Pub Date : 2024-11-11DOI: 10.1038/s41579-024-01119-w
Solange Duhamel
Phosphorus is an essential element for life, and phosphorus cycling is crucial to planetary habitability. In aquatic environments, microorganisms are a major component of phosphorus cycling and rapidly transform the diverse chemical forms of phosphorus through various uptake, assimilation and release pathways. Recent discoveries have revealed a more dynamic and complex aquatic microbial phosphorus cycle than previously understood. Some microorganisms have been shown to use and produce new phosphorus compounds, including those in reduced forms. New findings have also raised numerous unanswered questions that warrant further investigation. There is an expanding influence of human activity on aquatic ecosystems. Advancements in understanding the phosphorus biogeochemistry of evolving aquatic environments offer a unique opportunity to comprehend, anticipate and mitigate the effect of human activities. In this Review, I discuss the wealth of new aquatic phosphorus cycle research, spanning disciplines from omics and physiology to global biogeochemical modelling, with a focus on the current comprehension of how aquatic microorganisms sense, transport, assimilate, store, produce and release phosphorus. Of note, I delve into cellular phosphorus allocation, an underexplored topic with wide-ranging implications for energy and element flux in aquatic ecosystems.
{"title":"The microbial phosphorus cycle in aquatic ecosystems","authors":"Solange Duhamel","doi":"10.1038/s41579-024-01119-w","DOIUrl":"https://doi.org/10.1038/s41579-024-01119-w","url":null,"abstract":"<p>Phosphorus is an essential element for life, and phosphorus cycling is crucial to planetary habitability. In aquatic environments, microorganisms are a major component of phosphorus cycling and rapidly transform the diverse chemical forms of phosphorus through various uptake, assimilation and release pathways. Recent discoveries have revealed a more dynamic and complex aquatic microbial phosphorus cycle than previously understood. Some microorganisms have been shown to use and produce new phosphorus compounds, including those in reduced forms. New findings have also raised numerous unanswered questions that warrant further investigation. There is an expanding influence of human activity on aquatic ecosystems. Advancements in understanding the phosphorus biogeochemistry of evolving aquatic environments offer a unique opportunity to comprehend, anticipate and mitigate the effect of human activities. In this Review, I discuss the wealth of new aquatic phosphorus cycle research, spanning disciplines from omics and physiology to global biogeochemical modelling, with a focus on the current comprehension of how aquatic microorganisms sense, transport, assimilate, store, produce and release phosphorus. Of note, I delve into cellular phosphorus allocation, an underexplored topic with wide-ranging implications for energy and element flux in aquatic ecosystems.</p>","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"153 1","pages":""},"PeriodicalIF":88.1,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Infections caused by Streptococcus pneumoniae (also known as pneumococci) pose a threat to human health. Pneumococcal infections are the most common cause of milder respiratory tract infections, such as otitis and sinusitis, and of more severe diseases, including pneumonia (with or without septicaemia) and meningitis. The introduction of pneumococcal conjugate vaccines in the childhood vaccination programme in many countries has led to a notable decrease of severe invasive pneumococcal disease in vaccinated children. However, infections caused by non-vaccine types have concurrently increased, causing invasive pneumococcal disease in unvaccinated populations (such as older adults), which has hampered the effect of these vaccines. Moreover, emerging antibiotic resistance is threatening effective therapy. Thus, new approaches are needed for the treatment and prevention of pneumococcal infections, and recent advances in the field may pave the way for new strategies. Recently, several important findings have been gained regarding pneumococcal epidemiology, genomics and the effect of the introduction of pneumococcal conjugate vaccines and of the COVID-19 pandemic. Moreover, elucidative pathogenesis studies have shown that the interactions between pneumococcal virulence factors and host receptors may be exploited for new therapies, and new vaccine candidates have been suggested. In this Review, we summarize some recent findings from clinical disease to basic pathogenesis studies that may be of importance for future control strategies.
