen, Maurice Tucker, Matthias Leopold, Shawan Dogramaci, Mark Raven, Robert J. Gilkes

Dolomite (CaMg(CO3)2) precipitation is kinetically inhibited at surface temperatures and pressures. Experimental studies have demonstrated that microbial extracellular polymeric substances (EPS) as well as certain clay minerals may catalyse dolomite precipitation. However, the combined association of EPS with clay minerals and dolomite and their occurrence in the natural environment are not well documented. We investigated the mineral and textural associations within groundwater dolocrete profiles from arid northwest Australia. Microbial EPS is a site of nucleation for both dolomite and authigenic clay minerals in this Late Miocene to Pliocene dolocrete. Dolomite crystals are commonly encased in EPS alveolar structures, which have been mineralised by various clay minerals, including montmorillonite, trioctahedral smectite and palygorskite-sepiolite. Observations of microbial microstructures and their association with minerals resemble textures documented in various lacustrine and marine microbialites, indicating that similar mineralisation processes may have occurred to form these dolocretes. EPS may attract and bind cations that concentrate to form the initial particles for mineral nucleation. The dolomite developed as nanocrystals, likely via a disordered precursor, which coalesced to form larger micritic crystal aggregates and rhombic crystals. Spheroidal dolomite textures, commonly with hollow cores, are also present and may reflect the mineralisation of a biofilm surrounding coccoid bacterial cells. Dolomite formation within an Mg-clay matrix is also observed, more commonly within a shallow pedogenic horizon. The ability of the negatively charged surfaces of clay and EPS to bind and dewater Mg2+, as well as the slow diffusion of ions through a viscous clay or EPS matrix, may promote the incorporation of Mg2+ into the mineral and overcome the kinetic effects to allow disordered dolomite nucleation and its later growth. The results of this study show that the precipitation of clay and carbonate minerals in alkaline environments may be closely associated and can develop from the same initial amorphous Ca–Mg–Si-rich matrix within EPS. The abundance of EPS preserved within the profiles is evidence of past microbial activity. Local fluctuations in chemistry, such as small increases in alkalinity, associated with the degradation of EPS or microbial activity, were likely important for both clay and dolomite formation. Groundwater environments may be important and hitherto understudied settings for microbially influenced mineralisation and for low-temperature dolomite precipitation.

在表面温度和压力下,白云石(CaMg(CO3)2)的析出受到动力学抑制。实验研究表明,微生物胞外聚合物质(EPS)以及某些粘土矿物可能催化白云岩沉淀。然而,EPS与粘土矿物和白云岩的结合及其在自然环境中的赋存情况并没有很好的文献记载。我们研究了澳大利亚西北部干旱地区地下水白云岩剖面中的矿物和结构关联。在晚中新世至上新世白云岩中,微生物EPS是白云岩和自生粘土矿物成核的场所。白云石晶体通常包裹在EPS泡状结构中,由各种粘土矿物矿化,包括蒙脱石、三八面体蒙脱石和坡缕石-海泡石。对微生物微观结构及其与矿物的关联的观察与各种湖相和海洋微生物岩中记录的结构相似,表明形成这些白云岩可能发生了类似的矿化过程。EPS可以吸引和结合阳离子,这些阳离子集中形成矿物成核的初始颗粒。白云石发育为纳米晶体,可能是通过无序前驱体,这些前驱体结合形成较大的微晶晶体集合体和菱形晶体。球状白云石结构,通常具有空心核,也存在,可能反映了围绕球状细菌细胞的生物膜的矿化。白云岩的形成在镁粘土基质中也被观察到,更常见的是在浅成土层。粘土和EPS的负电荷表面结合和脱水Mg2+的能力,以及离子通过粘性粘土或EPS基质的缓慢扩散,可能会促进Mg2+结合到矿物中,并克服动力学效应,使无序白云岩成核和后期生长。本研究结果表明,碱性环境下粘土和碳酸盐矿物的沉淀可能密切相关,并且可以从EPS内相同的初始无定形富ca - mg - si基质中发展而来。在剖面中保存的EPS丰度是过去微生物活动的证据。化学的局部波动,例如与EPS降解或微生物活动有关的碱度的小幅增加,可能对粘土和白云岩的形成都很重要。地下水环境可能是微生物影响矿化和低温白云岩沉淀的重要且迄今尚未得到充分研究的环境。
{"title":"Microbial influence on dolomite and authigenic clay mineralisation in dolocrete profiles of NW Australia","authors":"Caroline C. Mather,&nbsp;Heta M. Lampinen,&nbsp;Maurice Tucker,&nbsp;Matthias Leopold,&nbsp;Shawan Dogramaci,&nbsp;Mark Raven,&nbsp;Robert J. Gilkes","doi":"10.1111/gbi.12555","DOIUrl":"https://doi.org/10.1111/gbi.12555","url":null,"abstract":"<p>Dolomite (CaMg(CO<sub>3</sub>)<sub>2</sub>) precipitation is kinetically inhibited at surface temperatures and pressures. Experimental studies have demonstrated that microbial extracellular polymeric substances (EPS) as well as certain clay minerals may catalyse dolomite precipitation. However, the combined association of EPS with clay minerals and dolomite and their occurrence in the natural environment are not well documented. We investigated the mineral and textural associations within groundwater dolocrete profiles from arid northwest Australia. Microbial EPS is a site of nucleation for both dolomite and authigenic clay minerals in this Late Miocene to Pliocene dolocrete. Dolomite crystals are commonly encased in EPS alveolar structures, which have been mineralised by various clay minerals, including montmorillonite, trioctahedral smectite and palygorskite-sepiolite. Observations of microbial microstructures and their association with minerals resemble textures documented in various lacustrine and marine microbialites, indicating that similar mineralisation processes may have occurred to form these dolocretes. EPS may attract and bind cations that concentrate to form the initial particles for mineral nucleation. The dolomite developed as nanocrystals, likely via a disordered precursor, which coalesced to form larger micritic crystal aggregates and rhombic crystals. Spheroidal dolomite textures, commonly with hollow cores, are also present