Pub Date : 2021-12-31DOI: 10.31185/ejuow.vol9.iss2.233
Mohammed G. Al-Azawy
This article describes the numerical investigation of blood rheology within an artery that includes two narrowing areas via Computational Fluid Dynamics (CFD). Elliptic blending Reynolds stress model and two models of viscosity have been used in this investigation utilizing STAR-CCM+ 2021.2.1. The test model includes two elliptical stenosis with a 2mm distance between them, and the area of stenosis is 75%. Results of normalized axial velocity, turbulent kinetic energy (TKE) and turbulent viscosity ratio (TVR) were evaluated before, through and after the stenosis in order to predict and avoid the real problems that occur from changing the area of the artery. Furthermore, Fractional flow reserve (FFR) was employed to assess the level of risk of stenosis through the artery, which depends on pressure measurements. Corresponding to the author's observation, it was found that the recirculation regions in the area between the stenosis are larger than the area after the stenosis. Moreover, the results of TKE and TVR are almost identical through and downstream of the stenosis, whereas the TKE is slightly higher with the Carreau model than with the Newtonian flow at the upstream and through the first stenosis.
{"title":"Evaluating the effect of non-Newtonian turbulent blood models within a double-stenosed artery","authors":"Mohammed G. Al-Azawy","doi":"10.31185/ejuow.vol9.iss2.233","DOIUrl":"https://doi.org/10.31185/ejuow.vol9.iss2.233","url":null,"abstract":"This article describes the numerical investigation of blood rheology within an artery that includes two narrowing areas via Computational Fluid Dynamics (CFD). Elliptic blending Reynolds stress model and two models of viscosity have been used in this investigation utilizing STAR-CCM+ 2021.2.1. The test model includes two elliptical stenosis with a 2mm distance between them, and the area of stenosis is 75%. Results of normalized axial velocity, turbulent kinetic energy (TKE) and turbulent viscosity ratio (TVR) were evaluated before, through and after the stenosis in order to predict and avoid the real problems that occur from changing the area of the artery. Furthermore, Fractional flow reserve (FFR) was employed to assess the level of risk of stenosis through the artery, which depends on pressure measurements. Corresponding to the author's observation, it was found that the recirculation regions in the area between the stenosis are larger than the area after the stenosis. Moreover, the results of TKE and TVR are almost identical through and downstream of the stenosis, whereas the TKE is slightly higher with the Carreau model than with the Newtonian flow at the upstream and through the first stenosis.","PeriodicalId":184256,"journal":{"name":"Wasit Journal of Engineering Sciences","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126853528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-31DOI: 10.31185/ejuow.vol9.iss2.228
H. Al-Badry, Mohammed S. Shamkhi
Groundwater is an important water source, especially in arid and semi-arid areas. Recharge is critical to managing and analyzing groundwater resources despite estimation difficulty due to temporal and spatial change. the study aim is to estimate annual groundwater recharge for the eastern Wasit Province, Iraq. Where suffers from a surface water shortage due to the region's high elevation above Tigris River water elevation by about 60 m. It is necessary to search for alternative water sources, such as groundwater use, especially with the increased demand for water in light of the growth of oil extraction in the region, where oil extraction requires a quantity of water three times the amount of oil extracted. The result shows the annual recharge calculated using the WetSpass model for the period (2014-2019) ranged from 0 to 65.176 mm/year at a rate of 27.117 mm/year and a standard deviation of 21.498. The simulation results reveal that the WetSpass model simulates the components of the hydrological water budget correctly. For managing and planning available water resources, a better grasp of the simulation of long-term average geographical distribution around the components of the water balance is beneficial.
