首页 > 最新文献

Microbiological research最新文献

英文 中文
Effect of pathogen Globisporangium ultimum on plant growth and colonizing bacterial communities 病原体 Globisporangium ultimum 对植物生长和定植细菌群落的影响。
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-10-28 DOI: 10.1016/j.micres.2024.127937
Zhan-nan Yang , Yu Wang , Shi-qiong Luo
Plants recruit plant-associated microbes from soil to enhance their growth and mitigate the adverse effects of pathogen invasion on plant health. How pathogens impact the interactions of the plant-associated microbes and plant growth is poorly understood. We established S-microsystems (sterile soil inoculated with 101 bacteria isolated from humus soil with Artemisia annua, Oryza sativa or Houttuynia cordata), and N-microsystems (natural soil with these plants) to evaluate the effects of the fungus Globisporangium ultimum on plant growth and their colonizing bacterial communities (CBCs). S-microsystems and N-microsystems were inoculated with and without G. ultimum, respectively. Their seedling growth and CBCs were investigated. Plant height and root numbers in A. annua, O. sativa and H. cordata S-microsystems with G. ultimum were 34.5 % and 52.8 %, 23.1 % and 31.3 %, 102.1 % and 45.0 % higher than those without G. ultimum, respectively. The CBCs were diverse among S-microsystems of A. annua, O. sativa and H. cordata, and the CBC abundances in the three S-microsystems without G. ultimum were higher than those with G. ultimum. The relative abundances of bacterial genera Rhizobium, Pseudomonas, Brevundimonas and Cupriavidus were significantly positively related to plant growth. We determined that the CBCs in A. annua, O. sativa and H. cordata were selective and related to the plant species, and can mitigate disadvantageous influences of G. ultimum on seedling growth. The plants and their CBCs’ abundance and composition were differentially affected by G. ultimum. Our results provide evidence that CBCs promote plant growth due to dynamic changes in the composition and abundance of CBC members, which were affected by plant species and biotic factors.
植物从土壤中吸收植物相关微生物,以促进其生长,减轻病原体入侵对植物健康的不利影响。病原体如何影响植物相关微生物与植物生长之间的相互作用,人们对此知之甚少。我们建立了 S-微系统(无菌土壤,接种 101 个从含有黄花蒿、桔梗或蕺菜的腐殖质土壤中分离的细菌)和 N-微系统(含有这些植物的天然土壤),以评估真菌 Globisporangium ultimum 对植物生长及其定植细菌群落(CBC)的影响。在 S-微系统和 N-微系统中分别接种和不接种球孢伞菌。对它们的幼苗生长和 CBC 进行了调查。与未接种超微革兰氏菌的 S-微系统相比,接种了超微革兰氏菌的 A. annua、O. sativa 和 H. cordata 的 S-微系统的株高和根数分别增加了 34.5 % 和 52.8 %、23.1 % 和 31.3 %、102.1 % 和 45.0 %。A.annua、O.sativa和H.cordata的S-微系统中的CBC种类繁多,没有G. ultimum的三个S-微系统中的CBC丰度高于有G. ultimum的三个S-微系统。根瘤菌属、假单胞菌属、芽孢杆菌属和铜绿微囊藻属细菌的相对丰度与植物生长呈显著正相关。我们确定,A. annua、O. sativa 和 H. cordata 的 CBCs 具有选择性,与植物种类有关,可以减轻 G. ultimum 对幼苗生长的不利影响。植物及其 CBCs 的丰度和组成受到 G. ultimum 的不同影响。我们的研究结果提供了证据,证明CBC促进植物生长是由于CBC成员的组成和丰度受植物物种和生物因素的影响而发生动态变化。
{"title":"Effect of pathogen Globisporangium ultimum on plant growth and colonizing bacterial communities","authors":"Zhan-nan Yang ,&nbsp;Yu Wang ,&nbsp;Shi-qiong Luo","doi":"10.1016/j.micres.2024.127937","DOIUrl":"10.1016/j.micres.2024.127937","url":null,"abstract":"<div><div>Plants recruit plant-associated microbes from soil to enhance their growth and mitigate the adverse effects of pathogen invasion on plant health. How pathogens impact the interactions of the plant-associated microbes and plant growth is poorly understood. We established S-microsystems (sterile soil inoculated with 101 bacteria isolated from humus soil with <em>Artemisia annua</em>, <em>Oryza sativa</em> or <em>Houttuynia cordata</em>), and N-microsystems (natural soil with these plants) to evaluate the effects of the fungus <em>Globisporangium ultimum</em> on plant growth and their colonizing bacterial communities (CBCs). S-microsystems and N-microsystems were inoculated with and without <em>G. ultimum</em>, respectively. Their seedling growth and CBCs were investigated. Plant height and root numbers in <em>A. annua</em>, <em>O. sativa and H. cordata</em> S-microsystems with <em>G. ultimum</em> were 34.5 % and 52.8 %, 23.1 % and 31.3 %, 102.1 % and 45.0 % higher than those without <em>G. ultimum</em>, respectively. The CBCs were diverse among S-microsystems of <em>A. annua</em>, <em>O. sativa</em> and <em>H. cordata</em>, and the CBC abundances in the three S-microsystems without <em>G. ultimum</em> were higher than those with <em>G. ultimum.</em> The relative abundances of bacterial genera <em>Rhizobium</em>, <em>Pseudomonas</em>, <em>Brevundimonas</em> and <em>Cupriavidus</em> were significantly positively related to plant growth. We determined that the CBCs in <em>A. annua</em>, <em>O. sativa</em> and <em>H. cordata</em> were selective and related to the plant species, and can mitigate disadvantageous influences of <em>G. ultimum</em> on seedling growth. The plants and their CBCs’ abundance and composition were differentially affected by <em>G. ultimum.</em> Our results provide evidence that CBCs promote plant growth due to dynamic changes in the composition and abundance of CBC members, which were affected by plant species and biotic factors.</div></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"290 ","pages":"Article 127937"},"PeriodicalIF":6.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering cellular redox homeostasis to optimize ethanol production in xylose-fermenting Saccharomyces cerevisiae strains 通过细胞氧化还原平衡工程优化木糖发酵酿酒酵母菌株的乙醇生产。
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-10-28 DOI: 10.1016/j.micres.2024.127955
Leandro Vieira dos Santos , Thiago Neitzel , Cleiton Santos Lima , Lucas Miguel de Carvalho , Tatiani Brenelli de Lima , Jaciane Lutz Ienczak , Thamy Lívia Ribeiro Corrêa , Gonçalo Amarante Guimarães Pereira
The transition from fossil fuels dependency to embracing renewable alternatives is pivotal for mitigating greenhouse gas emissions, with biorefineries playing a central role at the forefront of this transition. As a sustainable alternative, lignocellulosic feedstocks hold great promise for biofuels and biochemicals production. However, the effective utilization of complex sugars, such as xylose, remains a significant hurdle. To address this challenge, yeasts can be engineered as microbial platforms to convert the complex sugars derived from biomass. The efficient use of xylose by XR-XDH strains still poses a significant challenge due to redox imbalance limitations, leading to the accumulation of undesirable by-products. In this study, we focused on engineering the industrial S. cerevisiae strain PE-2, known for its robustness, and compared different strategies to balance cellular redox homeostasis, guided by a genome-scale metabolic model. Flux balance analysis guided the selection of four approaches: i. decoupling NADPH regeneration from CO2 production; ii. altering XDH cofactor affinity; iii. shifting XR cofactor preference; iv. incorporating alternate phosphoketolase and acetic acid conversion pathways. A comparative time-course targeted metabolic profile was conducted to assess the redox status of xylose-fermenting cells under anaerobic conditions. The main limitations of xylose-fermenting strains were tested and the replacement of xylose reductase with a NADH-preferred XR in the LVY142 strain proved to be the most effective strategy, resulting in an increase in ethanol yield and productivity, coupled with a reduction in by-products. Comparative analysis of various genetic approaches provided valuable insights into the complexities of redox engineering, highlighting the need for tailored strategies in yeast metabolic engineering for efficient biofuels and biochemicals production from lignocellulosic feedstocks.