and may reflect the mineralisation of a biofilm surrounding coccoid bacterial cells. Dolomite formation within an Mg-clay matrix is also observed, more commonly within a shallow pedogenic horizon. The ability of the negatively charged surfaces of clay and EPS to bind and dewater Mg<sup>2+</sup>, as well as the slow diffusion of ions through a viscous clay or EPS matrix, may promote the incorporation of Mg<sup>2+</sup> into the mineral and overcome the kinetic effects to allow disordered dolomite nucleation and its later growth. The results of this study show that the precipitation of clay and carbonate minerals in alkaline environments may be closely associated and can develop from the same initial amorphous Ca–Mg–Si-rich matrix within EPS. The abundance of EPS preserved within the profiles is evidence of past microbial activity. Local fluctuations in chemistry, such as small increases in alkalinity, associated with the degradation of EPS or microbial activity, were likely important for both clay and dolomite formation. Groundwater environments may be important and hitherto understudied settings for microbially influenced mineralisation and for low-temperature dolomite precipitation.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 5","pages":"644-670"},"PeriodicalIF":3.7,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12555","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5836510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Biogeochemical transformations after the emergence of oxygenic photosynthesis and conditions for the first rise of atmospheric oxygen 含氧光合作用出现后的生物地球化学转变和大气氧气首次上升的条件
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2023-03-24 DOI: 10.1111/gbi.12554
Yasuto Watanabe, Eiichi Tajika, Kazumi Ozaki

The advent of oxygenic photosynthesis represents the most prominent biological innovation in the evolutionary history of the Earth. The exact timing of the evolution of oxygenic photoautotrophic bacteria remains elusive, yet these bacteria profoundly altered the redox state of the ocean–atmosphere–biosphere system, ultimately causing the first major rise in atmospheric oxygen (O2)—the so-called Great Oxidation Event (GOE)—during the Paleoproterozoic (~2.5–2.2 Ga). However, it remains unclear how the coupled atmosphere–marine biosphere system behaved after the emergence of oxygenic photoautotrophs (OP), affected global biogeochemical cycles, and led to the GOE. Here, we employ a coupled atmospheric photochemistry and marine microbial ecosystem model to comprehensively explore the intimate links between the atmosphere and marine biosphere driven by the expansion of OP, and the biogeochemical conditions of the GOE. When the primary productivity of OP sufficiently increases in the ocean, OP suppresses the activity of the anaerobic microbial ecosystem by reducing the availability of electron donors (H2 and CO) in the biosphere and causes climate cooling by reducing the level of atmospheric methane (CH4). This can be attributed to the supply of OH radicals from biogenic O2, which is a primary sink of biogenic CH4 and electron donors in the atmosphere. Our typical result also demonstrates that the GOE is triggered when the net primary production of OP exceeds >~5% of the present oceanic value. A globally frozen snowball Earth event could be triggered if the atmospheric CO2 level was sufficiently small (<~40 present atmospheric level; PAL) because the concentration of CH4 in the atmosphere would decrease faster than the climate mitigation by the carbonate–silicate geochemical cycle. These results support a prolonged anoxic atmosphere after the emergence of OP during the Archean and the occurrence of the GOE and snowball Earth event during the Paleoproterozoic.

含氧光合作用的出现代表了地球进化史上最显著的生物创新。氧性光自养细菌进化的确切时间仍然难以捉摸,但这些细菌深刻地改变了海洋-大气-生物圈系统的氧化还原状态,最终导致了古元古代(~ 2.5-2.2 Ga)大气氧气(O2)的第一次大幅上升,即所谓的大氧化事件(GOE)。然而,在氧性光自养生物(OP)出现后,耦合的大气-海洋生物圈系统如何影响全球生物地球化学循环,并导致GOE,目前尚不清楚。本文采用大气光化学与海洋微生物生态系统耦合模型,全面探讨OP扩张驱动下大气与海洋生物圈的密切联系,以及GOE的生物地球化学条件。当海洋中OP的初级生产力充分增加时,OP通过降低生物圈中电子供体(H2和CO)的有效性来抑制厌氧微生物生态系统的活动,并通过降低大气甲烷(CH4)的水平导致气候变冷。这可归因于生物源性O2提供OH自由基,这是大气中生物源性CH4和电子供体的主要汇。我们的典型结果还表明,当净初级生产的OP超过当前海洋值的5%时,GOE就会被触发。如果大气中的二氧化碳浓度足够小(<~目前大气浓度的40%;因为大气中CH4浓度的下降速度比碳酸盐-硅酸盐地球化学循环减缓气候变化的速度要快。这些结果支持太古宙OP出现后的长时间缺氧大气和古元古代GOE和雪球地球事件的发生。
{"title":"Biogeochemical transformations after the emergence of oxygenic photosynthesis and conditions for the first rise of atmospheric oxygen","authors":"Yasuto Watanabe,&nbsp;Eiichi Tajika,&nbsp;Kazumi Ozaki","doi":"10.1111/gbi.12554","DOIUrl":"https://doi.org/10.1111/gbi.12554","url":null,"abstract":"<p>The advent of oxygenic photosynthesis represents the most prominent biological innovation in the evolutionary history of the Earth. The exact timing of the evolution of oxygenic photoautotrophic bacteria remains elusive, yet these bacteria profoundly altered the redox state of the ocean–atmosphere–biosphere system, ultimately causing the first major rise in atmospheric oxygen (O<sub>2</sub>)—the so-called Great Oxidation Event (GOE)—during the Paleoproterozoic (~2.5–2.2 Ga). However, it remains unclear how the coupled atmosphere–marine biosphere system behaved after the emergence of oxygenic photoautotrophs (OP), affected global biogeochemical cycles, and led to