Pub Date : 2025-05-19DOI: 10.1038/s41570-025-00727-1
Stephanie Greed
Human bodies have complex reactions to stress and anxiety. A recent study explores the effect of fear on our sensitivity to odours.
人体对压力和焦虑有复杂的反应。最近的一项研究探讨了恐惧对我们对气味的敏感性的影响。
{"title":"Fear the worst, smell the best","authors":"Stephanie Greed","doi":"10.1038/s41570-025-00727-1","DOIUrl":"10.1038/s41570-025-00727-1","url":null,"abstract":"Human bodies have complex reactions to stress and anxiety. A recent study explores the effect of fear on our sensitivity to odours.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"9 6","pages":"362-362"},"PeriodicalIF":51.7,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144102196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-15DOI: 10.1038/s41570-025-00723-5
Anna K. Patterson
Ring-shaped colloidal particles can be used to form Pickering emulsions, just as solid particles, but their shape means that a larger portion of the emulsion interface remains open, which is critical for application performance.
{"title":"Rings make more room","authors":"Anna K. Patterson","doi":"10.1038/s41570-025-00723-5","DOIUrl":"10.1038/s41570-025-00723-5","url":null,"abstract":"Ring-shaped colloidal particles can be used to form Pickering emulsions, just as solid particles, but their shape means that a larger portion of the emulsion interface remains open, which is critical for application performance.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"9 6","pages":"361-361"},"PeriodicalIF":51.7,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143979487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-14DOI: 10.1038/s41570-025-00724-4
Stuart R. Batten
The Element Sets project created more than 1,600 sets of 37 pure elements that were sent free to schools all over Australia. This outreach project was able to target very remote and under-resourced schools, and support students and teachers indefinitely without requiring a continual pipeline of funding, consumables and planning.
{"title":"Element sets for schools","authors":"Stuart R. Batten","doi":"10.1038/s41570-025-00724-4","DOIUrl":"10.1038/s41570-025-00724-4","url":null,"abstract":"The Element Sets project created more than 1,600 sets of 37 pure elements that were sent free to schools all over Australia. This outreach project was able to target very remote and under-resourced schools, and support students and teachers indefinitely without requiring a continual pipeline of funding, consumables and planning.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"9 6","pages":"357-358"},"PeriodicalIF":51.7,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143979488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-12DOI: 10.1038/s41570-025-00717-3
Fidel Lozano-Elena, Sebastian Wendeborn
Protein–protein interactions are one of the pillars of all life processes. Many signalling molecules work by promoting and stabilizing these interactions. These molecular ‘glues’ bind simultaneously to two proteins inducing their interaction, which would be otherwise less favourable or non-favourable. Importantly, they can be harnessed for a clinical purpose, but, despite advances in medicine, the wealth of natural molecular glues in plants have only rarely been commercially utilized. These molecular glues may be plant-endogenous or plant-exogenous small molecules or peptides, and they may be involved in many different processes, such as growth promotion or stress response, opening new opportunities for crop protection, along with other applications. In this Review, we analyse the underlying structural motives and molecular interactions in detail, classifying the modes of actions based on their nature (small ligands versus peptides) and receptor classes. We discuss both natural metabolites and mimetics of such compounds, highlighting similarities and differences between signalling pathways and comparing them with relevant mechanisms in mammals. In this Review we discuss the fascinating molecular details of the small molecules and peptides promoting plant protein–protein interactions, and their relevance for plant development and environmental responses.
