Pub Date : 2022-09-01DOI: 10.1016/j.mlblux.2022.100162
B. Usharani, V. Manivannan
In today’s scenario, a number of nanocomposites are evidencing handy control in in vitro biological studies like anti-inflammatory and antidiabetic activity. Since the nanocomposite action and mechanism are totally different from others, like simple molecules of antibiotics. This work described a facile one-pot hydrothermal synthesis of the rGO-MnO2 nanocomposite. The prepared samples were characterized and confirmed by XRD, UV, SEM, EDX, and XPS studies. Furthermore, the catalytic performance evolved through in vitro biological applications such as anti-inflammatory and antidiabetic activities. rGO-MnO2 nanocomposite has more biological activity than pure MnO2 nanoparticles, as demonstrated by the results.
{"title":"Hydrothermal synthesis of rGO-MnO2 nanocomposite: Characterization and in vitro biological evaluation","authors":"B. Usharani, V. Manivannan","doi":"10.1016/j.mlblux.2022.100162","DOIUrl":"10.1016/j.mlblux.2022.100162","url":null,"abstract":"<div><p>In today’s scenario, a number of nanocomposites are evidencing handy control in in vitro biological studies like anti-inflammatory and antidiabetic activity. Since the nanocomposite action and mechanism are totally different from others, like simple molecules<!--> <!-->of antibiotics. This work described a facile one-pot hydrothermal synthesis of the rGO-MnO<sub>2</sub> nanocomposite. The prepared samples were characterized and confirmed by XRD, UV, SEM, EDX, and XPS studies. Furthermore, the catalytic performance evolved through in vitro biological applications such as anti-inflammatory and antidiabetic activities. rGO-MnO<sub>2</sub> nanocomposite has more biological activity than pure MnO<sub>2</sub> nanoparticles, as demonstrated by the results.</p></div>","PeriodicalId":18245,"journal":{"name":"Materials Letters: X","volume":"15 ","pages":"Article 100162"},"PeriodicalIF":1.7,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590150822000424/pdfft?md5=bd7bf9b53a81b63908ee8a5c527c6abb&pid=1-s2.0-S2590150822000424-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49422386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-01DOI: 10.1016/j.mlblux.2022.100156
R. Thejas , T.L. Soundarya , G. Nagaraju , K. Swaroop , S.C. Prashantha , M. Veena , E. Melagiriyappa , C.S. Naveen
Zinc-Nickel Ferrite (Zn(1−x)NixFe2O4) nanoparticles were synthesized by solution combustion method using urea as a fuel and varying the cation concentration (x = 0, 0.2, 0.4, 0.6, 0.8, 1). The effects of cation concentration, on the crystallite size, morphology, absorption properties have been studied. The X-ray diffraction and FTIR results confirm the formation of single-phase spinel structure of Zinc-Nickel Ferrite nanoparticles. FESEM and TEM study reveals the formation of uniform spherical shape distribution of Zn(1−x)NixFe2O4 nanoparticles. The bandgap values were calculated for the prepared samples using UV–Visible spectrophotometer.