the GOE. Here, we employ a coupled atmospheric photochemistry and marine microbial ecosystem model to comprehensively explore the intimate links between the atmosphere and marine biosphere driven by the expansion of OP, and the biogeochemical conditions of the GOE. When the primary productivity of OP sufficiently increases in the ocean, OP suppresses the activity of the anaerobic microbial ecosystem by reducing the availability of electron donors (H<sub>2</sub> and CO) in the biosphere and causes climate cooling by reducing the level of atmospheric methane (CH<sub>4</sub>). This can be attributed to the supply of OH radicals from biogenic O<sub>2</sub>, which is a primary sink of biogenic CH<sub>4</sub> and electron donors in the atmosphere. Our typical result also demonstrates that the GOE is triggered when the net primary production of OP exceeds &gt;~5% of the present oceanic value. A globally frozen snowball Earth event could be triggered if the atmospheric CO<sub>2</sub> level was sufficiently small (&lt;~40 present atmospheric level; PAL) because the concentration of CH<sub>4</sub> in the atmosphere would decrease faster than the climate mitigation by the carbonate–silicate geochemical cycle. These results support a prolonged anoxic atmosphere after the emergence of OP during the Archean and the occurrence of the GOE and snowball Earth event during the Paleoproterozoic.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 5","pages":"537-555"},"PeriodicalIF":3.7,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5782382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Mineralogical characterization of biosilicas versus geological analogs 生物硅与地质类似物的矿物学表征
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2023-02-27 DOI: 10.1111/gbi.12553
Gabriela A. Farfan, David A. McKeown, Jeffrey E. Post

Non-crystalline silica mineraloids are essential to life on Earth as they provide architectural structure to dominant primary producers, such as plants and phytoplankton, as well as to protists and sponges. Due to the difficulty in characterizing and quantifying the structure of highly disordered X-ray amorphous silica, relatively little has been done to understand the mineralogy of biogenic silica and how this may impact the material properties of biogenic silica, such as hardness and strength, or how biosilica might be identified and differentiated from its inorganic geological counterparts. Typically, geologically formed opal-A and hyalite opal-AN are regarded as analogs to biogenic silica, however, some spectroscopic and imaging studies suggest that this might not be a reasonable assumption. In this study, we use a variety of techniques (X-ray diffraction, Raman spectroscopy, and scanning electron microscopy) to compare differences in structural disorder and bonding environments of geologically formed hydrous silicas (Opal-A, hyalite, geyserite) and silica glass versus biogenic silicas from an array of organisms. Our results indicate differences in the levels of structural disorder and the Raman-observed bonding environments of the SiO2 network modes (D1 mode) and the Q-species modes (~1015 cm−1) between varieties of biogenic silicas and geologically formed silicas, which aligns with previous studies that suggest fundamental differences between biogenic and geologically formed silica. Biosilicas also differ structurally from one another by species of organism. Our mineralogical approach to characterizing biosilicas and differentiating them from other silicas may be expanded to future diagenesis studies, and potentially applied to astrobiology studies of Earth and other planets.

非晶体二氧化硅类矿物质对地球上的生命至关重要,因为它们为主要的初级生产者(如植物和浮游植物)以及原生生物和海绵提供了建筑结构。由于难以表征和量化高度无序的x射线无定形二氧化硅的结构,相对而言,很少有人了解生物源二氧化硅的矿物学,以及这可能如何影响生物源二氧化硅的材料性质,如硬度和强度,或者如何识别和区分生物二氧化硅与无机二氧化硅的地质对应物。通常,地质上形成的蛋白石- a和透明质蛋白石- an被认为是生物二氧化硅的类似物,然而,一些光谱和成像研究表明,这可能不是一个合理的假设。在这项研究中,我们使用各种技术(x射线衍射、拉曼光谱和扫描电子显微镜)来比较地质形成的含水二氧化硅(蛋白石- a、透明石、硅华石)和硅玻璃与来自一系列生物体的生物源二氧化硅的结构紊乱和键合环境的差异。我们的研究结果表明,不同种类的生物源二氧化硅和地质形成的二氧化硅在结构无序程度和拉曼观察到的SiO2网络模式(D1模式)和q -物种模式(~1015 cm−1)的键合环境上存在差异,这与之前的研究结果一致,表明生物源二氧化硅和地质形成二氧化硅之间存在根本差异。不同种类的生物硅在结构上也各不相同。我们用矿物学方法来表征生物硅并将其与其他硅区分开来,这可能会扩展到未来的成岩作用研究中,并有可能应用于地球和其他行星的天体生物学研究。
{"title":"Mineralogical characterization of biosilicas versus geological analogs","authors":"Gabriela A. Farfan,&nbsp;David A. McKeown,&nbsp;Jeffrey E. Post","doi":"10.1111/gbi.12553","DOIUrl":"https://doi.org/10.1111/gbi.12553","url":null,"abstract":"<p>Non-crystalline silica mineraloids are essential to life on Earth as they provide architectural structure to dominant primary producers, such as plants and phytoplankton, as well as to protists and sponges. Due to the difficulty in characterizing and quantifying the structure of highly disordered X-ray amorphous silica, relatively little has been done to understand the mineralogy of biogenic silica and how this may impact the material properties of biogenic silica, such as hardness and strength, or how biosilica might be identified and differentiated from its inorganic geological counterparts. Typically, geologically formed opal-A and hyalite opal-A<sub>N</sub> are regarded as analogs to biogenic silica, however, some spectroscopic and imaging studies suggest that this might not be a reasonable assumption. In