{"title":"Estimation of Spatial Groundwater Recharge Using WetSpass Model For east Wasit province ,Iraq","authors":"H. Al-Badry, Mohammed S. Shamkhi","doi":"10.31185/ejuow.vol9.iss2.228","DOIUrl":"https://doi.org/10.31185/ejuow.vol9.iss2.228","url":null,"abstract":"Groundwater is an important water source, especially in arid and semi-arid areas. Recharge is critical to managing and analyzing groundwater resources despite estimation difficulty due to temporal and spatial change. the study aim is to estimate annual groundwater recharge for the eastern Wasit Province, Iraq. Where suffers from a surface water shortage due to the region's high elevation above Tigris River water elevation by about 60 m. It is necessary to search for alternative water sources, such as groundwater use, especially with the increased demand for water in light of the growth of oil extraction in the region, where oil extraction requires a quantity of water three times the amount of oil extracted. The result shows the annual recharge calculated using the WetSpass model for the period (2014-2019) ranged from 0 to 65.176 mm/year at a rate of 27.117 mm/year and a standard deviation of 21.498. The simulation results reveal that the WetSpass model simulates the components of the hydrological water budget correctly. For managing and planning available water resources, a better grasp of the simulation of long-term average geographical distribution around the components of the water balance is beneficial.","PeriodicalId":184256,"journal":{"name":"Wasit Journal of Engineering Sciences","volume":"419 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134383347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-30DOI: 10.31185/ejuow.vol9.iss2.272
Mohammed G. Al-Azawy
AbstractThis article describes the numerical investigation of blood rheology within an artery that includes two narrowing areas via Computational Fluid Dynamics (CFD) to offer guidance to the community, especially surgeons, and help them to avoid the risk of stenosis. Elliptic blending Reynolds stress model and two models of viscosity have been used in this investigation utilizing STAR-CCM+ 2021.2.1. The test model includes two elliptical stenosis with a 2mm distance between them, and the area of stenosis is 75%. Results of normalized axial velocity, turbulent kinetic energy (TKE) and turbulent viscosity ratio (TVR) were evaluated before, through and after the stenosis in order to predict and avoid the real problems that occur from changing the area of the artery. Furthermore, Fractional flow reserve (FFR) was employed to assess the level of risk of stenosis through the artery, which depends on pressure measurements. Corresponding to the author's observation, it was found that the recirculation regions in the area between the stenosis are larger than the area after the stenosis. Moreover, the results of TKE and TVR are almost identical through and downstream of the stenosis, whereas the TKE is slightly higher with the Carreau model (arrive to 0.54 J/kg) than with the Newtonian flow (arrive to o.47 J/kg) at the upstream and through the first stenosis.
{"title":"Evaluating the effect of non-Newtonian fluid turbulent flowing for blood within a double-stenosed artery","authors":"Mohammed G. Al-Azawy","doi":"10.31185/ejuow.vol9.iss2.272","DOIUrl":"https://doi.org/10.31185/ejuow.vol9.iss2.272","url":null,"abstract":"AbstractThis article describes the numerical investigation of blood rheology within an artery that includes two narrowing areas via Computational Fluid Dynamics (CFD) to offer guidance to the community, especially surgeons, and help them to avoid the risk of stenosis. Elliptic blending Reynolds stress model and two models of viscosity have been used in this investigation utilizing STAR-CCM+ 2021.2.1. The test model includes two elliptical stenosis with a 2mm distance between them, and the area of stenosis is 75%. Results of normalized axial velocity, turbulent kinetic energy (TKE) and turbulent viscosity ratio (TVR) were evaluated before, through and after the stenosis in order to predict and avoid the real problems that occur from changing the area of the artery. Furthermore, Fractional flow reserve (FFR) was employed to assess the level of risk of stenosis through the artery, which depends on pressure measurements. Corresponding to the author's observation, it was found that the recirculation regions in the area between the stenosis are larger than the area after the stenosis. Moreover, the results of TKE and TVR are almost identical through and downstream of the stenosis, whereas the TKE is slightly higher with the Carreau model (arrive to 0.54 J/kg) than with the Newtonian flow (arrive to o.47 J/kg) at the upstream and through the first stenosis.","PeriodicalId":184256,"journal":{"name":"Wasit Journal of Engineering Sciences","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131205678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-30DOI: 10.31185/ejuow.vol9.iss2.273