{"title":"Streptococcus pneumoniae epidemiology, pathogenesis and control","authors":"Ana Rita Narciso, Rebecca Dookie, Priyanka Nannapaneni, Staffan Normark, Birgitta Henriques-Normark","doi":"10.1038/s41579-024-01116-z","DOIUrl":"https://doi.org/10.1038/s41579-024-01116-z","url":null,"abstract":"<p>Infections caused by <i>Streptococcus pneumoniae</i> (also known as pneumococci) pose a threat to human health. Pneumococcal infections are the most common cause of milder respiratory tract infections, such as otitis and sinusitis, and of more severe diseases, including pneumonia (with or without septicaemia) and meningitis. The introduction of pneumococcal conjugate vaccines in the childhood vaccination programme in many countries has led to a notable decrease of severe invasive pneumococcal disease in vaccinated children. However, infections caused by non-vaccine types have concurrently increased, causing invasive pneumococcal disease in unvaccinated populations (such as older adults), which has hampered the effect of these vaccines. Moreover, emerging antibiotic resistance is threatening effective therapy. Thus, new approaches are needed for the treatment and prevention of pneumococcal infections, and recent advances in the field may pave the way for new strategies. Recently, several important findings have been gained regarding pneumococcal epidemiology, genomics and the effect of the introduction of pneumococcal conjugate vaccines and of the COVID-19 pandemic. Moreover, elucidative pathogenesis studies have shown that the interactions between pneumococcal virulence factors and host receptors may be exploited for new therapies, and new vaccine candidates have been suggested. In this Review, we summarize some recent findings from clinical disease to basic pathogenesis studies that may be of importance for future control strategies.</p>","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"104 1","pages":""},"PeriodicalIF":88.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1038/s41579-024-01122-1
Andrea Du Toit
This study describes the discovery of a previously uncharacterized phylogenetically distinct group of viroid-like human microbiome-associated RNAs.
这项研究描述了此前未曾定性的一组类似于病毒的人类微生物相关 RNA 的系统发育特征。
{"title":"Microbiome-colonizing RNAs","authors":"Andrea Du Toit","doi":"10.1038/s41579-024-01122-1","DOIUrl":"10.1038/s41579-024-01122-1","url":null,"abstract":"This study describes the discovery of a previously uncharacterized phylogenetically distinct group of viroid-like human microbiome-associated RNAs.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"22 12","pages":"739-739"},"PeriodicalIF":69.2,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1038/s41579-024-01120-3
Andrea Du Toit
This new study shows that the leading region of plasmids has a key role in overcoming host immunity by functioning as ‘anti-defence islands’ that protect the invading plasmid following entry.
{"title":"Anti-defence islands in plasmids","authors":"Andrea Du Toit","doi":"10.1038/s41579-024-01120-3","DOIUrl":"10.1038/s41579-024-01120-3","url":null,"abstract":"This new study shows that the leading region of plasmids has a key role in overcoming host immunity by functioning as ‘anti-defence islands’ that protect the invading plasmid following entry.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"22 12","pages":"739-739"},"PeriodicalIF":69.2,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1038/s41579-024-01107-0
Raphaela Joos, Katy Boucher, Aonghus Lavelle, Manimozhiyan Arumugam, Martin J. Blaser, Marcus J. Claesson, Gerard Clarke, Paul D. Cotter, Luisa De Sordi, Maria G. Dominguez-Bello, Bas E. Dutilh, Stanislav D. Ehrlich, Tarini Shankar Ghosh, Colin Hill, Christophe Junot, Leo Lahti, Trevor D. Lawley, Tine R. Licht, Emmanuelle Maguin, Thulani P. Makhalanyane, Julian R. Marchesi, Jelle Matthijnssens, Jeroen Raes, Jacques Ravel, Anne Salonen, Pauline D. Scanlan, Andrey Shkoporov, Catherine Stanton, Ines Thiele, Igor Tolstoy, Jens Walter, Bo Yang, Natalia Yutin, Alexandra Zhernakova, Hub Zwart, Joël Doré, R. Paul Ross
Human microbiomes are essential to health throughout the lifespan and are increasingly recognized and studied for their roles in metabolic, immunological and neurological processes. Although the full complexity of these microbial communities is not fully understood, their clinical and industrial exploitation is well advanced and expanding, needing greater oversight guided by a consensus from the research community. One of the most controversial issues in microbiome research is the definition of a ‘healthy’ human microbiome. This concept is complicated by the microbial variability over different spatial and temporal scales along with the challenge of applying a unified definition to the spectrum of healthy microbiome configurations. In this Perspective, we examine the progress made and the key gaps that remain to be addressed to fully harness the benefits of the human microbiome. We propose a road map to expand our knowledge of the microbiome–health relationship, incorporating epidemiological approaches informed by the unique ecological characteristics of these communities.