this study, we use a variety of techniques (X-ray diffraction, Raman spectroscopy, and scanning electron microscopy) to compare differences in structural disorder and bonding environments of geologically formed hydrous silicas (Opal-A, hyalite, geyserite) and silica glass versus biogenic silicas from an array of organisms. Our results indicate differences in the levels of structural disorder and the Raman-observed bonding environments of the SiO<sub>2</sub> network modes (D<sub>1</sub> mode) and the Q-species modes (~1015 cm<sup>−1</sup>) between varieties of biogenic silicas and geologically formed silicas, which aligns with previous studies that suggest fundamental differences between biogenic and geologically formed silica. Biosilicas also differ structurally from one another by species of organism. Our mineralogical approach to characterizing biosilicas and differentiating them from other silicas may be expanded to future diagenesis studies, and potentially applied to astrobiology studies of Earth and other planets.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 4","pages":"520-533"},"PeriodicalIF":3.7,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12553","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5876231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Bioavailability of mineral-associated trace metals as cofactors for nitrogen fixation by Azotobacter vinelandii 矿物相关微量金属作为固氮辅助因子的生物利用度
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2023-02-27 DOI: 10.1111/gbi.12552
Shreya Srivastava, Hailiang Dong, Oliver Baars, Yizhi Sheng

Life on Earth depends on N2-fixing microbes to make ammonia from atmospheric N2 gas by the nitrogenase enzyme. Most nitrogenases use Mo as a cofactor; however, V and Fe are also possible. N2 fixation was once believed to have evolved during the Archean-Proterozoic times using Fe as a cofactor. However, δ15N values of paleo-ocean sediments suggest Mo and V cofactors despite their low concentrations in the paleo-oceans. This apparent paradox is based on an untested assumption that only soluble metals are bioavailable. In this study, laboratory experiments were performed to test the bioavailability of mineral-associated trace metals to a model N2-fixing bacterium Azotobacter vinelandii. N2 fixation was observed when Mo in molybdenite, V in cavansite, and Fe in ferrihydrite were used as the sole sources of cofactors, but the rate of N2 fixation was greatly reduced. A physical separation between minerals and cells further reduced the rate of N2 fixation. Biochemical assays detected five siderophores, including aminochelin, azotochelin, azotobactin, protochelin, and vibrioferrin, as possible chelators to extract metals from minerals. The results of this study demonstrate that mineral-associated trace metals are bioavailable as cofactors of nitrogenases to support N2 fixation in those environments that lack soluble trace metals and may offer a partial answer to the paradox.

地球上的生命依靠固氮微生物通过氮酶从大气中的N2气体中制造氨。大多数氮酶使用Mo作为辅助因子;然而,V和Fe也是可能的。N2固定作用曾经被认为是在太古宙-元古代以铁作为辅助因子而发展起来的。古海洋沉积物的δ15N值显示Mo和V的辅因子,尽管它们在古海洋中的浓度较低。这个明显的悖论是基于一个未经检验的假设,即只有可溶性金属是生物可利用的。在这项研究中,进行了实验室实验,以测试矿物相关微量金属对模型固氮细菌的生物利用度。以辉钼矿中的Mo、钾方石中的V和水合铁中的Fe作为辅助因子的唯一来源,可以观察到对N2的固定,但对N2的固定速率大大降低。矿物质和细胞之间的物理分离进一步降低了N2固定的速率。生化分析检测到五种铁载体,包括氨基螯合蛋白、偶氮螯合蛋白、偶氮actin、原螯合蛋白和弧菌铁蛋白,它们可能是从矿物质中提取金属的螯合剂。本研究的结果表明,在缺乏可溶性微量金属的环境中,矿物相关的微量金属作为固氮酶的辅助因子是生物可利用的,以支持N2固定,这可能是对这一悖论的部分回答。
{"title":"Bioavailability of mineral-associated trace metals as cofactors for nitrogen fixation by Azotobacter vinelandii","authors":"Shreya Srivastava,&nbsp;Hailiang Dong,&nbsp;Oliver Baars,&nbsp;Yizhi Sheng","doi":"10.1111/gbi.12552","DOIUrl":"https://doi.org/10.1111/gbi.12552","url":null,"abstract":"<p>Life on Earth depends on N<sub>2</sub>-fixing microbes to make ammonia from atmospheric N<sub>2</sub> gas by the nitrogenase enzyme. Most nitrogenases use Mo as a cofactor; however, V and Fe are also possible. N<sub>2</sub> fixation was once believed to have evolved during the Archean-Proterozoic times using Fe as a cofactor. However, δ<sup>15</sup>N values of paleo-ocean sediments suggest Mo and V cofactors despite their low concentrations in the paleo-oceans. This apparent paradox is based on an untested assumption that only soluble metals are bioavailable. In this study, laboratory experiments were performed to test the bioavailability of mineral-associated trace metals to a model N<sub>2</sub>-fixing bacterium <i>Azotobacter vinelandii</i>. N<sub>2</sub> fixation was observed when Mo in molybdenite, V in cavansite, and Fe in ferrihydrite were used as the sole sources of cofactors, but the rate of N<sub>2</sub> fixation was greatly reduced. A physical separation between minerals and cells further reduced the rate of N<sub>2</sub> fixation. Biochemical assays detected five siderophores, including aminochelin, azotochelin, azotobactin, protochelin, and vibrioferrin, as possible chelators to extract metals from minerals. The results of this study demonstrate that mineral-associated trace metals are bioavailable as cofactors of nitrogenases to support N<sub>2</sub> fixation in those environments that lack soluble trace metals and may offer a partial answer to the paradox.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 4","pages":"507-519"},"PeriodicalIF":3.7,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5737766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The role of iron in the formation of Ediacaran ‘death masks’ 铁在埃迪卡拉纪“死亡面具”形成中的作用