H. Al-Badry, Mohammed S. Shamkhi
AbstractGroundwater is an important water source, especially in arid and semi-arid areas. Recharge is critical to managing and analyzing groundwater resources despite estimation difficulty due to temporal and spatial change. The study aim is to estimate annual groundwater recharge for the eastern Wasit Province part, Iraq. Where suffers from a surface water shortage due to the region's high elevation above Tigris River water elevation by about 60 m, it is necessary to search for alternative water sources, such as groundwater use. The spatially distributed WetSpass model was used to estimate the annual recharge. The inputs for the model were prepared using the ARC-GIS program, which includes the topography and slope grid, soil texture grid, land use, groundwater level grid, and meteorological data grids for the study area for the period (2014-2019). The result shows that the annual recharge calculated using the WetSpass model (2014-2019) varied of 0 to 65.176 mm/year at an average of 27.117 mm/year, about 10.8%, while the rate of the surface runoff was 5.2% and Evapotranspiration formed 83.33% of the annual rainfall rate of 251.192 mm. The simulation results reveal that the WetSpass model simulates the components of the hydrological water budget correctly. For managing and planning available water resources, a best grasp of the simulation of long-range average geographical distribution around the water balance components is beneficial.
{"title":"Estimation of Spatial Groundwater Recharge Using WetSpass Model for East Wasit Province, Iraq","authors":"H. Al-Badry, Mohammed S. Shamkhi","doi":"10.31185/ejuow.vol9.iss2.273","DOIUrl":"https://doi.org/10.31185/ejuow.vol9.iss2.273","url":null,"abstract":"AbstractGroundwater is an important water source, especially in arid and semi-arid areas. Recharge is critical to managing and analyzing groundwater resources despite estimation difficulty due to temporal and spatial change. The study aim is to estimate annual groundwater recharge for the eastern Wasit Province part, Iraq. Where suffers from a surface water shortage due to the region's high elevation above Tigris River water elevation by about 60 m, it is necessary to search for alternative water sources, such as groundwater use. The spatially distributed WetSpass model was used to estimate the annual recharge. The inputs for the model were prepared using the ARC-GIS program, which includes the topography and slope grid, soil texture grid, land use, groundwater level grid, and meteorological data grids for the study area for the period (2014-2019). The result shows that the annual recharge calculated using the WetSpass model (2014-2019) varied of 0 to 65.176 mm/year at an average of 27.117 mm/year, about 10.8%, while the rate of the surface runoff was 5.2% and Evapotranspiration formed 83.33% of the annual rainfall rate of 251.192 mm. The simulation results reveal that the WetSpass model simulates the components of the hydrological water budget correctly. For managing and planning available water resources, a best grasp of the simulation of long-range average geographical distribution around the water balance components is beneficial.","PeriodicalId":184256,"journal":{"name":"Wasit Journal of Engineering Sciences","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134083917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-26DOI: 10.31185/ejuow.vol9.iss2.270
Hiba A. Bachay, Asad H. Aldefae, Salah L. Zubaidi
Tsunamis are among the most severe natural hazards known to man, and they have claimed thousands of lives and destroyed vast amounts of property throughout history. Several previous researches studied the tsunami wave run-up and its inundation to the coasts and their effect on the coastal communities. In the current study, the Dimensional analysis (DA) method was used for formulating rational hypotheses for the complicated physical conditions connected to the wave run-up study. Pairs of empirical formulas were derived: the first one for the non-dimensional wave run-up over a sandy beach, and the other for the wave run-up over the armoured beach. Based on the obtained experimental results, which were adopted as an input data for the program of IBM SPSS Statistics, v26, both formulas showed a good agreement as the coefficients of correlation were 0.93 and 0.98, respectively.