{"title":"Examining the healthy human microbiome concept","authors":"Raphaela Joos, Katy Boucher, Aonghus Lavelle, Manimozhiyan Arumugam, Martin J. Blaser, Marcus J. Claesson, Gerard Clarke, Paul D. Cotter, Luisa De Sordi, Maria G. Dominguez-Bello, Bas E. Dutilh, Stanislav D. Ehrlich, Tarini Shankar Ghosh, Colin Hill, Christophe Junot, Leo Lahti, Trevor D. Lawley, Tine R. Licht, Emmanuelle Maguin, Thulani P. Makhalanyane, Julian R. Marchesi, Jelle Matthijnssens, Jeroen Raes, Jacques Ravel, Anne Salonen, Pauline D. Scanlan, Andrey Shkoporov, Catherine Stanton, Ines Thiele, Igor Tolstoy, Jens Walter, Bo Yang, Natalia Yutin, Alexandra Zhernakova, Hub Zwart, Joël Doré, R. Paul Ross","doi":"10.1038/s41579-024-01107-0","DOIUrl":"https://doi.org/10.1038/s41579-024-01107-0","url":null,"abstract":"<p>Human microbiomes are essential to health throughout the lifespan and are increasingly recognized and studied for their roles in metabolic, immunological and neurological processes. Although the full complexity of these microbial communities is not fully understood, their clinical and industrial exploitation is well advanced and expanding, needing greater oversight guided by a consensus from the research community. One of the most controversial issues in microbiome research is the definition of a ‘healthy’ human microbiome. This concept is complicated by the microbial variability over different spatial and temporal scales along with the challenge of applying a unified definition to the spectrum of healthy microbiome configurations. In this Perspective, we examine the progress made and the key gaps that remain to be addressed to fully harness the benefits of the human microbiome. We propose a road map to expand our knowledge of the microbiome–health relationship, incorporating epidemiological approaches informed by the unique ecological characteristics of these communities.</p>","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"25 1","pages":""},"PeriodicalIF":88.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1038/s41579-024-01115-0
Abraham Morales-Cruz, Leo A. Baumgart
This Genome Watch explores recent transcriptomic and metatranscriptomic analyses that revealed the key role of secondary endosymbionts in host immunity and disease transmission within their insect or plant hosts.
{"title":"Harnessing symbiotic bacteria for disease control","authors":"Abraham Morales-Cruz, Leo A. Baumgart","doi":"10.1038/s41579-024-01115-0","DOIUrl":"10.1038/s41579-024-01115-0","url":null,"abstract":"This Genome Watch explores recent transcriptomic and metatranscriptomic analyses that revealed the key role of secondary endosymbionts in host immunity and disease transmission within their insect or plant hosts.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"22 12","pages":"741-741"},"PeriodicalIF":69.2,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1038/s41579-024-01117-y
Agustina Taglialegna
In this study, Lu et al. identify the gut symbiont Tomasiella immunophila as a contributor to the degradation of murine secretory immunoglobulin A, with effects on mucosal immunity.
在这项研究中,Lu 等人发现肠道共生菌 Tomasiella immunophila 是小鼠分泌型免疫球蛋白 A 降解的促进因子,对粘膜免疫有影响。
{"title":"A gut bacterium trims mucosal immunity","authors":"Agustina Taglialegna","doi":"10.1038/s41579-024-01117-y","DOIUrl":"10.1038/s41579-024-01117-y","url":null,"abstract":"In this study, Lu et al. identify the gut symbiont Tomasiella immunophila as a contributor to the degradation of murine secretory immunoglobulin A, with effects on mucosal immunity.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"22 12","pages":"740-740"},"PeriodicalIF":69.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1038/s41579-024-01118-x
Agustina Taglialegna
The recent re-emergence of Oropouche virus in Central and South America and the Caribbean poses a public health threat and highlights the need for improved surveillance and control measures.
{"title":"Re-emergence of Oropouche virus","authors":"Agustina Taglialegna","doi":"10.1038/s41579-024-01118-x","DOIUrl":"10.1038/s41579-024-01118-x","url":null,"abstract":"The recent re-emergence of Oropouche virus in Central and South America and the Caribbean poses a public health threat and highlights the need for improved surveillance and control measures.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"22 12","pages":"740-740"},"PeriodicalIF":69.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1038/s41579-024-01106-1
Athanasia Ioannou, Maryse D. Berkhout, Sharon Y. Geerlings, Clara Belzer
Akkermansia muciniphila is a gut bacterium that colonizes the gut mucosa, has a role in maintaining gut health and shows promise for potential therapeutic applications. The discovery of A. muciniphila as an important member of our gut microbiome, occupying an extraordinary niche in the human gut, has led to new hypotheses on gut health, beneficial microorganisms and host–microbiota interactions. This microorganism has established a unique position in human microbiome research, similar to its role in the gut ecosystem. Its unique traits in using mucin sugars and mechanisms of action that can modify host health have made A. muciniphila a subject of enormous attention from multiple research fields. A. muciniphila is becoming a model organism studied for its ability to modulate human health and gut microbiome structure, leading to commercial products, a genetic model and possible probiotic formulations. This Review provides an overview of A. muciniphila and Akkermansia genus phylogeny, ecophysiology and diversity. Furthermore, the Review discusses perspectives on ecology, strategies for harnessing beneficial effects of A. muciniphila for human mucosal metabolic and gut health, and its potential as a biomarker for diagnostics and prognostics.