{"title":"Effect of cation concentration on structural, morphology, optical properties of Zinc-Nickel ferrite nanoparticles","authors":"R. Thejas , T.L. Soundarya , G. Nagaraju , K. Swaroop , S.C. Prashantha , M. Veena , E. Melagiriyappa , C.S. Naveen","doi":"10.1016/j.mlblux.2022.100156","DOIUrl":"10.1016/j.mlblux.2022.100156","url":null,"abstract":"<div><p>Zinc-Nickel Ferrite (Zn<sub>(1−x)</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>) nanoparticles were synthesized by solution combustion method using urea as a fuel and varying the cation concentration (x = 0, 0.2, 0.4, 0.6, 0.8, 1). The effects of cation concentration, on the crystallite size, morphology, absorption properties have been studied. The X-ray diffraction and FTIR results confirm the formation of single-phase spinel structure of Zinc-Nickel Ferrite nanoparticles. FESEM and TEM study reveals the formation of uniform spherical shape distribution of Zn<sub>(1−x)</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> nanoparticles. The bandgap values were calculated for the prepared samples using UV–Visible spectrophotometer.</p></div>","PeriodicalId":18245,"journal":{"name":"Materials Letters: X","volume":"15 ","pages":"Article 100156"},"PeriodicalIF":1.7,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590150822000369/pdfft?md5=b98b733d1580b0371ee9d86e280cc0ca&pid=1-s2.0-S2590150822000369-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43388626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface-enhanced Raman spectroscopy (SERS) exhibits intriguing analytical application owing to their non-invasive method, specificity, and sensitivity. However, development of tunable SERS active substrate remains a challenge. Herein, we report a straightforward chronoamperometric co-deposition strategy, utilizing a reducing agent, to form bimetallic coating comprised of Cu/Ag on silica substrate, where alteration of deposition current endows fractional variations in the nucleation/growth of Cu2+ → Cu+/Cu0 and Ag2+ → Ag+/Ag0. Properties of optical reflectance, surface chemistry, topography, and nanocrystallite cluster orientation were characterized. Experimental results confirm bimetallic coating with large proportion of Ag on Cu matrix could enable better SERS behavior with studied model, Rhodamine 6G.
{"title":"Electro co-deposition of copper-silver nanocrystallite alloy cluster: A way for tunable SERS substrate development","authors":"Balakrishnan Rajashekhar , Gaurav Pandey , Ramachandran Sekar , Murugan Veerapandian","doi":"10.1016/j.mlblux.2022.100157","DOIUrl":"10.1016/j.mlblux.2022.100157","url":null,"abstract":"<div><p>Surface-enhanced Raman spectroscopy (SERS) exhibits intriguing analytical application owing to their non-invasive method, specificity, and sensitivity. However, development of tunable SERS active substrate remains a challenge. Herein, we report a straightforward chronoamperometric co-deposition strategy, utilizing a reducing agent, to form bimetallic coating comprised of Cu/Ag on silica substrate, where alteration of deposition current endows fractional variations in the nucleation/growth of Cu<sup>2+</sup> → Cu<sup>+</sup>/Cu<sup>0</sup> and Ag<sup>2+</sup> → Ag<sup>+</sup>/Ag<sup>0</sup>. Properties of optical reflectance, surface chemistry, topography, and nanocrystallite cluster orientation were characterized. Experimental results confirm bimetallic coating with large proportion of Ag on Cu matrix could enable better SERS behavior with studied model, Rhodamine 6G.</p></div>","PeriodicalId":18245,"journal":{"name":"Materials Letters: X","volume":"15 ","pages":"Article 100157"},"PeriodicalIF":1.7,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590150822000370/pdfft?md5=bcb5f8d98b6bb73d0a8ee03ceed071e5&pid=1-s2.0-S2590150822000370-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43259389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-01DOI: 10.1016/j.mlblux.2022.100138
Robert Baumann , Sabri Alamri , Alfredo I. Aguilar-Morales , Andrés F. Lasagni , Tim Kunze
This work demonstrates how an interference pattern can improve the performance of remote laser cutting of pure copper foils, making the cutting process effective even for a low power laser source. The proof of concept is carried out by using a nanosecond laser source with a pulse duration of 5 ns, coupled with a two-beam scanning interference setup, producing a spatial period of 12.5 µm. In the experiments, processing parameters as pulse-to-pulse distance, laser power and scanning speed are varied, to optimize the foil breakthrough and their effect on the generated material modifications are investigated. A comparison between the processing results employing the interference pattern and single beam with a Gaussian energy distribution is carried out. While the single beam process is not sufficient for cutting a 10 µm thin metallic foil, the interference treatment shows an improvement over 100%. In addition, only small spatter formations are detected, with average particle sizes of 1.75 ± 0.82 µm on the top side of the foil. The bottom side of a fully separated copper foil only depicts small spatter formations of less than 1 µm.