{"title":"The role and structure of molecular glues in plant signalling networks","authors":"Fidel Lozano-Elena, Sebastian Wendeborn","doi":"10.1038/s41570-025-00717-3","DOIUrl":"10.1038/s41570-025-00717-3","url":null,"abstract":"Protein–protein interactions are one of the pillars of all life processes. Many signalling molecules work by promoting and stabilizing these interactions. These molecular ‘glues’ bind simultaneously to two proteins inducing their interaction, which would be otherwise less favourable or non-favourable. Importantly, they can be harnessed for a clinical purpose, but, despite advances in medicine, the wealth of natural molecular glues in plants have only rarely been commercially utilized. These molecular glues may be plant-endogenous or plant-exogenous small molecules or peptides, and they may be involved in many different processes, such as growth promotion or stress response, opening new opportunities for crop protection, along with other applications. In this Review, we analyse the underlying structural motives and molecular interactions in detail, classifying the modes of actions based on their nature (small ligands versus peptides) and receptor classes. We discuss both natural metabolites and mimetics of such compounds, highlighting similarities and differences between signalling pathways and comparing them with relevant mechanisms in mammals. In this Review we discuss the fascinating molecular details of the small molecules and peptides promoting plant protein–protein interactions, and their relevance for plant development and environmental responses.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"9 7","pages":"454-469"},"PeriodicalIF":51.7,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143939744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-09DOI: 10.1038/s41570-025-00712-8
Simone Pezzotti, Wanlin Chen, Fabio Novelli, Xiaoqing Yu, Claudius Hoberg, Martina Havenith
Terahertz (THz) calorimetry is a framework that allows for the deduction and quantification of changes in solvation entropy and enthalpy associated with biological processes in real-time. Fundamental biological processes are inherently non-equilibrium, and a small imbalance in free energy can trigger protein condensation or folding. Although biophysical techniques typically focus mainly on structural characterization, water is often ignored. Being a generic solvent, the intermolecular protein–water interactions act as a strong competitor for intramolecular protein–protein interactions, leading to a delicate balance between functional structure formation and complete solvation. Characteristics for biological processes are large, but competing enthalpic and entropic solvation contributions to the total Gibbs free energy lead to subtle energy differences of only a few kJ mol−1 that are capable of dictating biological functions. THz calorimetry spotlights these intermolecular coupled protein–water interactions. With experimental advances in THz technology, a new frequency window has opened, which is ideally suited to probe these low-frequency intermolecular interactions. The future impact of these studies is based on the belief that the observed changes in solvation entropy and enthalpy are not secondary effects but dictate biological function. By quantifying the changes in the low-frequency spectra of coupled intermolecular solute–solvent modes, THz calorimetry can be used as a framework to deduce the changes of the Gibbs free energy during biological and chemical processes. Leveraging the advances in THz technologies, THz lasers allow for high temporal resolution and applications to inhomogeneous samples.
{"title":"Terahertz calorimetry spotlights the role of water in biological processes","authors":"Simone Pezzotti, Wanlin Chen, Fabio Novelli, Xiaoqing Yu, Claudius Hoberg, Martina Havenith","doi":"10.1038/s41570-025-00712-8","DOIUrl":"10.1038/s41570-025-00712-8","url":null,"abstract":"Terahertz (THz) calorimetry is a framework that allows for the deduction and quantification of changes in solvation entropy and enthalpy associated with biological processes in real-time. Fundamental biological processes are inherently non-equilibrium, and a small imbalance in free energy can trigger protein condensation or folding. Although biophysical techniques typically focus mainly on structural characterization, water is often ignored. Being a generic solvent, the intermolecular protein–water interactions act as a strong competitor for intramolecular protein–protein interactions, leading to a delicate balance between functional structure formation and complete solvation. Characteristics for biological processes are large, but competing enthalpic and entropic solvation contributions to the total Gibbs free energy lead to subtle energy differences of only a few kJ mol−1 that are capable of dictating biological functions. THz calorimetry spotlights these intermolecular coupled protein–water interactions. With experimental advances in THz technology, a new frequency window has opened, which is ideally suited to probe these low-frequency intermolecular interactions. The future impact of these studies is based on the belief that the observed changes in solvation entropy and enthalpy are not secondary effects but dictate biological function. By quantifying the changes in the low-frequency spectra of coupled intermolecular solute–solvent modes, THz calorimetry can be used as a framework to deduce the changes of the Gibbs free energy during biological and chemical processes. Leveraging the advances in THz technologies, THz lasers allow for high temporal resolution and applications to inhomogeneous samples.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"9 7","pages":"481-494"},"PeriodicalIF":51.7,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144044439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-30DOI: 10.1038/s41570-025-00720-8
Alexander Rosu-Finsen
Incorporating thermoelectric materials into our everyday clothing could be an clever way of keeping our smart devices powered at all times. A study now looks into the feasibility of this, noting the importance of reaction conditions on the thermoelectric properties.