从依赖化石燃料过渡到采用可再生替代品,对于减少温室气体排放至关重要,而生物精炼厂则在这一过渡的前沿发挥着核心作用。作为一种可持续的替代品,木质纤维素原料在生物燃料和生物化学品生产方面大有可为。然而,有效利用木糖等复杂糖类仍然是一个重大障碍。为了应对这一挑战,可以将酵母菌改造成微生物平台,以转化从生物质中提取的复杂糖类。由于氧化还原失衡的限制,XR-XDH 菌株对木糖的有效利用仍然是一个重大挑战,这导致了不良副产品的积累。在本研究中,我们重点研究了以稳健著称的工业化 S. cerevisiae 菌株 PE-2,并在基因组尺度代谢模型的指导下,比较了平衡细胞氧化还原平衡的不同策略。通量平衡分析指导我们选择了四种方法:i. 使 NADPH 再生与 CO2 生成脱钩;ii. 改变 XDH 辅因子亲和力;iii. 改变 XR 辅因子偏好;iv. 加入交替的磷酸酮酶和乙酸转化途径。为了评估木糖发酵细胞在厌氧条件下的氧化还原状态,我们进行了一次有针对性的时间历程代谢曲线比较。对木糖发酵菌株的主要局限性进行了测试,结果证明,在 LVY142 菌株中用 NADH 首选 XR 替代木糖还原酶是最有效的策略,可提高乙醇产量和生产率,同时减少副产品。对各种遗传方法的比较分析为了解氧化还原工程的复杂性提供了宝贵的见解,凸显了在酵母代谢工程中采用量身定制的策略以从木质纤维素原料中高效生产生物燃料和生物化学品的必要性。
{"title":"Engineering cellular redox homeostasis to optimize ethanol production in xylose-fermenting Saccharomyces cerevisiae strains","authors":"Leandro Vieira dos Santos ,&nbsp;Thiago Neitzel ,&nbsp;Cleiton Santos Lima ,&nbsp;Lucas Miguel de Carvalho ,&nbsp;Tatiani Brenelli de Lima ,&nbsp;Jaciane Lutz Ienczak ,&nbsp;Thamy Lívia Ribeiro Corrêa ,&nbsp;Gonçalo Amarante Guimarães Pereira","doi":"10.1016/j.micres.2024.127955","DOIUrl":"10.1016/j.micres.2024.127955","url":null,"abstract":"<div><div>The transition from fossil fuels dependency to embracing renewable alternatives is pivotal for mitigating greenhouse gas emissions, with biorefineries playing a central role at the forefront of this transition. As a sustainable alternative, lignocellulosic feedstocks hold great promise for biofuels and biochemicals production. However, the effective utilization of complex sugars, such as xylose, remains a significant hurdle. To address this challenge, yeasts can be engineered as microbial platforms to convert the complex sugars derived from biomass. The efficient use of xylose by XR-XDH strains still poses a significant challenge due to redox imbalance limitations, leading to the accumulation of undesirable by-products. In this study, we focused on engineering the industrial <em>S. cerevisiae</em> strain PE-2, known for its robustness, and compared different strategies to balance cellular redox homeostasis, guided by a genome-scale metabolic model. Flux balance analysis guided the selection of four approaches: i. decoupling NADPH regeneration from CO<sub>2</sub> production; ii. altering XDH cofactor affinity; iii. shifting XR cofactor preference; iv. incorporating alternate phosphoketolase and acetic acid conversion pathways. A comparative time-course targeted metabolic profile was conducted to assess the redox status of xylose-fermenting cells under anaerobic conditions. The main limitations of xylose-fermenting strains were tested and the replacement of xylose reductase with a NADH-preferred XR in the LVY142 strain proved to be the most effective strategy, resulting in an increase in ethanol yield and productivity, coupled with a reduction in by-products. Comparative analysis of various genetic approaches provided valuable insights into the complexities of redox engineering, highlighting the need for tailored strategies in yeast metabolic engineering for efficient biofuels and biochemicals production from lignocellulosic feedstocks.</div></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"290 ","pages":"Article 127955"},"PeriodicalIF":6.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular insights from integrated metabolome-transcriptome into endophyte Bacillus subtilis L1-21 surfactin against citrus Huanglongbing 综合代谢组-转录组对内生枯草芽孢杆菌 L1-21 表面活性素防治柑橘黄龙病的分子认识。
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-10-28 DOI: 10.1016/j.micres.2024.127942
Ayesha Ahmed, Yinglong Liu, Rizwan Khan, Pengbo He, Pengfei He, Yixin Wu, Shahzad Munir, Yueqiu He
Metabolites of plant and microbial origin have a great influence on plant-microbe interactions. Members from Bacillus subtilis are known to produce a plethora of metabolites that shape plant responses towards biotic and abiotic stresses. Similarly, endophyte B. subtilis L1–21 efficiently controls the Huanglongbing (HLB) causing pathogen: Candidatus Liberibacter asiaticus (CLas). However, the molecular mechanisms are highly elusive. Herein, our study highlights the critical role of endophyte L1–21 in planta-produced surfactin in its colonization in citrus plants and regulation of plant-microbe interactions by comparing three gene knockout mutants △srfAA-L1–21, △sfp-L1–21, and △pel-L1–21. All three mutants exhibited reduced pathogen control and colonization efficiency compared to wild-type (WT) L1–21, but knockout mutant deficient of surfactin △srfAA-L1–21 was significantly impaired in the abovementioned functions as compared to △sfp-L1–21 and △pel-L1–21. Further, △srfAA-L1–21 could not activate various metabolic pathways in citrus as WT-L1–21. Integrated metabolomic-transcriptomic analysis reveals that important secondary metabolites such as flavonoids, volatile organic compounds, and lignins were highly accumulated in citrus plants treated with WT-L1–21 as compared to △srfAA-L1–21, highlighting the role of surfactin as an elicitor of the defense system in citrus-HLB pathosystem. Interestingly, auxin-related metabolites and transcripts were also downregulated in △srfAA-L1–21 compared to WT-L1–21 showing that surfactin might also influence plant-microbe interactions through metabolic reprogramming. Further, higher enrichment of Bacilli with WT-L1–21 might corresponds to surfactin-mediated regulation of community-related behavior in Bacilli. To the best of our knowledge, this is the first study reporting the role of surfactin from Bacillus endophyte in metabolic reprogramming in citrus-HLB pathosystem and mounting defense response against CLas pathogen.