{"title":"Advanced remote laser cutting of battery foils using an interference approach","authors":"Robert Baumann , Sabri Alamri , Alfredo I. Aguilar-Morales , Andrés F. Lasagni , Tim Kunze","doi":"10.1016/j.mlblux.2022.100138","DOIUrl":"10.1016/j.mlblux.2022.100138","url":null,"abstract":"<div><p>This work demonstrates how an interference pattern can improve the performance of remote laser cutting of pure copper foils, making the cutting process effective even for a low power laser source. The proof of concept is carried out by using a nanosecond laser source with a pulse duration of 5 ns, coupled with a two-beam scanning interference setup, producing a spatial period of 12.5 µm. In the experiments, processing parameters as pulse-to-pulse distance, laser power and scanning speed are varied, to optimize the foil breakthrough and their effect on the generated material modifications are investigated. A comparison between the processing results employing the interference pattern and single beam with a Gaussian energy distribution is carried out. While the single beam process is not sufficient for cutting a 10 µm thin metallic foil, the interference treatment shows an improvement over 100%. In addition, only small spatter formations are detected, with average particle sizes of 1.75 ± 0.82 µm on the top side of the foil. The bottom side of a fully separated copper foil only depicts small spatter formations of less than 1 µm.</p></div>","PeriodicalId":18245,"journal":{"name":"Materials Letters: X","volume":"14 ","pages":"Article 100138"},"PeriodicalIF":1.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590150822000187/pdfft?md5=1d455bfadd672e027637773d9fcb09ca&pid=1-s2.0-S2590150822000187-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48348803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-01DOI: 10.1016/j.mlblux.2022.100139
Aleksey Noskov , Mikhael El-Khoury , Sergey Drobyshev , Evgeny Kuchaev , Fatih Yanbaev , Olga Zhigalina , Dmitriy Khmelenin , Albert Gilmutdinov
This article considers the nanoparticles suspended in the gas phase in the vicinity of a 3D-printed surface during additive manufacturing via Laser Beam Powder Bed Fusion (LB-PBF) and Directed Energy Deposition (DED). The results of this research show that the primary pollutants during the laser additive manufacturing using metal powder are aggregated core–shell nanoparticles with an average particle size of about 10 nm. High-resolution microscopy shows the chemical composition of the volume and surface of each particle; in particular, the “core” consists of Fe, Cr, and Ni atoms and the “shell” is a thin oxide layer.
{"title":"A microscopy study of nanoparticles emitted during laser additive manufacturing with stainless steel powder","authors":"Aleksey Noskov , Mikhael El-Khoury , Sergey Drobyshev , Evgeny Kuchaev , Fatih Yanbaev , Olga Zhigalina , Dmitriy Khmelenin , Albert Gilmutdinov","doi":"10.1016/j.mlblux.2022.100139","DOIUrl":"10.1016/j.mlblux.2022.100139","url":null,"abstract":"<div><p>This article considers the nanoparticles suspended in the gas phase in the vicinity of a 3D-printed surface during additive manufacturing via Laser Beam Powder Bed Fusion (LB-PBF) and Directed Energy Deposition (DED). The results of this research show that the primary pollutants during the laser additive manufacturing using metal powder are aggregated core–shell nanoparticles with an average particle size of about 10 nm. High-resolution microscopy shows the chemical composition of the volume and surface of each particle; in particular, the “core” consists of Fe, Cr, and Ni atoms and the “shell” is a thin oxide layer.</p></div>","PeriodicalId":18245,"journal":{"name":"Materials Letters: X","volume":"14 ","pages":"Article 100139"},"PeriodicalIF":1.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590150822000199/pdfft?md5=1d785ed58504e6821459af16d7363edb&pid=1-s2.0-S2590150822000199-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45131184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-01DOI: 10.1016/j.mlblux.2022.100141
S. Sujithra, G. Arthanareeswaran
In this study a novel approach was adopted to couple cloisite functionalised with PEO nanoparticles to modify the polyether sulfone (PES) at low pressure nanofiltration membrane for the removal of salts and dyes from waste water. PES/f-(PEO-Cloisite) nanocomposite membranes were fabricated by phase inversion process in presence of DMF as solvent. The functionalised PEO-Cloisite mixture was characterised by SEM-EDX and the membranes were characterised by hydrophilicity and morphology. The highest water flux of 152.77 Lm−2h−1 was observed for 4.5 wt% of PEO-Cloisite in PES membrane. Contact angle values reduced from 74.3° to 60.9° with the increase in the concentration of PEO-Cloisite and confirmed the increase of hydrophilicity. The membrane performance was tested using model saline and dye solutions by low pressure nanofiltration under longer run mode. This study infers that modification of PES membranes using functionalised PEO-Cloisite increase the membrane stability can be used to alleviate the fouling in the treatment of industrial waste water.