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2023-02-26 DOI: 10.1111/gbi.12551
Brandt M. Gibson, James D. Schiffbauer, Adam F. Wallace, Simon A. F. Darroch

The Ediacara biota are an enigmatic group of Neoproterozoic soft-bodied fossils that mark the first major radiation of complex eukaryotic and macroscopic life. These fossils are thought to have been preserved via pyritic “death masks” mediated by seafloor microbial mats, though little about the chemical constraints of this preservational pathway is known, in particular surrounding the role of bioavailable iron in death mask formation and preservational fidelity. In this study, we perform decay experiments on both diploblastic and triploblastic animals under a range of simulated sedimentary iron concentrations, in order to characterize the role of iron in the preservation of Ediacaran organisms. After 28 days of decay, we demonstrate the first convincing “death masks” produced under experimental laboratory conditions composed of iron sulfide and probable oxide veneers. Moreover, our results demonstrate that the abundance of iron in experiments is not the sole control on death mask formation, but also tissue histology and the availability of nucleation sites. This illustrates that Ediacaran preservation via microbial death masks need not be a “perfect storm” of paleoenvironmental porewater and sediment chemistry, but instead can occur under a range of conditions.

埃迪卡拉生物群是一组神秘的新元古代软体化石,标志着复杂真核生物和宏观生命的第一次主要辐射。这些化石被认为是通过海底微生物垫介导的黄铁矿“死亡面具”保存下来的,尽管对这种保存途径的化学限制知之甚少,特别是围绕生物可利用铁在死亡面具形成和保存保真度中的作用。在这项研究中,我们在模拟的沉积铁浓度范围内对双胚层和三胚层动物进行了腐烂实验,以表征铁在保存埃迪卡拉纪生物中的作用。经过28天的腐烂,我们展示了在实验实验室条件下由硫化铁和可能的氧化物饰面组成的第一个令人信服的“死亡面具”。此外,我们的研究结果表明,实验中铁的丰度不是死亡面具形成的唯一控制因素,也是组织组织学和成核位点的可用性的控制因素。这说明,通过微生物死亡面具保存埃迪卡拉纪不一定是古环境孔隙水和沉积物化学的“完美风暴”,而是可以在一系列条件下发生。
{"title":"The role of iron in the formation of Ediacaran ‘death masks’","authors":"Brandt M. Gibson,&nbsp;James D. Schiffbauer,&nbsp;Adam F. Wallace,&nbsp;Simon A. F. Darroch","doi":"10.1111/gbi.12551","DOIUrl":"https://doi.org/10.1111/gbi.12551","url":null,"abstract":"<p>The Ediacara biota are an enigmatic group of Neoproterozoic soft-bodied fossils that mark the first major radiation of complex eukaryotic and macroscopic life. These fossils are thought to have been preserved via pyritic “death masks” mediated by seafloor microbial mats, though little about the chemical constraints of this preservational pathway is known, in particular surrounding the role of bioavailable iron in death mask formation and preservational fidelity. In this study, we perform decay experiments on both diploblastic and triploblastic animals under a range of simulated sedimentary iron concentrations, in order to characterize the role of iron in the preservation of Ediacaran organisms. After 28 days of decay, we demonstrate the first convincing “death masks” produced under experimental laboratory conditions composed of iron sulfide and probable oxide veneers. Moreover, our results demonstrate that the abundance of iron in experiments is not the sole control on death mask formation, but also tissue histology and the availability of nucleation sites. This illustrates that Ediacaran preservation via microbial death masks need not be a “perfect storm” of paleoenvironmental porewater and sediment chemistry, but instead can occur under a range of conditions.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 4","pages":"421-434"},"PeriodicalIF":3.7,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12551","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5815517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Ediacaran–Cambrian bioturbation did not extensively oxygenate sediments in shallow marine ecosystems 埃迪卡拉纪-寒武纪生物扰动对浅海生态系统沉积物的氧合作用并不广泛
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2023-02-22 DOI: 10.1111/gbi.12550
Alison T. Cribb, Sebastiaan J. van de Velde, William M. Berelson, David J. Bottjer, Frank A. Corsetti

The radiation of bioturbation during the Ediacaran–Cambrian transition has long been hypothesized to have oxygenated sediments, triggering an expansion of the habitable benthic zone and promoting increased infaunal tiering in early Paleozoic benthic communities. However, the effects of bioturbation on sediment oxygen are underexplored with respect to the importance of biomixing and bioirrigation, two bioturbation processes which can have opposite effects on sediment redox chemistry. We categorized trace fossils from the Ediacaran and Terreneuvian as biomixing or bioirrigation fossils and integrated sedimentological proxies for bioturbation intensity with biogeochemical modeling to simulate oxygen penetration depths through the Ediacaran–Cambrian transition. Ultimately, we find that despite dramatic increases in ichnodiversity in the Terreneuvian, biomixing remains the dominant bioturbation behavior, and in contrast to traditional assumptions, Ediacaran–Cambrian bioturbation was unlikely to have resulted in extensive oxygenation of shallow marine sediments globally.