源自植物和微生物的代谢物对植物与微生物之间的相互作用有很大影响。众所周知,枯草芽孢杆菌(Bacillus subtilis)成员能产生大量代谢物,这些代谢物能影响植物对生物和非生物胁迫的反应。同样,内生菌枯草杆菌 L1-21 能有效控制黄龙病(HLB)病原体:黄龙病(HLB)的病原体:亚洲自由杆菌(CLas)。然而,其分子机制却非常难以捉摸。在此,我们的研究通过比较三种基因敲除突变体△srfAA-L1-21、△sfp-L1-21和△pel-L1-21,强调了内生菌L1-21在柑橘植物中定植和调控植物与微生物相互作用过程中产生的表面活性素的关键作用。与野生型(WT)L1-21相比,这三种突变体都表现出病原体控制和定殖效率降低,但与△sfp-L1-21和△pel-L1-21相比,缺乏表面活性素的基因敲除突变体△srfAA-L1-21在上述功能上明显受损。此外,△srfAA-L1-21不能像WT-L1-21那样激活柑橘的各种代谢途径。代谢组-转录组综合分析表明,与△srfAA-L1-21相比,WT-L1-21处理的柑橘植株中黄酮类、挥发性有机化合物和木质素等重要次生代谢物的积累量较高,这突出表明了表面活性素在柑橘-HLB病理系统中作为防御系统诱导剂的作用。有趣的是,与 WT-L1-21 相比,△srfAA-L1-21 中的辅助素相关代谢物和转录物也出现了下调,这表明表面活性剂也可能通过代谢重编程影响植物与微生物之间的相互作用。此外,WT-L1-21 对芽孢杆菌的富集程度较高,这可能与表面活性素介导的芽孢杆菌群落相关行为的调控相对应。据我们所知,这是首次报道来自内生芽孢杆菌的表面活性素在柑橘-HLB病理系统的代谢重编程和对 CLas 病原体的防御反应中的作用。
{"title":"Molecular insights from integrated metabolome-transcriptome into endophyte Bacillus subtilis L1-21 surfactin against citrus Huanglongbing","authors":"Ayesha Ahmed,&nbsp;Yinglong Liu,&nbsp;Rizwan Khan,&nbsp;Pengbo He,&nbsp;Pengfei He,&nbsp;Yixin Wu,&nbsp;Shahzad Munir,&nbsp;Yueqiu He","doi":"10.1016/j.micres.2024.127942","DOIUrl":"10.1016/j.micres.2024.127942","url":null,"abstract":"<div><div>Metabolites of plant and microbial origin have a great influence on plant-microbe interactions. Members from <em>Bacillus subtilis</em> are known to produce a plethora of metabolites that shape plant responses towards biotic and abiotic stresses. Similarly, endophyte <em>B. subtilis</em> L1–21 efficiently controls the Huanglongbing (HLB) causing pathogen: <em>Candidatus</em> Liberibacter asiaticus (<em>C</em>Las). However, the molecular mechanisms are highly elusive. Herein, our study highlights the critical role of endophyte L1–21 <em>in planta</em>-produced surfactin in its colonization in citrus plants and regulation of plant-microbe interactions by comparing three gene knockout mutants △<em>srfAA</em>-L1–21, △<em>sfp</em>-L1–21, and △<em>pel</em>-L1–21. All three mutants exhibited reduced pathogen control and colonization efficiency compared to wild-type (WT) L1–21, but knockout mutant deficient of surfactin △<em>srfAA</em>-L1–21 was significantly impaired in the abovementioned functions as compared to △<em>sfp</em>-L1–21 and △<em>pel</em>-L1–21. Further, △<em>srfAA</em>-L1–21 could not activate various metabolic pathways in citrus as WT-L1–21. Integrated metabolomic-transcriptomic analysis reveals that important secondary metabolites such as flavonoids, volatile organic compounds, and lignins were highly accumulated in citrus plants treated with WT-L1–21 as compared to △<em>srfAA</em>-L1–21<em>,</em> highlighting the role of surfactin as an elicitor of the defense system in citrus-HLB pathosystem. Interestingly, auxin-related metabolites and transcripts were also downregulated in △<em>srfAA</em>-L1–21 compared to WT-L1–21 showing that surfactin might also influence plant-microbe interactions through metabolic reprogramming. Further, higher enrichment of Bacilli with WT-L1–21 might corresponds to surfactin-mediated regulation of community-related behavior in Bacilli. To the best of our knowledge, this is the first study reporting the role of surfactin from <em>Bacillus</em> endophyte in metabolic reprogramming in citrus-HLB pathosystem and mounting defense response against <em>C</em>Las pathogen.</div></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"290 ","pages":"Article 127942"},"PeriodicalIF":6.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sphingomonas arvum sp. nov.: A promising microbial chassis for high-yield and sustainable zeaxanthin biomanufacturing Sphingomonas arvum sp:用于高产和可持续玉米黄质生物制造的前景广阔的微生物底盘
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-10-28 DOI: 10.1016/j.micres.2024.127938
Chun-Zhi Jin , So Young Park , Chang-Jin Kim , Kee-Sun Shin , Jong-Min Lee
The yield of natural products from plants is currently insufficient and cannot be considered a sustainable and secure source of supply, especially given the challenges posed by global climate change. Therefore, a biofoundry that can quickly and accurately produce desired materials from microorganisms based on synthetic biology is urgently needed. Moreover, it is important to find new microbial and genetic chassis to meet the rapidly growing global market for high-value-added zeaxanthin. In this study, we aimed to identify the zeaxanthin biosynthetic gene cluster, crtZ-crtB-crtI-crtY, and confirm zeaxanthin production (11,330 μg g−1 dry biomass weight) through genome mining and liquid chromatography/mass spectrometry profiling using the novel zeaxanthin-producing bacteria Sphingomonas sp. strain BN140010T isolated from the subsurface soil of arable land. We report the highest yield among zeaxanthin-producing Sphingomonas strains to date. Moreover, we determined the taxonomic position of BN140010T using a polyphasic approach based on phylogenetic, physiological and chemotaxonomic characteristics, and we proposed Sphingomonas arvum strain BN140010T as a novel strain. Our results provide a zeaxanthin-producing chassis and diverse genetic tools for microbiological zeaxanthin production. Therefore, this research advances our progress towards the goal of lowering the unit cost of zeaxanthin production, making it more accessible for industrial applications.