{"title":"A novel asymmetric structured nanocomposite PEO-Cloisite based membrane for salt and dye separation","authors":"S. Sujithra, G. Arthanareeswaran","doi":"10.1016/j.mlblux.2022.100141","DOIUrl":"https://doi.org/10.1016/j.mlblux.2022.100141","url":null,"abstract":"<div><p>In this study a novel approach was adopted to couple cloisite functionalised with PEO nanoparticles to modify the polyether sulfone (PES) at low pressure nanofiltration membrane for the removal of salts and dyes from waste water. PES/f-(PEO-Cloisite) nanocomposite membranes were fabricated by phase inversion process in presence of DMF as solvent. The functionalised PEO-Cloisite mixture was characterised by SEM-EDX and the membranes were characterised by hydrophilicity and morphology. The highest water flux of 152.77 Lm<sup>−2</sup>h<sup>−1</sup> was observed for 4.5 wt% of PEO-Cloisite in PES membrane. Contact angle values reduced from 74.3° to 60.9° with the increase in the concentration of PEO-Cloisite and confirmed the increase of hydrophilicity. The membrane performance was tested using model saline and dye solutions by low pressure nanofiltration under longer run mode. This study infers that modification of PES membranes using functionalised PEO-Cloisite increase the membrane stability can be used to alleviate the fouling in the treatment of industrial waste water.</p></div>","PeriodicalId":18245,"journal":{"name":"Materials Letters: X","volume":"14 ","pages":"Article 100141"},"PeriodicalIF":1.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590150822000217/pdfft?md5=609739a2ce7e022521662e1b52c3cdd7&pid=1-s2.0-S2590150822000217-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72118549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Uniaxial tensile tests were carried out on nickel sheets containing only few grains across the thickness thus presenting a so-called multicrystalline state. Pristine sheets used as reference and substrates covered by a nickel layer deposited by physical vapor deposition (magnetron sputtering) were studied. Results attest that the surface treatment affects the plastic deformation mechanisms by playing the role of a blocking barrier to dislocation movement which leads to a significant improvement of mechanical performances. The surface restructuring of the nickel sheets is efficient to stop dislocation escape through free surfaces and allows a mechanical improvement of the well-known strong mechanical softening of the multicrystals.
{"title":"Flow stress improvement of a nickel multicrystal by physical vapor thin film deposition to reduce surface effects","authors":"Pierre-Antoine Dubos , Ameni Zaouali , Pierre-Yves Jouan , Mireille Richard-Plouet , Valerie Brien , David Gloaguen , Baptiste Girault","doi":"10.1016/j.mlblux.2022.100145","DOIUrl":"10.1016/j.mlblux.2022.100145","url":null,"abstract":"<div><p>Uniaxial tensile tests were carried out on nickel sheets containing only few grains across the thickness thus presenting a so-called multicrystalline state. Pristine sheets used as reference and substrates covered by a nickel layer deposited by physical vapor deposition (magnetron sputtering) were studied. Results attest that the surface treatment affects the plastic deformation mechanisms by playing the role of a blocking barrier to dislocation movement which leads to a significant improvement of mechanical performances. The surface restructuring of the nickel sheets is efficient to stop dislocation escape through free surfaces and allows a mechanical improvement of the well-known strong mechanical softening of the multicrystals.</p></div>","PeriodicalId":18245,"journal":{"name":"Materials Letters: X","volume":"14 ","pages":"Article 100145"},"PeriodicalIF":1.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590150822000254/pdfft?md5=0b3f4176769df01004fe51e3e9a39bc0&pid=1-s2.0-S2590150822000254-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45343958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-01DOI: 10.1016/j.mlblux.2022.100148
A. Córdoba , B. Durán , S. Bonardd , D. Diaz Diaz , A. Leiva , C. Saldías
Herein, we report a feasible approach for preparation of crosslinked alginate (Alg) and poly(amido amine) (PAMAM) nanogels (Alg-PAMAM NGs), using a water-in-oil-in-water (w/o/w) double emulsion route, via strong electrostatic interactions between anionic groups coming from alginate and previously incorporated Cu2+ ions. CuO nanoparticles (NPs) with average diameter about 65 nm were in situ obtained into Alg/PAMAM nanogels by treatment of embedded Cu2+ ions in NGs with NaBH4 at 25 °C under air atmosphere. The prepared Alg-PAMAM and Alg-PAMAM-CuO NGs were characterized using FT-IR and UV–visible spectroscopy, as well as scanning transmission electron microscopy (STEM). The presence of PAMAM dendrimers helped both to obtain structurally compact nanogels and an adequate stabilization of CuO NPs. Finally, the photocatalytic performance of the Alg-PAMAM-CuO NGs was tested via the decomposition of methyl orange in aqueous solution, under visible light irradiation.