{"title":"Study of the tsunami wave run-up using dimensional analysis","authors":"Hiba A. Bachay, Asad H. Aldefae, Salah L. Zubaidi","doi":"10.31185/ejuow.vol9.iss2.270","DOIUrl":"https://doi.org/10.31185/ejuow.vol9.iss2.270","url":null,"abstract":"Tsunamis are among the most severe natural hazards known to man, and they have claimed thousands of lives and destroyed vast amounts of property throughout history. Several previous researches studied the tsunami wave run-up and its inundation to the coasts and their effect on the coastal communities. In the current study, the Dimensional analysis (DA) method was used for formulating rational hypotheses for the complicated physical conditions connected to the wave run-up study. Pairs of empirical formulas were derived: the first one for the non-dimensional wave run-up over a sandy beach, and the other for the wave run-up over the armoured beach. Based on the obtained experimental results, which were adopted as an input data for the program of IBM SPSS Statistics, v26, both formulas showed a good agreement as the coefficients of correlation were 0.93 and 0.98, respectively.","PeriodicalId":184256,"journal":{"name":"Wasit Journal of Engineering Sciences","volume":"62 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"113938261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-22DOI: 10.31185/ejuow.vol9.iss1.226
Zuhair A Nasar
This study explores how designer interacts with the computational model. This research intends to demystify how “design knowledge” is obtained, used and processed in the age of computation. The paper shows how the computational modelling tools associated with performance-based parametric design help support design decisions during the initial design phases. Building Energy Performance (BEP) is chosen as the main context to develop a set of criteria for the iterative development, testing, evaluation, and validation of a prototype model. Therefore, as a practical work, the research explores a series of new energy simulation modelling techniques based on parametric design and multi optimization-based design. Specifically, it aims to explore, develop, and test new approaches in parametric modelling that can support energy simulation, using multi optimization, where designers can easily state the design parameters and use them in energy-performance-based design. The exploratory research approach is the main theme of this research. However, during the development of the research it was found that there is a need to blend this research design with the descriptive research approach. One of the key contributions of this study will be the development of a more direct link and useful methods for the translation of information into data inputs to support computational thinking and modelling processes.
{"title":"Information Processing and Assessment for Improved Computational Energy Modelling","authors":"Zuhair A Nasar","doi":"10.31185/ejuow.vol9.iss1.226","DOIUrl":"https://doi.org/10.31185/ejuow.vol9.iss1.226","url":null,"abstract":"This study explores how designer interacts with the computational model. This research intends to demystify how “design knowledge” is obtained, used and processed in the age of computation. The paper shows how the computational modelling tools associated with performance-based parametric design help support design decisions during the initial design phases. Building Energy Performance (BEP) is chosen as the main context to develop a set of criteria for the iterative development, testing, evaluation, and validation of a prototype model. Therefore, as a practical work, the research explores a series of new energy simulation modelling techniques based on parametric design and multi optimization-based design. Specifically, it aims to explore, develop, and test new approaches in parametric modelling that can support energy simulation, using multi optimization, where designers can easily state the design parameters and use them in energy-performance-based design. The exploratory research approach is the main theme of this research. However, during the development of the research it was found that there is a need to blend this research design with the descriptive research approach. One of the key contributions of this study will be the development of a more direct link and useful methods for the translation of information into data inputs to support computational thinking and modelling processes.","PeriodicalId":184256,"journal":{"name":"Wasit Journal of Engineering Sciences","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132612716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-31DOI: 10.31185/ejuow.vol8.iss2.163
Alaa R. Al-Badri, Zahraa Mohsin Farhan
The air conditioning system performance is significantly affected by temperature rise which causes continuous increase in electricity consumption and pollution problems to environment. Evaporative cooling systems are characterized by their low energy consumption so that they represent successful potential alternatives to traditional vapor compression air conditioning systems. This study investigates the performance of multi-stages evaporative cooling systems experimentally and theoretically. The experimental set-up is mainly composed of two parts: indirect unit to decrease the air temperature and direct unit to moisturize the air. The system is installed and equipped with temperatures, humidity, and air velocity sensors. The experimental tests were run continuously to monitor the system performance at various weather conditions between to in June and July months. A mathematical model for the system components was developed and implemented in the Engineering Equation Solver (EES) program to simulate the performance of multi-stages evaporative cooling systems. The results showed that the heat flux increases with the increase in the Reynolds number Re of inlet air, velocity fraction extracted air for sensible cooling, air temperature at the product-in , air velocity at the product-in , and the adiabatic efficiency . But, it is decreasing with increasing the spacing between the heat exchanger plates and the relative humidity at the product-in . Optimum performance was obtained with very small space between plates which was bout 5mm. Good agreement have been shown between experimental and predicted data, where the results. Uncertainty of experimental data was within the range 4.14 to 6.15.