目前,植物天然产品的产量不足,不能被视为可持续和安全的供应来源,特别是考虑到全球气候变化带来的挑战。因此,亟需建立一个以合成生物学为基础、能够快速准确地从微生物中生产所需材料的生物工厂。此外,寻找新的微生物和基因底盘以满足全球快速增长的高附加值玉米黄质市场也非常重要。在本研究中,我们利用从耕地地下土壤中分离的新型玉米黄质生产菌 Sphingomonas sp. 菌株 BN140010T,通过基因组挖掘和液相色谱/质谱分析,确定了玉米黄质生物合成基因簇 crtZ-crtB-crtI-crtY,并确认了玉米黄质的产量(11,330 μg g-1 干生物量重)。我们报告了迄今为止产生玉米黄质的 Sphingomonas 菌株中最高的产量。此外,我们还根据系统发生学、生理学和化学分类学特征,采用多相法确定了 BN140010T 的分类学位置,并提出 Sphingomonas arvum 菌株 BN140010T 为新菌株。我们的研究结果为微生物生产玉米黄质提供了玉米黄质生产底盘和多样化的遗传工具。因此,这项研究推动了我们向降低玉米黄质生产单位成本的目标迈进,使其更易于工业应用。
{"title":"Sphingomonas arvum sp. nov.: A promising microbial chassis for high-yield and sustainable zeaxanthin biomanufacturing","authors":"Chun-Zhi Jin ,&nbsp;So Young Park ,&nbsp;Chang-Jin Kim ,&nbsp;Kee-Sun Shin ,&nbsp;Jong-Min Lee","doi":"10.1016/j.micres.2024.127938","DOIUrl":"10.1016/j.micres.2024.127938","url":null,"abstract":"<div><div>The yield of natural products from plants is currently insufficient and cannot be considered a sustainable and secure source of supply, especially given the challenges posed by global climate change. Therefore, a biofoundry that can quickly and accurately produce desired materials from microorganisms based on synthetic biology is urgently needed. Moreover, it is important to find new microbial and genetic chassis to meet the rapidly growing global market for high-value-added zeaxanthin. In this study, we aimed to identify the zeaxanthin biosynthetic gene cluster, <em>crtZ</em>-<em>crtB</em>-<em>crtI</em>-<em>crtY</em>, and confirm zeaxanthin production (11,330 μg g<sup>−1</sup> dry biomass weight) through genome mining and liquid chromatography/mass spectrometry profiling using the novel zeaxanthin-producing bacteria <em>Sphingomonas</em> sp. strain BN140010<sup>T</sup> isolated from the subsurface soil of arable land. We report the highest yield among zeaxanthin-producing <em>Sphingomonas</em> strains to date. Moreover, we determined the taxonomic position of BN140010<sup>T</sup> using a polyphasic approach based on phylogenetic, physiological and chemotaxonomic characteristics, and we proposed <em>Sphingomonas arvum</em> strain BN140010<sup>T</sup> as a novel strain. Our results provide a zeaxanthin-producing chassis and diverse genetic tools for microbiological zeaxanthin production. Therefore, this research advances our progress towards the goal of lowering the unit cost of zeaxanthin production, making it more accessible for industrial applications.</div></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"290 ","pages":"Article 127938"},"PeriodicalIF":6.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Colanic acid and lipopolysaccharide in Pectobacterium carotovorum Pcc21 serve as receptors for the bacteriophage phiPccP-2 果胶杆菌 Pcc21 中的胶酸和脂多糖是噬菌体 phiPccP-2 的受体。
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-10-28 DOI: 10.1016/j.micres.2024.127939
Nguyen Trung Vu , Hyeongsoon Kim , In Sun Hwang , Chang-Sik Oh
Bacteriophages (phages) are viruses that specifically bind to and infect target bacteria. The phage phiPccP-2, belonging to the Myoviridae family, efficiently controls Pectobacterium spp. In the present study, we aimed to elucidate the mechanism of recognition of P. carotovorum Pcc21 by phiPccP-2. The EZ-Tn5 transposon mutant library of Pcc21 was used to screen for phage-resistant mutants. Among 4072 mutants screened, 12 harbored disruptions in genes associated with the biosynthesis of either colanic acid (CA) or lipopolysaccharide (LPS) showed resistance to phiPccP-2. Complementation of 4 representative phage-resistant mutants with the corresponding genes fully restored the binding ability and lytic activity of PhiPccP-2. The amounts of CA or LPS structure in these mutants were significantly altered compared with those in the wild-type strain. Adsorption competition assays between CA and LPS extracted from Pcc21 and the natural receptors in Pcc21 showed that unbound phages were significantly increased, indicating that both CA and LPS are associated with the adsorption of the phiPccP-2 to Pcc21. In contrast, the adsorption of phiPccP-2 to extracted CA or LPS did not inactivate the lytic activity of phiPccP-2, indicating that the adsorption to the extracted CA or LPS is not sufficient for DNA injection. Treatment with polymyxin B, which disrupts LPS, interfered with phiPccP-2 adsorption to Pcc21. Furthermore, phage-resistant mutants showed reduced virulence in the host plant, suggesting a trade-off between phage resistance and bacterial virulence. Overall, our results indicate that both CA and LPS serve as receptors for the binding of phiPccP-2 to P. carotovorum Pcc21.
噬菌体(噬菌体)是一种能特异性结合并感染目标细菌的病毒。本研究旨在阐明 phiPccP-2 识别 P. carotovorum Pcc21 的机制。我们利用 Pcc21 的 EZ-Tn5 转座子突变体文库筛选噬菌体抗性突变体。在筛选出的 4072 个突变体中,有 12 个突变体与可乐酸(CA)或脂多糖(LPS)的生物合成有关,它们对 phiPccP-2 具有抗性。用相应的基因对 4 个具有代表性的噬菌体抗性突变体进行补体,完全恢复了 PhiPccP-2 的结合能力和溶解活性。与野生型菌株相比,这些突变体中的 CA 或 LPS 结构量发生了显著变化。从 Pcc21 中提取的 CA 和 LPS 与 Pcc21 中的天然受体之间的吸附竞争试验表明,未结合的噬菌体明显增加,这表明 CA 和 LPS 都与 phiPccP-2 对 Pcc21 的吸附有关。相反,phiPccP-2吸附在提取的CA或LPS上并不会使phiPccP-2的溶菌活性失活,这表明吸附在提取的CA或LPS上不足以进行DNA注入。用能破坏 LPS 的多粘菌素 B 处理也会干扰 phiPccP-2 对 Pcc21 的吸附。此外,噬菌体抗性突变体在寄主植物中的毒力也有所降低,这表明噬菌体抗性与细菌毒力之间存在权衡。总之,我们的研究结果表明,CA 和 LPS 都是 phiPccP-2 与 P. carotovorum Pcc21 结合的受体。
{"title":"Colanic acid and lipopolysaccharide in Pectobacterium carotovorum Pcc21 serve as receptors for the bacteriophage phiPccP-2","authors":"Nguyen Trung Vu ,&nbsp;Hyeongsoon Kim ,&nbsp;In Sun Hwang ,&nbsp;Chang-Sik Oh","doi":"10.1016/j.micres.2024.127939","DOIUrl":"10.1016/j.micres.2024.127939","url":null,"abstract":"<div><div>Bacteriophages (phages) are viruses that specifically bind to and infect target bacteria. The phage phiPccP-2, belonging to the <em>Myoviridae</em> family, efficiently controls <em>Pectobacterium</em> spp. In the present study, we aimed to elucidate the mechanism of recognition of <em>P. carotovorum</em> Pcc21 by phiPccP-2. The EZ-Tn5 transposon mutant library of Pcc21 was used to screen for phage-resistant mutants. Among 4072 mutants screened, 12 harbored disruptions in genes associated with the biosynthesis of either colanic acid (CA) or lipopolysaccharide (LPS) showed resistance to phiPccP-2. Complementation of 4 representative phage-resistant mutants with the corresponding genes fully restored the binding ability and lytic activity of PhiPccP-2. The amounts of CA or LPS structure in these mutants were significantly altered compared with those in the wild-type strain. Adsorption competition assays between CA and LPS extracted from Pcc21 and the natural receptors in Pcc21 showed that unbound phages were significantly increased, indicating that both CA and LPS are associated with the adsorption of the phiPccP-2 to Pcc21. In contrast, the adsorption of phiPccP-2 to extracted CA or LPS did not inactivate the lytic activity of phiPccP-2, indicating that the adsorption to the extracted CA or LPS is not sufficient for DNA injection. Treatment with polymyxin B, which disrupts LPS, interfered with phiPccP-2 adsorption to Pcc21. Furthermore, phage-resistant mutants showed reduced virulence in the host plant, suggesting a trade-off between phage resistance and bacterial virulence. Overall, our results indicate that both CA and LPS serve as receptors for the binding of phiPccP-2 to <em>P. carotovorum</em> Pcc21.</div></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"290 ","pages":"Article 127939"},"PeriodicalIF":6.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of Bacillus Calmette-Guérin-induced macrophage autophagy and apoptosis by the AMPK–mTOR–ULK1 pathway AMPK-mTOR-ULK1通路对卡介苗芽孢杆菌诱导的巨噬细胞自噬和凋亡的调控
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-10-25 DOI: 10.1016/j.micres.2024.127952
Ruiqian Li , Tianle He , Min Yang , Jinghua Xu , Yongqin Li , Xueyan Wang , Xuelian Guo , Mingzhu Li , Lihua Xu
Tuberculosis (TB) is a chronic wasting infectious disease caused by Mycobacterium tuberculosis (MTB) or Mycobacterium bovis that can be transmitted among people and domestic animals. During the development of TB, macrophages of the innate immune system can act against MTB via autophagy and apoptosis to prevent the spread of the disease. Among the many autophagy regulatory pathways, the adenosine monophosphate (AMP)–activated protein kinase (AMPK)–mammalian rapamycin target protein (mTOR)–Unc-51-like kinase 1 (ULK1) pathway has received considerable attention. This study investigates the regulatory role of the AMPK–mTOR–ULK1 pathway in attenuating M. bovis Bacillus Calmette–Guérin (BCG)-induced autophagy and apoptosis in murine monocyte macrophages (RAW264.7). Changes in macrophage autophagy and apoptosis were analyzed using the AMPK activator AICAR and inhibitor Compound C to interfere with the AMPK–mTOR–ULK1 pathway and siRNA to silence the pathway. Consequently, BCG stimulation of macrophages significantly activated the AMPK–mTOR–ULK1 pathway while BCG-induced macrophage AMPK activation promoted macrophage autophagy and apoptosis. Activation of the AMPK–mTOR–ULK1 pathway by AICAR significantly improved autophagy occurrence in BCG-induced macrophages and increased apoptosis while Compound C with siRNA produced opposing effects by attenuating autophagy and apoptosis in BCG-induced macrophages. Thus, the AMPK–mTOR–ULK1 pathway has a dual regulatory role in BCG-induced macrophage autophagy and apoptosis and may have synergistic effects. This study analyzes the mechanism of resistance of host cells to MTB and provides a theoretical basis for new therapeutic strategies and related drug development.