{"title":"In situ synthesis and immobilization of CuO nanoparticles in alginate-poly(amido amine) nanogels for photocatalytic applications","authors":"A. Córdoba , B. Durán , S. Bonardd , D. Diaz Diaz , A. Leiva , C. Saldías","doi":"10.1016/j.mlblux.2022.100148","DOIUrl":"10.1016/j.mlblux.2022.100148","url":null,"abstract":"<div><p>Herein, we report a feasible approach for preparation of crosslinked alginate (Alg) and poly(amido amine) (PAMAM) nanogels (Alg-PAMAM NGs), using a water-in-oil-in-water (w/o/w) double emulsion route, via strong electrostatic interactions between anionic groups coming from alginate and previously incorporated Cu<sup>2+</sup> ions. CuO nanoparticles (NPs) with average diameter about 65 nm were <em>in situ</em> obtained into Alg/PAMAM nanogels by treatment of embedded Cu<sup>2+</sup> ions in NGs with NaBH<sub>4</sub> at 25 °C under air atmosphere. The prepared Alg-PAMAM and Alg-PAMAM-CuO NGs were characterized using FT-IR and UV–visible spectroscopy, as well as scanning transmission electron microscopy (STEM). The presence of PAMAM dendrimers helped both to obtain structurally compact nanogels and an adequate stabilization of CuO NPs. Finally, the photocatalytic performance of the Alg-PAMAM-CuO NGs was tested via the decomposition of methyl orange in aqueous solution, under visible light irradiation.</p></div>","PeriodicalId":18245,"journal":{"name":"Materials Letters: X","volume":"14 ","pages":"Article 100148"},"PeriodicalIF":1.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259015082200028X/pdfft?md5=a83b8c4446c7c845f35c57ec764d3af9&pid=1-s2.0-S259015082200028X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45002990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ga2O3 has attracted significant attention for various applications such as power-switching applications and deep-ultraviolet optoelectronics. In this study, we demonstrated a lattice-matching κ-(In1−xGax)2O3 thin film grown on an ε-GaFeO3 substrate via the mist chemical vapor deposition process. The X-ray diffraction peak of the thin film was almost coincident with that of the substrate and exhibited Laue oscillations. Atomic force microscopy revealed that the surface of the κ-(In1−xGax)2O3 thin film exhibited a step-terrace morphology and was atomically flat. The selected area electron diffraction of transmission electron microscopy showed that the diffraction spots of the thin film and substrate overlapped, indicating that the thin film was almost lattice-matched with the substrate. We believe that the lattice-matched κ-(In1−xGax)2O3 thin film with an ε-GaFeO3 substrate will contribute significantly to the demonstration of ferroelectric κ-Ga2O3 based high electron mobility transistors.