埃迪卡拉纪-寒武纪过渡时期的生物扰动辐射长期以来一直被假设为含氧沉积物,引发了可居住底栖动物带的扩张,并促进了早古生代底栖动物群落的动物分层。然而,就生物混合和生物灌溉的重要性而言,生物扰动对沉积物氧的影响尚未得到充分探讨,这两种生物扰动过程可能对沉积物氧化还原化学产生相反的影响。我们将埃迪卡拉纪和Terreneuvian的痕迹化石分类为生物混合或生物灌溉化石,并将生物扰动强度的沉积学指标与生物地球化学模拟相结合,模拟埃迪卡拉纪-寒武纪过渡时期的氧气渗透深度。最后,我们发现,尽管Terreneuvian的生物多样性急剧增加,但生物混合仍然是主要的生物扰动行为,与传统的假设相反,埃迪卡拉纪-寒武纪的生物扰动不太可能导致全球浅海沉积物的广泛氧化。
{"title":"Ediacaran–Cambrian bioturbation did not extensively oxygenate sediments in shallow marine ecosystems","authors":"Alison T. Cribb,&nbsp;Sebastiaan J. van de Velde,&nbsp;William M. Berelson,&nbsp;David J. Bottjer,&nbsp;Frank A. Corsetti","doi":"10.1111/gbi.12550","DOIUrl":"https://doi.org/10.1111/gbi.12550","url":null,"abstract":"<p>The radiation of bioturbation during the Ediacaran–Cambrian transition has long been hypothesized to have oxygenated sediments, triggering an expansion of the habitable benthic zone and promoting increased infaunal tiering in early Paleozoic benthic communities. However, the effects of bioturbation on sediment oxygen are underexplored with respect to the importance of biomixing and bioirrigation, two bioturbation processes which can have opposite effects on sediment redox chemistry. We categorized trace fossils from the Ediacaran and Terreneuvian as biomixing or bioirrigation fossils and integrated sedimentological proxies for bioturbation intensity with biogeochemical modeling to simulate oxygen penetration depths through the Ediacaran–Cambrian transition. Ultimately, we find that despite dramatic increases in ichnodiversity in the Terreneuvian, biomixing remains the dominant bioturbation behavior, and in contrast to traditional assumptions, Ediacaran–Cambrian bioturbation was unlikely to have resulted in extensive oxygenation of shallow marine sediments globally.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 4","pages":"435-453"},"PeriodicalIF":3.7,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12550","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5982731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Terrestrial surface stabilisation by modern analogues of the earliest land plants: A multi-dimensional imaging study 最早陆地植物的现代类似物对陆地表面稳定性的影响:多维成像研究
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2023-02-13 DOI: 10.1111/gbi.12546
Ria L. Mitchell, Paul Kenrick, Silvia Pressel, Jeff Duckett, Christine Strullu-Derrien, Neil Davies, William J. McMahon, Rebecca Summerfield

The evolution of the first plant-based terrestrial ecosystems in the early Palaeozoic had a profound effect on the development of soils, the architecture of sedimentary systems, and shifts in global biogeochemical cycles. In part, this was due to the evolution of complex below-ground (root-like) anchorage systems in plants, which expanded and promoted plant–mineral interactions, weathering, and resulting surface sediment stabilisation. However, little is understood about how these micro-scale processes occurred, because of a lack of in situ plant fossils in sedimentary rocks/palaeosols that exhibit these interactions. Some modern plants (e.g., liverworts, mosses, lycophytes) share key features with the earliest land plants; these include uni- or multicellular rhizoid-like anchorage systems or simple roots, and the ability to develop below-ground networks through prostrate axes, and intimate associations with fungi, making them suitable analogues. Here, we investigated cryptogamic ground covers in Iceland and New Zealand to better understand these interactions, and how they initiate the sediment stabilisation process. We employed multi-dimensional and multi-scale imaging, including scanning electron microscopy (SEM) and X-ray Computed Tomography (μCT) of non-vascular liverworts (Haplomitriopsida and complex thalloids) and mosses, with additional imaging of vascular lycopods. We find that plants interact with their substrate in multiple ways, including: (1) through the development of extensive surface coverings as mats; (2) entrapment of sediment grains within and between networks of rhizoids; (3) grain entwining and adherence by rhizoids, through mucilage secretions, biofilm-like envelopment of thalli on surface grains; and (4) through grain entrapment within upright ‘leafy’ structures. Significantly, μCT imaging allows us to ascertain that rhizoids are the main method for entrapment and stabilisation of soil grains in the thalloid liverworts. This information provides us with details of how the earliest land plants may have significantly influenced early Palaeozoic sedimentary system architectures, promoted in situ weathering and proto-soil development, and how these interactions diversified over time with the evolution of new plant organ systems. Further, this study highlights the importance of cryptogamic organisms in the early stages of sediment stabilisation and soil formation today.