结核病(TB)是由结核分枝杆菌(MTB)或牛分枝杆菌引起的一种慢性消耗性传染病,可在人和家畜之间传播。在结核病的发展过程中,先天性免疫系统的巨噬细胞可以通过自噬和凋亡来对抗 MTB,从而防止疾病的传播。在众多自噬调控途径中,单磷酸腺苷(AMP)激活的蛋白激酶(AMPK)-哺乳动物雷帕霉素靶蛋白(mTOR)-类Unc-51激酶1(ULK1)途径受到了广泛关注。本研究探讨了AMPK-mTOR-ULK1通路在减弱鼠单核巨噬细胞(RAW264.7)中M. bovis Bacillus Calmette-Guérin(BCG)诱导的自噬和细胞凋亡中的调节作用。利用 AMPK 激活剂 AICAR 和抑制剂化合物 C 干扰 AMPK-mTOR-ULK1 通路,以及 siRNA 沉默该通路,分析了巨噬细胞自噬和凋亡的变化。结果发现,卡介苗刺激巨噬细胞能显著激活AMPK-mTOR-ULK1通路,而卡介苗诱导的巨噬细胞AMPK激活能促进巨噬细胞自噬和凋亡。AICAR激活AMPK-mTOR-ULK1通路可明显改善卡介苗诱导的巨噬细胞自噬的发生,并增加细胞凋亡,而带有siRNA的化合物C则产生相反的效果,可减少卡介苗诱导的巨噬细胞自噬和细胞凋亡。因此,AMPK-mTOR-ULK1通路在卡介苗诱导的巨噬细胞自噬和凋亡中具有双重调控作用,并可能产生协同效应。本研究分析了宿主细胞对MTB的耐药性机制,为新的治疗策略和相关药物开发提供了理论依据。
{"title":"Regulation of Bacillus Calmette-Guérin-induced macrophage autophagy and apoptosis by the AMPK–mTOR–ULK1 pathway","authors":"Ruiqian Li ,&nbsp;Tianle He ,&nbsp;Min Yang ,&nbsp;Jinghua Xu ,&nbsp;Yongqin Li ,&nbsp;Xueyan Wang ,&nbsp;Xuelian Guo ,&nbsp;Mingzhu Li ,&nbsp;Lihua Xu","doi":"10.1016/j.micres.2024.127952","DOIUrl":"10.1016/j.micres.2024.127952","url":null,"abstract":"<div><div>Tuberculosis (TB) is a chronic wasting infectious disease caused by <em>Mycobacterium tuberculosis</em> (MTB) or <em>Mycobacterium bovis</em> that can be transmitted among people and domestic animals. During the development of TB, macrophages of the innate immune system can act against MTB via autophagy and apoptosis to prevent the spread of the disease. Among the many autophagy regulatory pathways, the adenosine monophosphate (AMP)–activated protein kinase (AMPK)–mammalian rapamycin target protein (mTOR)–Unc-51-like kinase 1 (ULK1) pathway has received considerable attention. This study investigates the regulatory role of the AMPK–mTOR–ULK1 pathway in attenuating <em>M. bovis</em> Bacillus Calmette–Guérin (BCG)-induced autophagy and apoptosis in murine monocyte macrophages (RAW264.7). Changes in macrophage autophagy and apoptosis were analyzed using the AMPK activator AICAR and inhibitor Compound C to interfere with the AMPK–mTOR–ULK1 pathway and siRNA to silence the pathway. Consequently, BCG stimulation of macrophages significantly activated the AMPK–mTOR–ULK1 pathway while BCG-induced macrophage AMPK activation promoted macrophage autophagy and apoptosis. Activation of the AMPK–mTOR–ULK1 pathway by AICAR significantly improved autophagy occurrence in BCG-induced macrophages and increased apoptosis while Compound C with siRNA produced opposing effects by attenuating autophagy and apoptosis in BCG-induced macrophages. Thus, the AMPK–mTOR–ULK1 pathway has a dual regulatory role in BCG-induced macrophage autophagy and apoptosis and may have synergistic effects. This study analyzes the mechanism of resistance of host cells to MTB and provides a theoretical basis for new therapeutic strategies and related drug development.</div></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"290 ","pages":"Article 127952"},"PeriodicalIF":6.1,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Use in a controlled environment of Trichoderma asperellum ICC012 and Trichoderma gamsii ICC080 to manage FHB on common wheat 在受控环境中使用Trichoderma asperellum ICC012和Trichoderma gamsii ICC080防治普通小麦上的FHB病害
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-10-24 DOI: 10.1016/j.micres.2024.127941
Marco Cesarini , Arianna Petrucci , Eliverta Hotaj , Giovanni Venturini , Riccardo Liguori , Sabrina Sarrocco
Fusarium head blight (FHB) represents a significant threat for wheat production due to the risk for food security and safety. Despite the huge number of biofungicides on the market, only one is actually available at European level to control Fusarium infections on cereals. The present work aimed to assess the possible use of Trichoderma asperellum strain ICC012 and Trichoderma gamsii strain ICC080 to manage FHB on common wheat Triticum aestivum cv Apogee. Initially, the capability of ICC012 and ICC080 to endophytically colonize wheat roots, a prerequisite very often correlated with the induction of resistance in the host plant, was investigated. It resulted in 100 % of roots internally colonized by the two strains, followed by a significant up-regulation of the defense-related genes encoding for pathogenesis-related protein 1 (pr1), superoxide dismutase (sod), polygalacturonase inhibitor protein 2 (pgip2) and phenylalanine ammonia-lyase 1 (pal1). When the expression of the same genes was investigated in spikes treated at the flowering stage with the two strains, applied individually or co-inoculated, a significant up-regulation of only pal1 was registered 24 hours post inoculation (hpi) in spikes treated with ICC080. To check if a systemic defense response was induced, the expression of the same genes was analyzed in leaves collected 7 and 14 days post inoculation (dpi) of roots, resulting in a significant up-regulation of sod at 7 dpi in leaves collected from plants inoculated with ICC012. Even if induction of resistance is probably not the main mode of action of the two strains, ICC012 and ICC080 applied on spikes at anthesis significantly reduced, in greenhouse conditions, the Disease Incidence (DI) caused by the inoculation mix of F. graminearum, F. culmorum, F. langsethiae and F. sporotrichioides, four of the most important FHB casual agents. This reduction in disease symptoms was observed when the two beneficial strains were applied both individually and co-inoculated on the spikes. Finally, ICC012 and ICC080 demonstrated a good competitive ability for substrate possession. The amount of F. graminearum (as DNA and number of perithecia) on wheat straw pieces was significantly reduced after 6 months of incubation in presence of the two beneficial strains, applied individually and co-inoculated. Being cultural debris used to overwinter, this competitive behavior of ICC012 and ICC080 is an important trait to reduce the potential inoculum of the pathogen. The results collected here lay the groundwork for the use of ICC012 and ICC080 in managing FHB on common wheat.