{"title":"Growth of indium-incorporated κ-Ga2O3 thin film lattice-matched to the ε-GaFeO3 substrate","authors":"Hiroyuki Nishinaka , Osamu Ueda , Noriaki Ikenaga , Noriyuki Hasuike , Masahiro Yoshimoto","doi":"10.1016/j.mlblux.2022.100149","DOIUrl":"10.1016/j.mlblux.2022.100149","url":null,"abstract":"<div><p>Ga<sub>2</sub>O<sub>3</sub> has attracted significant attention for various applications such as power-switching applications and deep-ultraviolet optoelectronics. In this study, we demonstrated a lattice-matching κ-(In<sub>1−</sub><em><sub>x</sub></em>Ga<em><sub>x</sub></em>)<sub>2</sub>O<sub>3</sub> thin film grown on an ε-GaFeO<sub>3</sub> substrate via the mist chemical vapor deposition process. The X-ray diffraction peak of the thin film was almost coincident with that of the substrate and exhibited Laue oscillations. Atomic force microscopy revealed that the surface of the κ-(In<sub>1−</sub><em><sub>x</sub></em>Ga<em><sub>x</sub></em>)<sub>2</sub>O<sub>3</sub> thin film exhibited a step-terrace morphology and was atomically flat. The selected area electron diffraction of transmission electron microscopy showed that the diffraction spots of the thin film and substrate overlapped, indicating that the thin film was almost lattice-matched with the substrate. We believe that the lattice-matched κ-(In<sub>1−</sub><em><sub>x</sub></em>Ga<em><sub>x</sub></em>)<sub>2</sub>O<sub>3</sub> thin film with an ε-GaFeO<sub>3</sub> substrate will contribute significantly to the demonstration of ferroelectric κ-Ga<sub>2</sub>O<sub>3</sub> based high electron mobility transistors.</p></div>","PeriodicalId":18245,"journal":{"name":"Materials Letters: X","volume":"14 ","pages":"Article 100149"},"PeriodicalIF":1.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590150822000291/pdfft?md5=1554edeaa9c6a978bafb7723ca6c00e1&pid=1-s2.0-S2590150822000291-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45464494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-01DOI: 10.1016/j.mlblux.2022.100137
Chao Zhang, Ruidong Wang, Rong Hu, Zhiyu Chen, Yuwen Zhang, Xionggang Lu
Aiming to improve the surface properties of copper, a Ni-Cr-B-Si coating was fabricated by plasma transferred arc (PTA) cladding. The coating formed a good metallurgical bonding with the copper substrate, and the dilution rate was about 15.9%. The coating mainly contained γ-(Cu, Fe, Ni), Cr23C6, CrB and Ni3Si phases, which played a role of solid solution strengthening and dispersion strengthening. The hardness of the coating was significantly improved compared to the copper substrate, which was approximately 7.8 times that of the substrate. The wear resistance of the coating was 5.0 times higher than that of the copper substrate, and the wear mechanism was abrasive wear.
{"title":"Plasma transferred arc cladding of Ni-Cr-B-Si coating on copper substrate","authors":"Chao Zhang, Ruidong Wang, Rong Hu, Zhiyu Chen, Yuwen Zhang, Xionggang Lu","doi":"10.1016/j.mlblux.2022.100137","DOIUrl":"10.1016/j.mlblux.2022.100137","url":null,"abstract":"<div><p>Aiming to improve the surface properties of copper, a Ni-Cr-B-Si coating was fabricated by plasma transferred arc (PTA) cladding. The coating formed a good metallurgical bonding with the copper substrate, and the dilution rate was about 15.9%. The coating mainly contained γ-(Cu, Fe, Ni), Cr<sub>23</sub>C<sub>6</sub>, CrB and Ni<sub>3</sub>Si phases, which played a role of solid solution strengthening and dispersion strengthening. The hardness of the coating was significantly improved compared to the copper substrate, which was approximately 7.8 times that of the substrate. The wear resistance of the coating was 5.0 times higher than that of the copper substrate, and the wear mechanism was abrasive wear.</p></div>","PeriodicalId":18245,"journal":{"name":"Materials Letters: X","volume":"14 ","pages":"Article 100137"},"PeriodicalIF":1.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590150822000175/pdfft?md5=3ca52287202ff392d256df8ffe229fb0&pid=1-s2.0-S2590150822000175-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49081292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}