{"title":"A Study on Thermal Effectiveness of Multi-Stages Evaporative Air Cooling","authors":"Alaa R. Al-Badri, Zahraa Mohsin Farhan","doi":"10.31185/ejuow.vol8.iss2.163","DOIUrl":"https://doi.org/10.31185/ejuow.vol8.iss2.163","url":null,"abstract":"The air conditioning system performance is significantly affected by temperature rise which causes continuous increase in electricity consumption and pollution problems to environment. Evaporative cooling systems are characterized by their low energy consumption so that they represent successful potential alternatives to traditional vapor compression air conditioning systems. This study investigates the performance of multi-stages evaporative cooling systems experimentally and theoretically. The experimental set-up is mainly composed of two parts: indirect unit to decrease the air temperature and direct unit to moisturize the air. The system is installed and equipped with temperatures, humidity, and air velocity sensors. The experimental tests were run continuously to monitor the system performance at various weather conditions between to in June and July months. A mathematical model for the system components was developed and implemented in the Engineering Equation Solver (EES) program to simulate the performance of multi-stages evaporative cooling systems. The results showed that the heat flux increases with the increase in the Reynolds number Re of inlet air, velocity fraction extracted air for sensible cooling, air temperature at the product-in , air velocity at the product-in , and the adiabatic efficiency . But, it is decreasing with increasing the spacing between the heat exchanger plates and the relative humidity at the product-in . Optimum performance was obtained with very small space between plates which was bout 5mm. Good agreement have been shown between experimental and predicted data, where the results. Uncertainty of experimental data was within the range 4.14 to 6.15.","PeriodicalId":184256,"journal":{"name":"Wasit Journal of Engineering Sciences","volume":"233 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114005399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-31DOI: 10.31185/ejuow.vol8.iss2.165
Esraa J Al-mousawi, R. Al-Rubaee, A. Shubber
Recently, polymer -nanocomposites were used to manufacture durable asphalt mixtures to replace the polymer modified binder, because of the remarkable properties and unique features of nanomaterials compared to conventional materials, such as their wide surface area and small dimensions, making it possible to be utilized as an additive for asphalt paving. Nanosilica particles (NS) are one of the latest minerals which likely integrate useful characteristics, such as huge surface area, good distributions, high absorption levels, high stability, and a high level of purity. Therefore, this paper is interested in studying the characteristics of nanocomposite-polymer modified asphalt. In laboratory work, a pure asphalt 60-70 penetration grade, has been modified separately with waste polypropylene polymer (WPP), and nanosillica composite polypropylene (NS/WPP) at different concentrations. As a result, two modified binders: waste polypropylene polymer- modified asphalt (WPP-MA), and nanosillica composite polypropylene modified asphalt (NSCPMA) were obtained. Traditional asphalt binder tests were performed for pure and modified binders such as penetration, ductility, flash and fire point test, softening point, and rotational viscosity. Also, storage stability test has been conducted to ensure the storage stability of binders at high temperatures. The results showed an improvement in physical properties and increase in mixing and compaction temperature due to the increase in stiffness of (NSCPMA). The results also indicated that the nanosillica composite polypropylene modified asphalt binders have good storage stability at high temperatures.