镰刀菌头疫病(FHB)对小麦生产构成重大威胁,因为它会危及粮食安全和食品安全。尽管市场上有大量的生物杀菌剂,但在欧洲范围内,实际上只有一种生物杀菌剂可用于控制镰刀菌对谷物的感染。目前的工作旨在评估是否可能使用赤霉菌(Trichoderma asperellum)菌株 ICC012 和γ-赤霉菌(Trichoderma gamsii)菌株 ICC080 来控制普通小麦 Triticum aestivum cv Apogee 上的镰刀菌。首先,研究了 ICC012 和 ICC080 在小麦根部内生定殖的能力,这是诱导寄主植物产生抗性的先决条件。结果发现,100% 的根系都被这两种菌株内定殖,随后编码病原相关蛋白 1 (pr1)、超氧化物歧化酶 (sod)、聚半乳糖醛酸酶抑制蛋白 2 (pgip2) 和苯丙氨酸氨化酶 1 (pal1) 的防御相关基因显著上调。在花期用这两种菌株单独或共同接种处理穗状花序时,对相同基因的表达情况进行了调查,结果发现,在接种后 24 小时(hpi),用 ICC080 处理的穗状花序中,只有 pal1 有显著的上调。为了检测是否诱导了系统性防御反应,对根部接种后 7 天和 14 天(dpi)收集的叶片中相同基因的表达进行了分析,结果显示,在接种 ICC012 的植株上收集的叶片中,sod 在接种后 7 dpi 有明显上调。尽管诱导抗性可能不是这两种菌株的主要作用方式,但在温室条件下,在花期将 ICC012 和 ICC080 施用于穗上,可显著降低由禾谷镰孢菌、高秆禾谷镰孢菌、兰氏禾谷镰孢菌和孢子禾谷镰孢菌(F. sporotrichioides)这四种最重要的 FHB 致病菌混合接种引起的病害发生率(DI)。当这两种有益菌株单独或共同接种在穗上时,病害症状都会减轻。最后,ICC012 和 ICC080 在底物占有方面表现出良好的竞争能力。在两种有益菌株单独接种和共同接种的情况下,经过 6 个月的培养,小麦秸秆碎片上的禾谷镰孢数量(以 DNA 和栖孢数量表示)明显减少。ICC012 和 ICC080 是用于越冬的文化碎片,它们的这种竞争行为是减少病原体潜在接种量的重要特征。本文收集的结果为使用 ICC012 和 ICC080 防治普通小麦上的 FHB 奠定了基础。
{"title":"Use in a controlled environment of Trichoderma asperellum ICC012 and Trichoderma gamsii ICC080 to manage FHB on common wheat","authors":"Marco Cesarini ,&nbsp;Arianna Petrucci ,&nbsp;Eliverta Hotaj ,&nbsp;Giovanni Venturini ,&nbsp;Riccardo Liguori ,&nbsp;Sabrina Sarrocco","doi":"10.1016/j.micres.2024.127941","DOIUrl":"10.1016/j.micres.2024.127941","url":null,"abstract":"<div><div>Fusarium head blight (FHB) represents a significant threat for wheat production due to the risk for food security and safety. Despite the huge number of biofungicides on the market, only one is actually available at European level to control Fusarium infections on cereals. The present work aimed to assess the possible use of <em>Trichoderma asperellum</em> strain ICC012 and <em>Trichoderma gamsii</em> strain ICC080 to manage FHB on common wheat <em>Triticum aestivum</em> cv Apogee. Initially, the capability of ICC012 and ICC080 to endophytically colonize wheat roots, a prerequisite very often correlated with the induction of resistance in the host plant, was investigated. It resulted in 100 % of roots internally colonized by the two strains, followed by a significant up-regulation of the defense-related genes encoding for pathogenesis-related protein 1 (<em>pr1</em>)<em>,</em> superoxide dismutase (<em>sod</em>), polygalacturonase inhibitor protein 2 (<em>pgip2</em>) and phenylalanine ammonia-lyase 1 <em>(pal1</em>). When the expression of the same genes was investigated in spikes treated at the flowering stage with the two strains, applied individually or co-inoculated, a significant up-regulation of only <em>pal1</em> was registered 24 hours post inoculation (hpi) in spikes treated with ICC080. To check if a systemic defense response was induced, the expression of the same genes was analyzed in leaves collected 7 and 14 days post inoculation (dpi) of roots, resulting in a significant up-regulation of <em>sod</em> at 7 dpi in leaves collected from plants inoculated with ICC012. Even if induction of resistance is probably not the main mode of action of the two strains, ICC012 and ICC080 applied on spikes at anthesis significantly reduced, in greenhouse conditions, the Disease Incidence (DI) caused by the inoculation mix of <em>F. graminearum</em>, <em>F. culmorum</em>, <em>F. langsethiae</em> and <em>F. sporotrichioides</em>, four of the most important FHB casual agents. This reduction in disease symptoms was observed when the two beneficial strains were applied both individually and co-inoculated on the spikes. Finally, ICC012 and ICC080 demonstrated a good competitive ability for substrate possession. The amount of <em>F. graminearum</em> (as DNA and number of perithecia) on wheat straw pieces was significantly reduced after 6 months of incubation in presence of the two beneficial strains, applied individually and co-inoculated. Being cultural debris used to overwinter, this competitive behavior of ICC012 and ICC080 is an important trait to reduce the potential inoculum of the pathogen. The results collected here lay the groundwork for the use of ICC012 and ICC080 in managing FHB on common wheat<strong>.</strong></div></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"290 ","pages":"Article 127941"},"PeriodicalIF":6.1,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pseudomonas produce various metabolites displaying herbicide activity against broomrape 假单胞菌产生的各种代谢物对扫帚菜具有除草活性
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-10-22 DOI: 10.1016/j.micres.2024.127933
Tristan Lurthy , Florence Gerin, Marjolaine Rey , Pierre-Edouard Mercier , Gilles Comte , Florence Wisniewski-Dyé , Claire Prigent-Combaret
Pseudomonads are well-known for their plant growth-promoting properties and biocontrol capabilities against microbial pathogens. Recently, their potential to protect crops from parasitic plants has garnered attention. This study investigates the potential of different Pseudomonas strains to inhibit broomrape growth and to protect host plants against weed infestation. Four Pseudomonas strains, two P. fluorescens JV391D17 and JV391D10, one P. chlororaphis JV395B and one P. ogarae F113 were cultivated using various carbon sources, including fructose, pyruvate, fumarate, and malate, to enhance the diversity of potential Orobanche growth inhibition (OGI)-specialized metabolites produced by Pseudomonas strains. Both global and targeted metabolomic approaches were utilized to identify specific OGI metabolites. Both carbon sources and Pseudomonas genetic diversity significantly influenced the production of OGI metabolites. P. chlororaphis JV395B and P. ogarae F113 produced unique OGI metabolites belonging to different chemical families, such as hydroxyphenazines and phloroglucinol compounds, respectively. Additionally, metabolomic analyses identified an unannotated potential OGI ion, M375T65. This ion was produced by all Pseudomonas strains but was found to be over-accumulated in JV395B, which likely explains its superior OGI activity. Then, greenhouse experiments were performed to evaluate the biocontrol efficacy of selected strains: they showed the efficacy of these strains, particularly JV395B, in reducing broomrape infestation in rapeseed. These findings suggest that certain Pseudomonas strains, through their metabolite production, can offer a sustainable biocontrol strategy against parasitic plants. This biocontrol activity can be optimized by environmental factors, such as carbon amendments. Ultimately, this approach presents a promising alternative to chemical herbicides.