{"title":"Power dressing","authors":"Alexander Rosu-Finsen","doi":"10.1038/s41570-025-00720-8","DOIUrl":"10.1038/s41570-025-00720-8","url":null,"abstract":"Incorporating thermoelectric materials into our everyday clothing could be an clever way of keeping our smart devices powered at all times. A study now looks into the feasibility of this, noting the importance of reaction conditions on the thermoelectric properties.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"9 5","pages":"281-281"},"PeriodicalIF":51.7,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143889410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-28DOI: 10.1038/s41570-025-00715-5
Seok-Jin Kim, Raghu V. Maligal-Ganesh, Javeed Mahmood, Pravin Babar, Cafer T. Yavuz
Oxides are integral to heterogeneous catalysis, serving critical roles such as catalyst supports, active materials and electrodes. A highly ordered subset, single-crystalline oxides, have traditionally been used as model catalyst supports in fundamental surface science studies. However, advancements in bulk synthesis have rendered their general use more feasible for real-world applications. In this review, we explore the efficiency of single-crystalline oxides as active metals and supports across a wide range of heterogeneous processes, often performing exceptionally well. Beginning with synthetic methods, we discuss the advantages of single-crystalline oxides in thermo-, electro- and photocatalysis. Previously held conventions about catalytic activity, deactivation and surface–adsorbate interactions are re-evaluated by understanding how these ordered materials behave during the respective reactions. Last, we assess advances in characterization techniques and their impact on designing the next generation of catalysts based on single-crystalline oxides. Single-crystalline oxides offer well-defined surfaces, enabling superior control of their chemistry with tunable catalytic activity and enhanced stability. This review summarizes new advances in their synthesis and analysis, and their prominence in heterogeneous catalysis, namely thermo-, electro- and photocatalysis.
{"title":"Structural control over single-crystalline oxides for heterogeneous catalysis","authors":"Seok-Jin Kim, Raghu V. Maligal-Ganesh, Javeed Mahmood, Pravin Babar, Cafer T. Yavuz","doi":"10.1038/s41570-025-00715-5","DOIUrl":"10.1038/s41570-025-00715-5","url":null,"abstract":"Oxides are integral to heterogeneous catalysis, serving critical roles such as catalyst supports, active materials and electrodes. A highly ordered subset, single-crystalline oxides, have traditionally been used as model catalyst supports in fundamental surface science studies. However, advancements in bulk synthesis have rendered their general use more feasible for real-world applications. In this review, we explore the efficiency of single-crystalline oxides as active metals and supports across a wide range of heterogeneous processes, often performing exceptionally well. Beginning with synthetic methods, we discuss the advantages of single-crystalline oxides in thermo-, electro- and photocatalysis. Previously held conventions about catalytic activity, deactivation and surface–adsorbate interactions are re-evaluated by understanding how these ordered materials behave during the respective reactions. Last, we assess advances in characterization techniques and their impact on designing the next generation of catalysts based on single-crystalline oxides. Single-crystalline oxides offer well-defined surfaces, enabling superior control of their chemistry with tunable catalytic activity and enhanced stability. This review summarizes new advances in their synthesis and analysis, and their prominence in heterogeneous catalysis, namely thermo-, electro- and photocatalysis.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"9 6","pages":"397-414"},"PeriodicalIF":51.7,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143880633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-28DOI: 10.1038/s41570-025-00711-9
Martin Bizzarro, Anders Johansen, Caroline Dorn
Planets form and obtain their compositions from the leftover material present in protoplanetary disks of dust and gas surrounding young stars. The chemical make-up of a disk influences every aspect of planetary composition, including their overall chemical properties, volatile content, atmospheric composition and potential for habitability. This Review discusses our knowledge of the chemical and isotopic composition of Solar System materials and how this information can be used to place constraints on the formation pathways of terrestrial planets. We conclude that planetesimal formation by the streaming instability followed by rapid accretion of drifting pebbles within the protoplanetary disk lifetime reproduces most of the chemical and isotopic observables in the Solar System. This finding has important implications for planetary habitability beyond the Solar System because in pebble accretion, volatiles important for life are accreted during the main growth phase of rocky planets as opposed to the late stage. Finally, we explore how bulk chemical inventories and masses of planetary bodies control the composition of their primordial atmospheres and their potential to develop habitable conditions. Leftover materials in protoplanetary disks form planets, shaping their chemistry, atmospheres and habitability. This Review highlights how planetesimal formation and pebble accretion explain planetary compositions, influencing volatile delivery and atmospheric development, with implications for planetary habitability beyond our Solar System.