{"title":"Mixing and Compaction Temperature of Nanosilica Composite Polymer Modified Asphalt","authors":"Esraa J Al-mousawi, R. Al-Rubaee, A. Shubber","doi":"10.31185/ejuow.vol8.iss2.165","DOIUrl":"https://doi.org/10.31185/ejuow.vol8.iss2.165","url":null,"abstract":"Recently, polymer -nanocomposites were used to manufacture durable asphalt mixtures to replace the polymer modified binder, because of the remarkable properties and unique features of nanomaterials compared to conventional materials, such as their wide surface area and small dimensions, making it possible to be utilized as an additive for asphalt paving. Nanosilica particles (NS) are one of the latest minerals which likely integrate useful characteristics, such as huge surface area, good distributions, high absorption levels, high stability, and a high level of purity. Therefore, this paper is interested in studying the characteristics of nanocomposite-polymer modified asphalt. In laboratory work, a pure asphalt 60-70 penetration grade, has been modified separately with waste polypropylene polymer (WPP), and nanosillica composite polypropylene (NS/WPP) at different concentrations. As a result, two modified binders: waste polypropylene polymer- modified asphalt (WPP-MA), and nanosillica composite polypropylene modified asphalt (NSCPMA) were obtained. Traditional asphalt binder tests were performed for pure and modified binders such as penetration, ductility, flash and fire point test, softening point, and rotational viscosity. Also, storage stability test has been conducted to ensure the storage stability of binders at high temperatures. The results showed an improvement in physical properties and increase in mixing and compaction temperature due to the increase in stiffness of (NSCPMA). The results also indicated that the nanosillica composite polypropylene modified asphalt binders have good storage stability at high temperatures.","PeriodicalId":184256,"journal":{"name":"Wasit Journal of Engineering Sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117248350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-11DOI: 10.31185/ejuow.vol7.iss3.160
Zainab Mahdi Salih, Abdulsalam D. M.Hassan, Amer M. Al-Dabagh
Abstract— Silica gel is a substance commonly used in desiccant wheel, which in turn is used in many applications to reduce moisture from the supplied air to a specific space. In this research, the effect of different operational conditions on the performance of silica gel wheel were studied. The desiccant wheel, which has been used, has a diameter of 55 cm and thickness of 20 cm. It contains 34 kg of silica gel and rotate at a speed of 30 rph. The theoretical performance coefficients of the desiccant wheel which have been studied include ,moisture removal capacity(MRC),dehumidification performance(DCOP),latent coefficient of performance (COPlat), and desiccant wheel effectiveness(ϵ_d). The theoretical investigation of these coefficients was done by using Novel Aire Technology software program (Simulation program of desiccant wheel) (2012). While the operational conditions like process air (humid air)inlet temperature between(30 to 43.4)0C, process air inlet humidity ratio between (0.011 to 0.019)kg/kgdry air ,regeneration air inlet temperature between (56.5 to 70)0C,and process air mass flow rate between(0.0814 to 0.199)kg/s. The results shows that the effectiveness and the moisture removal capacity have the same behavior increase with the increasing in mass flow rate from(0.0814 to 0.199) kg/s, humidity ratio from(11 to19)g/kgdry air, and regeneration air temperature from(56 t0 70)oC. But they reduces with increasing of inlet process air temperature from(30 to43.4)oC..