早古生代第一个以植物为基础的陆地生态系统的演化对土壤的发育、沉积体系的结构和全球生物地球化学循环的变化产生了深远的影响。在某种程度上,这是由于植物复杂的地下(根状)锚固系统的进化,该系统扩大并促进了植物与矿物的相互作用、风化作用以及由此产生的地表沉积物稳定。然而,由于沉积岩/古土壤中缺乏表现出这些相互作用的原位植物化石,人们对这些微尺度过程是如何发生的知之甚少。一些现代植物(如苔类、苔藓类、石松类)与最早的陆地植物具有相同的关键特征;这些包括单细胞或多细胞类根状锚定系统或单根,以及通过匍匐轴发展地下网络的能力,以及与真菌的密切联系,使它们成为合适的类似物。在这里,我们调查了冰岛和新西兰的隐生地被覆盖物,以更好地了解这些相互作用,以及它们如何启动沉积物稳定过程。采用扫描电镜(SEM)和x射线计算机断层扫描(μCT)对无维管苔类植物(Haplomitriopsida和复杂菌体)和苔藓类植物进行了多维、多尺度成像,并对维管石松类植物进行了成像。我们发现植物通过多种方式与底物相互作用,包括:(1)通过形成广泛的表面覆盖物作为垫;(2)样根网络内部和网络之间泥沙颗粒的夹持;(3)胚根通过粘液分泌物、菌体在籽粒表面的生物膜样包裹,缠绕和粘附籽粒;(4)在直立的“叶状”结构中捕获颗粒。值得注意的是,μCT成像可以让我们确定,块根状体是块根状体中土壤颗粒捕获和稳定的主要方法。这些信息为我们提供了最早的陆地植物如何显著影响早期古生代沉积体系结构,促进原位风化和原始土壤发育的细节,以及这些相互作用如何随着时间的推移而随着新的植物器官系统的进化而多样化。此外,这项研究强调了隐生生物在今天的沉积物稳定和土壤形成的早期阶段的重要性。
{"title":"Terrestrial surface stabilisation by modern analogues of the earliest land plants: A multi-dimensional imaging study","authors":"Ria L. Mitchell,&nbsp;Paul Kenrick,&nbsp;Silvia Pressel,&nbsp;Jeff Duckett,&nbsp;Christine Strullu-Derrien,&nbsp;Neil Davies,&nbsp;William J. McMahon,&nbsp;Rebecca Summerfield","doi":"10.1111/gbi.12546","DOIUrl":"https://doi.org/10.1111/gbi.12546","url":null,"abstract":"<p>The evolution of the first plant-based terrestrial ecosystems in the early Palaeozoic had a profound effect on the development of soils, the architecture of sedimentary systems, and shifts in global biogeochemical cycles. In part, this was due to the evolution of complex below-ground (root-like) anchorage systems in plants, which expanded and promoted plant–mineral interactions, weathering, and resulting surface sediment stabilisation. However, little is understood about how these micro-scale processes occurred, because of a lack of in situ plant fossils in sedimentary rocks/palaeosols that exhibit these interactions. Some modern plants (e.g., liverworts, mosses, lycophytes) share key features with the earliest land plants; these include uni- or multicellular rhizoid-like anchorage systems or simple roots, and the ability to develop below-ground networks through prostrate axes, and intimate associations with fungi, making them suitable analogues. Here, we investigated cryptogamic ground covers in Iceland and New Zealand to better understand these interactions, and how they initiate the sediment stabilisation process. We employed multi-dimensional and multi-scale imaging, including scanning electron microscopy (SEM) and X-ray Computed Tomography (μCT) of non-vascular liverworts (Haplomitriopsida and complex thalloids) and mosses, with additional imaging of vascular lycopods. We find that plants interact with their substrate in multiple ways, including: (1) through the development of extensive surface coverings as mats; (2) entrapment of sediment grains within and between networks of rhizoids; (3) grain entwining and adherence by rhizoids, through mucilage secretions, biofilm-like envelopment of thalli on surface grains; and (4) through grain entrapment within upright ‘leafy’ structures. Significantly, μCT imaging allows us to ascertain that rhizoids are the main method for entrapment and stabilisation of soil grains in the thalloid liverworts. This information provides us with details of how the earliest land plants may have significantly influenced early Palaeozoic sedimentary system architectures, promoted in situ weathering and proto-soil development, and how these interactions diversified over time with the evolution of new plant organ systems. Further, this study highlights the importance of cryptogamic organisms in the early stages of sediment stabilisation and soil formation today.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 4","pages":"454-473"},"PeriodicalIF":3.7,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12546","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5832297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A carbonate corrosion experiment at a marine methane seep: The role of aerobic methanotrophic bacteria 海洋甲烷渗漏处的碳酸盐腐蚀实验:好氧甲烷营养细菌的作用
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2023-02-12 DOI: 10.1111/gbi.12549
Alexmar Cordova-Gonzalez, Daniel Birgel, Max Wisshak, Tim Urich, Florian Brinkmann, Yann Marcon, Gerhard Bohrmann, J?rn Peckmann
Methane seeps are typified by the formation of authigenic carbonates, many of which exhibit corrosion surfaces and secondary porosity believed to be caused by microbial carbonate dissolution. Aerobic methane oxidation and sulfur oxidation are two processes capable of inducing carbonate corrosion at methane seeps. Although the potential of aerobic methanotrophy to dissolve carbonate was confirmed in laboratory experiments, this process has not been studied in the environment to date. Here, we report on a carbonate corrosion experiment carried out in the REGAB Pockmark, Gabon‐Congo‐Angola passive margin, in which marble cubes were deployed for 2.5 years at two sites (CAB‐B and CAB‐C) with apparent active methane seepage and one site (CAB‐D) without methane seepage. Marble cubes exposed to active seepage (experiment CAB‐C) were found to be affected by a new type of microbioerosion. Based on 16S rRNA gene analysis, the biofilms adhering to the bioeroded marble mostly consisted of aerobic methanotrophic bacteria, predominantly belonging to the uncultured Hyd24‐01 clade. The presence of abundant 13C‐depleted lipid biomarkers including fatty acids (n‐C16:1ω8c, n‐C18:1ω8c, n‐C16:1ω5t), various 4‐mono‐ and 4,4‐dimethyl sterols, and diplopterol agrees with the dominance of aerobic methanotrophs in the CAB‐C biofilms. Among the lipids of aerobic methanotrophs, the uncommon 4α‐methylcholest‐8(14)‐en‐3β,25‐diol is interpreted to be a specific biomarker for the Hyd24‐01 clade. The combination of textural, genetic, and organic geochemical evidence suggests that aerobic methanotrophs are the main drivers of carbonate dissolution observed in the CAB‐C experiment at the REGAB pockmark.