Akkermansia muciniphila 是一种肠道细菌,定植于肠道粘膜,在维持肠道健康方面发挥作用,并显示出潜在的治疗应用前景。粘液虹彩菌是肠道微生物组的重要成员,在人类肠道中占据着特殊的位置,它的发现引发了关于肠道健康、有益微生物以及宿主与微生物群相互作用的新假说。这种微生物在人类微生物组研究中确立了独特的地位,这与其在肠道生态系统中的作用相似。它在利用粘蛋白糖类方面的独特特性以及可改变宿主健康的作用机制,使粘菌成为多个研究领域高度关注的对象。粘多糖正在成为一种模式生物,研究其调节人体健康和肠道微生物群结构的能力,从而开发出商业产品、基因模型和可能的益生菌配方。本综述概述了 A. muciniphila 和 Akkermansia 属的系统发育、生态生理学和多样性。此外,该综述还讨论了生态学观点、利用粘液虹吸菌对人体粘膜代谢和肠道健康有益影响的策略,以及粘液虹吸菌作为诊断和预后生物标志物的潜力。
{"title":"Akkermansia muciniphila: biology, microbial ecology, host interactions and therapeutic potential","authors":"Athanasia Ioannou, Maryse D. Berkhout, Sharon Y. Geerlings, Clara Belzer","doi":"10.1038/s41579-024-01106-1","DOIUrl":"https://doi.org/10.1038/s41579-024-01106-1","url":null,"abstract":"<p><i>Akkermansia muciniphila</i> is a gut bacterium that colonizes the gut mucosa, has a role in maintaining gut health and shows promise for potential therapeutic applications. The discovery of <i>A. muciniphila</i> as an important member of our gut microbiome, occupying an extraordinary niche in the human gut, has led to new hypotheses on gut health, beneficial microorganisms and host–microbiota interactions. This microorganism has established a unique position in human microbiome research, similar to its role in the gut ecosystem. Its unique traits in using mucin sugars and mechanisms of action that can modify host health have made <i>A. muciniphila</i> a subject of enormous attention from multiple research fields. <i>A. muciniphila</i> is becoming a model organism studied for its ability to modulate human health and gut microbiome structure, leading to commercial products, a genetic model and possible probiotic formulations. This Review provides an overview of <i>A. muciniphila</i> and <i>Akkermansia</i> genus phylogeny, ecophysiology and diversity. Furthermore, the Review discusses perspectives on ecology, strategies for harnessing beneficial effects of <i>A. muciniphila</i> for human mucosal metabolic and gut health, and its potential as a biomarker for diagnostics and prognostics.</p>","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"68 1","pages":""},"PeriodicalIF":88.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1038/s41579-024-01103-4
Tayah Turocy, Jason M. Crawford
Numerous associations have been identified between cancer and the composition and function of the human microbiome. As cancer remains the second leading global cause of mortality, investigating the carcinogenic contributions of microbiome members could advance our understanding of cancer risk and support potential therapeutic interventions. Although fluctuations in bacterial species have been associated with cancer progression, studying their small molecule metabolites offers one avenue to establish support for causal relationships and the molecular mechanisms governing host–microorganism interactions. In this Review, we explore the expanding repertoire of small molecule metabolites and their mechanisms implicated in the risk of developing gastrointestinal cancers.
{"title":"Bacterial small molecule metabolites implicated in gastrointestinal cancer development","authors":"Tayah Turocy, Jason M. Crawford","doi":"10.1038/s41579-024-01103-4","DOIUrl":"https://doi.org/10.1038/s41579-024-01103-4","url":null,"abstract":"<p>Numerous associations have been identified between cancer and the composition and function of the human microbiome. As cancer remains the second leading global cause of mortality, investigating the carcinogenic contributions of microbiome members could advance our understanding of cancer risk and support potential therapeutic interventions. Although fluctuations in bacterial species have been associated with cancer progression, studying their small molecule metabolites offers one avenue to establish support for causal relationships and the molecular mechanisms governing host–microorganism interactions. In this Review, we explore the expanding repertoire of small molecule metabolites and their mechanisms implicated in the risk of developing gastrointestinal cancers.</p>","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"297 1","pages":""},"PeriodicalIF":88.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}