{"title":"Theoretical Performance of Silica Gel Desiccant Wheel","authors":"Zainab Mahdi Salih, Abdulsalam D. M.Hassan, Amer M. Al-Dabagh","doi":"10.31185/ejuow.vol7.iss3.160","DOIUrl":"https://doi.org/10.31185/ejuow.vol7.iss3.160","url":null,"abstract":"Abstract— Silica gel is a substance commonly used in desiccant wheel, which in turn is used in many applications to reduce moisture from the supplied air to a specific space. In this research, the effect of different operational conditions on the performance of silica gel wheel were studied. The desiccant wheel, which has been used, has a diameter of 55 cm and thickness of 20 cm. It contains 34 kg of silica gel and rotate at a speed of 30 rph. The theoretical performance coefficients of the desiccant wheel which have been studied include ,moisture removal capacity(MRC),dehumidification performance(DCOP),latent coefficient of performance (COPlat), and desiccant wheel effectiveness(ϵ_d). The theoretical investigation of these coefficients was done by using Novel Aire Technology software program (Simulation program of desiccant wheel) (2012). While the operational conditions like process air (humid air)inlet temperature between(30 to 43.4)0C, process air inlet humidity ratio between (0.011 to 0.019)kg/kgdry air ,regeneration air inlet temperature between (56.5 to 70)0C,and process air mass flow rate between(0.0814 to 0.199)kg/s. The results shows that the effectiveness and the moisture removal capacity have the same behavior increase with the increasing in mass flow rate from(0.0814 to 0.199) kg/s, humidity ratio from(11 to19)g/kgdry air, and regeneration air temperature from(56 t0 70)oC. But they reduces with increasing of inlet process air temperature from(30 to43.4)oC..","PeriodicalId":184256,"journal":{"name":"Wasit Journal of Engineering Sciences","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116291828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-08-15DOI: 10.31185/ejuow.vol7.iss2.143
Haqi H. Abbood Al-Eqabi, Ali M. Hassan Al-Gharbawe
Abstract: the study adopted samples from Tigris river shoulders ,which has been subjected to such collapses and cracks. After testing and investigation it was found the soil is formed from river deposits , which can be classified as fine sand soil . It is known that many of the collapses that occurs in the sides of rivers are due to the influence of shear forces . A different of diameters coarse aggregates columns and aggregates sizes used in this study are tested by direct shear test. The main objective of this research to increase the coefficient of friction between the soil particles in the test specimen by adding the coarse aggregate columns to the fine sand soil, In this regard the least void ratio was found as a beneficial index that relates with critical state of friction angle independent on soil gradation. The relations between critical state or high friction angles of the mixture with lower void ratio were determined as a function of addition pressure. The relationships could be useful to determination the strength parameters of (sand gravel mixtures).
{"title":"Effect of Coarse Aggregate Columns on Angle of Friction in Fine Sandy Soil","authors":"Haqi H. Abbood Al-Eqabi, Ali M. Hassan Al-Gharbawe","doi":"10.31185/ejuow.vol7.iss2.143","DOIUrl":"https://doi.org/10.31185/ejuow.vol7.iss2.143","url":null,"abstract":"Abstract: the study adopted samples from Tigris river shoulders ,which has been subjected to such collapses and cracks. After testing and investigation it was found the soil is formed from river deposits , which can be classified as fine sand soil . It is known that many of the collapses that occurs in the sides of rivers are due to the influence of shear forces . A different of diameters coarse aggregates columns and aggregates sizes used in this study are tested by direct shear test. \u0000The main objective of this research to increase the coefficient of friction between the soil particles in the test specimen by adding the coarse aggregate columns to the fine sand soil, In this regard the least void ratio was found as a beneficial index that relates with critical state of friction angle independent on soil gradation. The relations between critical state or high friction angles of the mixture with lower void ratio were determined as a function of addition pressure. The relationships could be useful to determination the strength parameters of (sand gravel mixtures).","PeriodicalId":184256,"journal":{"name":"Wasit Journal of Engineering Sciences","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116946047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}