{"title":"The cosmochemistry of planetary systems","authors":"Martin Bizzarro, Anders Johansen, Caroline Dorn","doi":"10.1038/s41570-025-00711-9","DOIUrl":"10.1038/s41570-025-00711-9","url":null,"abstract":"Planets form and obtain their compositions from the leftover material present in protoplanetary disks of dust and gas surrounding young stars. The chemical make-up of a disk influences every aspect of planetary composition, including their overall chemical properties, volatile content, atmospheric composition and potential for habitability. This Review discusses our knowledge of the chemical and isotopic composition of Solar System materials and how this information can be used to place constraints on the formation pathways of terrestrial planets. We conclude that planetesimal formation by the streaming instability followed by rapid accretion of drifting pebbles within the protoplanetary disk lifetime reproduces most of the chemical and isotopic observables in the Solar System. This finding has important implications for planetary habitability beyond the Solar System because in pebble accretion, volatiles important for life are accreted during the main growth phase of rocky planets as opposed to the late stage. Finally, we explore how bulk chemical inventories and masses of planetary bodies control the composition of their primordial atmospheres and their potential to develop habitable conditions. Leftover materials in protoplanetary disks form planets, shaping their chemistry, atmospheres and habitability. This Review highlights how planetesimal formation and pebble accretion explain planetary compositions, influencing volatile delivery and atmospheric development, with implications for planetary habitability beyond our Solar System.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"9 6","pages":"378-396"},"PeriodicalIF":51.7,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144012045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-28DOI: 10.1038/s41570-025-00714-6
Xu Liu, Xu Dong, Henry Adenusi, Yuping Wu, Stefano Passerini
The potential increase in cost of lithium-ion batteries owing to the limited supply of lithium has prompted investigations into alternative and complementary rechargeable batteries that use post-lithium charge carriers with higher elemental abundance. However, achieving highly reversible post-lithium metal anodes with sufficient kinetics remains challenging. The addition of co-solvents to conventional electrolytes is emerging as an important strategy to resolve these issues. In this Perspective, we discuss the progress of the co-solvent strategy for sodium, potassium, magnesium, calcium, zinc and aluminium post-lithium metal batteries. The coordination ability of co-solvents with post-lithium charge carriers is presented as a useful guide for selecting co-solvents for the respective battery electrolytes, owing to its correlation with several influential factors that affect the electrochemical performance of the metal anodes, such as solvation structure, de-solvation process and solid electrolyte interphase formation. Additionally, a discussion is provided on the importance of unravelling the effects beyond the solvation sheath of cationic charge carriers and for the development of sustainable electrolytes. The coordination ability of co-solvents with cationic charge carriers is discussed as a guide for selecting co-solvents for various post-lithium metal batteries. Effects beyond the solvation sheath of cationic charge carriers and the sustainable development of electrolytes are necessary for improving batteries in the future.