假单胞菌以其促进植物生长的特性和对微生物病原体的生物防治能力而闻名。最近,假单胞菌保护农作物免受寄生植物侵害的潜力引起了人们的关注。本研究调查了不同假单胞菌株抑制扫帚霉生长和保护寄主植物免受杂草侵扰的潜力。研究人员利用果糖、丙酮酸盐、富马酸盐和苹果酸盐等不同碳源培养了四株假单胞菌,其中两株为荧光假单胞菌 JV391D17 和 JV391D10,一株为绿假单胞菌 JV395B,还有一株为奥加假单胞菌 F113,以提高假单胞菌菌株产生的潜在裸冠菊生长抑制(OGI)特化代谢物的多样性。为了鉴定特定的 OGI 代谢物,采用了全局和目标代谢组学方法。碳源和假单胞菌遗传多样性都对 OGI 代谢物的产生有显著影响。P. chlororaphis JV395B 和 P. ogarae F113 产生了独特的 OGI 代谢物,它们分别属于不同的化学家族,如羟基吩嗪类化合物和氯代葡萄糖苷醇化合物。此外,代谢组分析还发现了一种未注释的潜在 OGI 离子 M375T65。所有假单胞菌菌株都能产生这种离子,但在 JV395B 中发现这种离子过度积累,这可能是其 OGI 活性更强的原因。然后,进行了温室实验,以评估所选菌株的生物防治功效:实验结果表明,这些菌株,尤其是 JV395B,在减少油菜籽中的扫帚霉侵染方面具有功效。这些研究结果表明,某些假单胞菌菌株通过产生代谢物,可以提供一种针对寄生植物的可持续生物防治策略。这种生物防治活性可以通过碳添加剂等环境因素进行优化。最终,这种方法有望替代化学除草剂。
{"title":"Pseudomonas produce various metabolites displaying herbicide activity against broomrape","authors":"Tristan Lurthy ,&nbsp;Florence Gerin,&nbsp;Marjolaine Rey ,&nbsp;Pierre-Edouard Mercier ,&nbsp;Gilles Comte ,&nbsp;Florence Wisniewski-Dyé ,&nbsp;Claire Prigent-Combaret","doi":"10.1016/j.micres.2024.127933","DOIUrl":"10.1016/j.micres.2024.127933","url":null,"abstract":"<div><div>Pseudomonads are well-known for their plant growth-promoting properties and biocontrol capabilities against microbial pathogens. Recently, their potential to protect crops from parasitic plants has garnered attention. This study investigates the potential of different <em>Pseudomonas</em> strains to inhibit broomrape growth and to protect host plants against weed infestation. Four <em>Pseudomonas</em> strains, two <em>P. fluorescens</em> JV391D17 and JV391D10, one <em>P. chlororaphis</em> JV395B and one <em>P. ogarae</em> F113 were cultivated using various carbon sources, including fructose, pyruvate, fumarate, and malate, to enhance the diversity of potential Orobanche growth inhibition (OGI)-specialized metabolites produced by <em>Pseudomonas</em> strains. Both global and targeted metabolomic approaches were utilized to identify specific OGI metabolites. Both carbon sources and <em>Pseudomonas</em> genetic diversity significantly influenced the production of OGI metabolites. <em>P. chlororaphis</em> JV395B and <em>P. ogarae</em> F113 produced unique OGI metabolites belonging to different chemical families, such as hydroxyphenazines and phloroglucinol compounds, respectively. Additionally, metabolomic analyses identified an unannotated potential OGI ion, M375T65. This ion was produced by all <em>Pseudomonas</em> strains but was found to be over-accumulated in JV395B, which likely explains its superior OGI activity. Then, greenhouse experiments were performed to evaluate the biocontrol efficacy of selected strains: they showed the efficacy of these strains, particularly JV395B, in reducing broomrape infestation in rapeseed. These findings suggest that certain <em>Pseudomonas</em> strains, through their metabolite production, can offer a sustainable biocontrol strategy against parasitic plants. This biocontrol activity can be optimized by environmental factors, such as carbon amendments. Ultimately, this approach presents a promising alternative to chemical herbicides.</div></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"290 ","pages":"Article 127933"},"PeriodicalIF":6.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial chemotaxis in degradation of xenobiotics: Current trends and opportunities 微生物在降解异种生物过程中的趋化作用:当前趋势与机遇。
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-10-22 DOI: 10.1016/j.micres.2024.127935
Zhipeng Zhuang , Sivasamy Sethupathy , Yadira Bajón-Fernández , Shehbaz Ali , Lili Niu , Daochen Zhu
Chemotaxis, the directed movement of microbes in response to chemical gradients, plays a crucial role in the biodegradation of xenobiotics, such as pesticides, industrial chemicals, and pharmaceuticals, which pose significant environmental and health risks. Emerging trends in genomics, proteomics, and synthetic biology have advanced our understanding and control of these processes, thereby enabling the development of engineered microorganisms with tailored chemotactic responses and degradation capabilities. This process plays an essential physiological role in processes, such as surface sensing, biofilm formation, quorum detection, pathogenicity, colonization, symbiotic interactions with the host system, and plant growth promotion. Field applications have demonstrated the potential of bioremediation for cleaning contaminated environments. Therefore, it helps to increase the bioavailability of pollutants and enables bacteria to access distantly located pollutants. Despite considerable breakthroughs in decoding the regulatory mechanisms of bacterial chemotaxis, there are still gaps in knowledge that need to be resolved to harness its potential for sensing and degrading pollutants in the environment. This review covers the role of bacterial chemotaxis in the degradation of xenobiotics present in the environment, focusing on chemotaxis-based bacterial and microfluidic biosensors for environmental monitoring. Finally, we highlight the current challenges and future perspectives for developing more effective and sustainable strategies to mitigate the environmental impact of xenobiotics.