甲烷渗漏的典型特征是形成自生碳酸盐,其中许多具有腐蚀表面和次生孔隙,被认为是由微生物碳酸盐溶解引起的。好氧甲烷氧化和硫氧化是引起甲烷渗漏处碳酸盐腐蚀的两个过程。虽然在实验室实验中证实了好氧甲烷化溶解碳酸盐的潜力,但迄今为止还没有在环境中研究过这一过程。在这里,我们报告了在加蓬-刚果-安哥拉被动边缘REGAB麻克马克进行的碳酸盐腐蚀实验,在两个有明显活跃甲烷渗漏的地点(CAB-B和CAB-C)和一个没有甲烷渗漏的地点(cabd)部署了大理石立方体2.5年。暴露于活动渗流(实验CAB-C)中的大理岩立方体受到一种新型微生物侵蚀的影响。基于16S rRNA基因分析,生物侵蚀大理岩上附着的生物膜主要由需氧甲烷营养菌组成,主要属于未培养的Hyd24-01支。丰富的13c -贫脂生物标志物的存在,包括脂肪酸(n-C16:1ω8c, n-C18:1ω8c, n-C16:1ω5t),各种4-单甲基和4,4-二甲基甾醇和双硫醇,与好氧甲烷氧化菌在CAB-C生物膜中的优势一致。在好氧甲烷氧化菌的脂质中,罕见的4α-甲基胆固醇-8(14)-en-3β,25-二醇被解释为Hyd24-01枝的特异性生物标志物。结构、成因和有机地球化学证据表明,好氧甲烷氧化菌是REGAB麻子ab - c实验中观察到的碳酸盐溶解的主要驱动因素。
{"title":"A carbonate corrosion experiment at a marine methane seep: The role of aerobic methanotrophic bacteria","authors":"Alexmar Cordova-Gonzalez,&nbsp;Daniel Birgel,&nbsp;Max Wisshak,&nbsp;Tim Urich,&nbsp;Florian Brinkmann,&nbsp;Yann Marcon,&nbsp;Gerhard Bohrmann,&nbsp;J?rn Peckmann","doi":"10.1111/gbi.12549","DOIUrl":"https://doi.org/10.1111/gbi.12549","url":null,"abstract":"Methane seeps are typified by the formation of authigenic carbonates, many of which exhibit corrosion surfaces and secondary porosity believed to be caused by microbial carbonate dissolution. Aerobic methane oxidation and sulfur oxidation are two processes capable of inducing carbonate corrosion at methane seeps. Although the potential of aerobic methanotrophy to dissolve carbonate was confirmed in laboratory experiments, this process has not been studied in the environment to date. Here, we report on a carbonate corrosion experiment carried out in the REGAB Pockmark, Gabon‐Congo‐Angola passive margin, in which marble cubes were deployed for 2.5 years at two sites (CAB‐B and CAB‐C) with apparent active methane seepage and one site (CAB‐D) without methane seepage. Marble cubes exposed to active seepage (experiment CAB‐C) were found to be affected by a new type of microbioerosion. Based on 16S rRNA gene analysis, the biofilms adhering to the bioeroded marble mostly consisted of aerobic methanotrophic bacteria, predominantly belonging to the uncultured Hyd24‐01 clade. The presence of abundant 13C‐depleted lipid biomarkers including fatty acids (n‐C16:1ω8c, n‐C18:1ω8c, n‐C16:1ω5t), various 4‐mono‐ and 4,4‐dimethyl sterols, and diplopterol agrees with the dominance of aerobic methanotrophs in the CAB‐C biofilms. Among the lipids of aerobic methanotrophs, the uncommon 4α‐methylcholest‐8(14)‐en‐3β,25‐diol is interpreted to be a specific biomarker for the Hyd24‐01 clade. The combination of textural, genetic, and organic geochemical evidence suggests that aerobic methanotrophs are the main drivers of carbonate dissolution observed in the CAB‐C experiment at the REGAB pockmark.","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 4","pages":"491-506"},"PeriodicalIF":3.7,"publicationDate":"2023-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12549","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6193380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Geobiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1