{"title":"Co-solvent strategy for rechargeable post-lithium metal batteries","authors":"Xu Liu, Xu Dong, Henry Adenusi, Yuping Wu, Stefano Passerini","doi":"10.1038/s41570-025-00714-6","DOIUrl":"10.1038/s41570-025-00714-6","url":null,"abstract":"The potential increase in cost of lithium-ion batteries owing to the limited supply of lithium has prompted investigations into alternative and complementary rechargeable batteries that use post-lithium charge carriers with higher elemental abundance. However, achieving highly reversible post-lithium metal anodes with sufficient kinetics remains challenging. The addition of co-solvents to conventional electrolytes is emerging as an important strategy to resolve these issues. In this Perspective, we discuss the progress of the co-solvent strategy for sodium, potassium, magnesium, calcium, zinc and aluminium post-lithium metal batteries. The coordination ability of co-solvents with post-lithium charge carriers is presented as a useful guide for selecting co-solvents for the respective battery electrolytes, owing to its correlation with several influential factors that affect the electrochemical performance of the metal anodes, such as solvation structure, de-solvation process and solid electrolyte interphase formation. Additionally, a discussion is provided on the importance of unravelling the effects beyond the solvation sheath of cationic charge carriers and for the development of sustainable electrolytes. The coordination ability of co-solvents with cationic charge carriers is discussed as a guide for selecting co-solvents for various post-lithium metal batteries. Effects beyond the solvation sheath of cationic charge carriers and the sustainable development of electrolytes are necessary for improving batteries in the future.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"9 6","pages":"415-426"},"PeriodicalIF":51.7,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143993622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-14DOI: 10.1038/s41570-025-00706-6
Patrick Commins, Marieh B. Al-Handawi, Panče Naumov
Self-healing is an intrinsically exciting concept as it applies to the process of recovery, a commonplace phenomenon found in living organisms. Self-healing of artificial materials is as beneficial to living creatures as it is to materials science, wherein the effect can considerably prolong lifetimes. Although self-healing sodium chloride crystals were discovered in the 1980s, the field entered a renaissance when healing was observed in the emerging materials class of molecular crystals in 2016. Self-healing properties in polymers, cementitious materials, and coatings have already found commercial applications. The reinvigorated interest in self-healing molecular crystals stems from their prospects as durable, lightweight and flexible emissive or electronic materials. Ideally being defectless and ordered media, organic crystals have unique optical, mechanical and electrical properties, and the possibility of self-healing substantially increases their viability for smart devices. Self-healing crystals are an emerging class of materials that are highly responsive to dynamic stimuli. This Perspective gives an overview of the field since its inception, highlights current design principles, and discusses the methodologies used to characterize healed crystals.
{"title":"Self-healing crystals","authors":"Patrick Commins, Marieh B. Al-Handawi, Panče Naumov","doi":"10.1038/s41570-025-00706-6","DOIUrl":"10.1038/s41570-025-00706-6","url":null,"abstract":"Self-healing is an intrinsically exciting concept as it applies to the process of recovery, a commonplace phenomenon found in living organisms. Self-healing of artificial materials is as beneficial to living creatures as it is to materials science, wherein the effect can considerably prolong lifetimes. Although self-healing sodium chloride crystals were discovered in the 1980s, the field entered a renaissance when healing was observed in the emerging materials class of molecular crystals in 2016. Self-healing properties in polymers, cementitious materials, and coatings have already found commercial applications. The reinvigorated interest in self-healing molecular crystals stems from their prospects as durable, lightweight and flexible emissive or electronic materials. Ideally being defectless and ordered media, organic crystals have unique optical, mechanical and electrical properties, and the possibility of self-healing substantially increases their viability for smart devices. Self-healing crystals are an emerging class of materials that are highly responsive to dynamic stimuli. This Perspective gives an overview of the field since its inception, highlights current design principles, and discusses the methodologies used to characterize healed crystals.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"9 5","pages":"343-355"},"PeriodicalIF":51.7,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143827244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}