趋化作用是微生物根据化学梯度进行的定向运动,在杀虫剂、工业化学品和药品等对环境和健康构成重大风险的异种生物的生物降解过程中发挥着至关重要的作用。基因组学、蛋白质组学和合成生物学的新趋势推进了我们对这些过程的理解和控制,从而使我们能够开发出具有定制趋化反应和降解能力的工程微生物。这一过程在表面感应、生物膜形成、法定人数检测、致病性、定殖、与宿主系统的共生相互作用以及促进植物生长等过程中发挥着重要的生理作用。实地应用已经证明了生物修复在清洁受污染环境方面的潜力。因此,它有助于提高污染物的生物利用率,并使细菌能够接触到远处的污染物。尽管在解码细菌趋化的调控机制方面取得了重大突破,但要利用细菌趋化的潜力来感知和降解环境中的污染物,仍有许多知识空白需要解决。本综述介绍了细菌趋化在降解环境中存在的异种生物中的作用,重点是基于趋化的细菌和微流控生物传感器在环境监测中的应用。最后,我们强调了当前的挑战和未来的前景,以开发更有效、更可持续的策略来减轻异种生物对环境的影响。
{"title":"Microbial chemotaxis in degradation of xenobiotics: Current trends and opportunities","authors":"Zhipeng Zhuang ,&nbsp;Sivasamy Sethupathy ,&nbsp;Yadira Bajón-Fernández ,&nbsp;Shehbaz Ali ,&nbsp;Lili Niu ,&nbsp;Daochen Zhu","doi":"10.1016/j.micres.2024.127935","DOIUrl":"10.1016/j.micres.2024.127935","url":null,"abstract":"<div><div>Chemotaxis, the directed movement of microbes in response to chemical gradients, plays a crucial role in the biodegradation of xenobiotics, such as pesticides, industrial chemicals, and pharmaceuticals, which pose significant environmental and health risks. Emerging trends in genomics, proteomics, and synthetic biology have advanced our understanding and control of these processes, thereby enabling the development of engineered microorganisms with tailored chemotactic responses and degradation capabilities. This process plays an essential physiological role in processes, such as surface sensing, biofilm formation, quorum detection, pathogenicity, colonization, symbiotic interactions with the host system, and plant growth promotion. Field applications have demonstrated the potential of bioremediation for cleaning contaminated environments. Therefore, it helps to increase the bioavailability of pollutants and enables bacteria to access distantly located pollutants. Despite considerable breakthroughs in decoding the regulatory mechanisms of bacterial chemotaxis, there are still gaps in knowledge that need to be resolved to harness its potential for sensing and degrading pollutants in the environment. This review covers the role of bacterial chemotaxis in the degradation of xenobiotics present in the environment, focusing on chemotaxis-based bacterial and microfluidic biosensors for environmental monitoring. Finally, we highlight the current challenges and future perspectives for developing more effective and sustainable strategies to mitigate the environmental impact of xenobiotics.</div></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"290 ","pages":"Article 127935"},"PeriodicalIF":6.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Warm growing season activates microbial nutrient cycling to promote fertilizer nitrogen uptake by maize 温暖的生长季节激活微生物养分循环,促进玉米对肥料氮的吸收
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-10-20 DOI: 10.1016/j.micres.2024.127936
Chao He , Jean Damascene Harindintwali , Hao Cui , Jia Yao , Zhirong Wang , Qingyang Zhu , Fang Wang , Jingping Yang
The influence of nitrogen (N) inputs on soil microbial communities and N uptake by plants is well-documented. Seasonal variations further impact these microbial communities and their nutrient-cycling functions, particularly within multiple cropping systems. Nevertheless, the combined effects of N fertilization and growing seasons on soil microbial communities and plant N uptake remain ambiguous, thereby constraining our comprehension of the optimal growing season for maximizing crop production. In this study, we employed 15N isotope labeling, high-throughput sequencing, and quantitative polymerase chain reaction (qPCR) techniques to investigate the effects of two distinct growing seasons on microbial communities and maize 15N uptake ratios (15NUR). Our results showed that the warm growing season (26.6 °C) increased microbial diversity, reduced network complexity but enhanced stability, decreased microbial associations, and increased modularization compared to the cool growing season (23.1 °C). Additionally, the warm growing season favored oligotrophic species and increased the abundance of microbial guilds and functional genes related to N, phosphorus, and sulfur cycling. Furthermore, alterations in the characteristics of soil microbial keystone taxa were closely linked to variations in maize 15NUR. Overall, our findings demonstrate significant seasonal variations in soil microbial diversity and functioning, with maize exhibiting higher 15NUR during the warm growing season of the double cropping system.
氮(N)输入对土壤微生物群落和植物对氮的吸收的影响已得到充分证实。季节变化会进一步影响这些微生物群落及其养分循环功能,尤其是在多作物系统中。然而,氮肥施用和生长季节对土壤微生物群落和植物氮吸收的综合影响仍不明确,从而限制了我们对作物产量最大化的最佳生长季节的理解。在这项研究中,我们采用 15N 同位素标记、高通量测序和定量聚合酶链式反应(qPCR)技术,研究了两个不同生长季对微生物群落和玉米 15N 吸收比(15NUR)的影响。结果表明,与凉爽生长季(23.1 °C)相比,温暖生长季(26.6 °C)增加了微生物多样性,降低了网络复杂性,但增强了稳定性,减少了微生物关联,增加了模块化。此外,温暖的生长季有利于低营养物种,并增加了与氮、磷和硫循环相关的微生物行会和功能基因的丰度。此外,土壤微生物关键类群特征的改变与玉米 15NUR 的变化密切相关。总之,我们的研究结果表明,土壤微生物多样性和功能存在显著的季节性变化,在双季种植系统的温暖生长季节,玉米的 15NUR 较高。
{"title":"Warm growing season activates microbial nutrient cycling to promote fertilizer nitrogen uptake by maize","authors":"Chao He ,&nbsp;Jean Damascene Harindintwali ,&nbsp;Hao Cui ,&nbsp;Jia Yao ,&nbsp;Zhirong Wang ,&nbsp;Qingyang Zhu ,&nbsp;Fang Wang ,&nbsp;Jingping Yang","doi":"10.1016/j.micres.2024.127936","DOIUrl":"10.1016/j.micres.2024.127936","url":null,"abstract":"<div><div>The influence of nitrogen (N) inputs on soil microbial communities and N uptake by plants is well-documented. Seasonal variations further impact these microbial communities and their nutrient-cycling functions, particularly within multiple cropping systems. Nevertheless, the combined effects of N fertilization and growing seasons on soil microbial communities and plant N uptake remain ambiguous, thereby constraining our comprehension of the optimal growing season for maximizing crop production. In this study, we employed <sup>15</sup>N isotope labeling, high-throughput sequencing, and quantitative polymerase chain reaction (qPCR) techniques to investigate the effects of two distinct growing seasons on microbial communities and maize <sup>15</sup>N uptake ratios (<sup>15</sup>NUR). Our results showed that the warm growing season (26.6 °C) increased microbial diversity, reduced network complexity but enhanced stability, decreased microbial associations, and increased modularization compared to the cool growing season (23.1 °C). Additionally, the warm growing season favored oligotrophic species and increased the abundance of microbial guilds and functional genes related to N, phosphorus, and sulfur cycling. Furthermore, alterations in the characteristics of soil microbial keystone taxa were closely linked to variations in maize <sup>15</sup>NUR. Overall, our findings demonstrate significant seasonal variations in soil microbial diversity and functioning, with maize exhibiting higher <sup>15</sup>NUR during the warm growing season of the double cropping system.</div></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"290 ","pages":"Article 127936"},"PeriodicalIF":6.1,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Microbiological research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1