首页 > 最新文献

Ndt & E International最新文献

英文 中文
Generative domain-adapted adversarial auto-encoder model for enhanced ultrasonic imaging applications 用于增强超声波成像应用的生成域适应性对抗自动编码器模型
IF 4.1 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Pub Date : 2024-09-19 DOI: 10.1016/j.ndteint.2024.103234
Gerardo Emanuel Granados , Filippo Gatti , Roberto Miorelli , Sébastien Robert , Didier Clouteau

In this study, we propose a class-conditioned Generative Adversarial Autoencoder (cGAAE) to improve the realism of simulated ultrasonic imaging techniques, in particular the Multi-modal Total Focusing Method (M-TFM), based on the availability of both simulated and experimental TFM images. In particular, this work studied the case of the inspection of a complex geometry block representative of weld-inspection problem based on ultrasonic multi-elements probe. The cGAAE is represented by a tailored learning schema, trained in a semi-supervised fashion on a labeled mixture of synthetic (class 0) and experimental (class 1) M-TFM images, obtained under different meaningful inspection set-ups parameters (i.e., the celerity of the transverse ultrasonic wave, the specimen back-wall slope and height, the flaw tilt and heigh). That is, the cGAAE schema consists in a combination of learning stages involving class-conditioned spatial-transformers and arbitrary style transfer endows the cGAAE of powerful generative features, such as quasi real-time generation of M-TFM images by sweep of the inspection parameters. We exploited the cGAAE model to improve the realism of simulated M-TFM images and enhance the accuracy of the inverse problem, aiming at estimating the inspection parameters based on experimental acquisitions.

在本研究中,我们基于模拟和实验 TFM 图像,提出了一种类条件生成对抗自动编码器(cGAAE),以提高模拟超声波成像技术,特别是多模态全聚焦法(M-TFM)的真实度。这项工作特别研究了基于超声波多元素探头的复杂几何块检测案例,该案例代表了焊接检测问题。cGAAE 由一个量身定制的学习模式表示,它是在不同的有意义检测设置参数(即横向超声波的速度、试样后壁斜度和高度、缺陷倾斜度和高度)下获得的合成(0 类)和实验(1 类)M-TFM 图像的标记混合物上,以半监督方式进行训练的。也就是说,cGAAE 模式由涉及类条件空间变换器的学习阶段和任意样式转移的学习阶段组合而成,赋予了 cGAAE 强大的生成功能,例如通过扫描检测参数准实时生成 M-TFM 图像。我们利用 cGAAE 模型改善了模拟 M-TFM 图像的真实性,并提高了逆问题的准确性,旨在根据实验采集结果估算检测参数。
{"title":"Generative domain-adapted adversarial auto-encoder model for enhanced ultrasonic imaging applications","authors":"Gerardo Emanuel Granados ,&nbsp;Filippo Gatti ,&nbsp;Roberto Miorelli ,&nbsp;Sébastien Robert ,&nbsp;Didier Clouteau","doi":"10.1016/j.ndteint.2024.103234","DOIUrl":"10.1016/j.ndteint.2024.103234","url":null,"abstract":"<div><p>In this study, we propose a class-conditioned Generative Adversarial Autoencoder (cGAAE) to improve the realism of simulated ultrasonic imaging techniques, in particular the Multi-modal Total Focusing Method (M-TFM), based on the availability of both simulated and experimental TFM images. In particular, this work studied the case of the inspection of a complex geometry block representative of weld-inspection problem based on ultrasonic multi-elements probe. The cGAAE is represented by a tailored learning schema, trained in a semi-supervised fashion on a labeled mixture of synthetic (class 0) and experimental (class 1) M-TFM images, obtained under different meaningful inspection set-ups parameters (i.e., the celerity of the transverse ultrasonic wave, the specimen back-wall slope and height, the flaw tilt and heigh). That is, the cGAAE schema consists in a combination of learning stages involving class-conditioned spatial-transformers and arbitrary style transfer endows the cGAAE of powerful generative features, such as quasi real-time generation of M-TFM images by sweep of the inspection parameters. We exploited the cGAAE model to improve the realism of simulated M-TFM images and enhance the accuracy of the inverse problem, aiming at estimating the inspection parameters based on experimental acquisitions.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"148 ","pages":"Article 103234"},"PeriodicalIF":4.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Noise suppression in pulsed IR thermographic NDT: Efficiency of data processing algorithms 脉冲红外热成像无损检测中的噪声抑制:数据处理算法的效率
IF 4.1 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Pub Date : 2024-09-17 DOI: 10.1016/j.ndteint.2024.103240
V.P. Vavilov , A.O. Chulkov , V.V. Shiryaev , M.V. Kuimova , Hai Zhang

Various types of noise, which accompany active TNDT procedures using optical heating, have been analyzed, both numerically and experimentally. An emphasis has been made on the suppression of surface clutter, which represents local areas of varying absorptivity/emissivity. The concept of signal-to-noise that is typically used in defect detection has been applied to fixed pattern noise in order to compare capabilities of data processing algorithms in reducing surface clutter. The experimental investigation has been fulfilled on a special sample containing both subsurface air-filled defects and areas with varying emissivity/absorptivity. The best suppression of the fixed pattern noise was provided by the complex wavelet transform and principle component analysis. Because of 3D heat diffusion, clutter spot boundaries are often underlined by particular data processing algorithms thus producing specific contours. The test situations where subsurface defects are located under localized clutter spots have been analyzed to demonstrate an overshadowing effect of such spots when detecting hidden defects.

通过数值和实验分析了伴随使用光学加热的主动 TNDT 程序产生的各种噪声。重点是抑制表面杂波,它代表了吸收率/发射率变化的局部区域。通常用于缺陷检测的信噪比概念被应用于固定模式噪声,以比较数据处理算法在减少表面杂波方面的能力。实验调查是在一个特殊的样品上进行的,该样品既包含表面下充满空气的缺陷,也包含发射率/吸收率不同的区域。复小波变换和原理成分分析对固定模式噪声的抑制效果最好。由于三维热扩散的原因,特定的数据处理算法往往会突出杂波点的边界,从而产生特定的轮廓。通过对地下缺陷位于局部杂波点下的测试情况进行分析,证明了杂波点在检测隐藏缺陷时的阴影效应。
{"title":"Noise suppression in pulsed IR thermographic NDT: Efficiency of data processing algorithms","authors":"V.P. Vavilov ,&nbsp;A.O. Chulkov ,&nbsp;V.V. Shiryaev ,&nbsp;M.V. Kuimova ,&nbsp;Hai Zhang","doi":"10.1016/j.ndteint.2024.103240","DOIUrl":"10.1016/j.ndteint.2024.103240","url":null,"abstract":"<div><p>Various types of noise, which accompany active TNDT procedures using optical heating, have been analyzed, both numerically and experimentally. An emphasis has been made on the suppression of surface clutter, which represents local areas of varying absorptivity/emissivity. The concept of signal-to-noise that is typically used in defect detection has been applied to fixed pattern noise in order to compare capabilities of data processing algorithms in reducing surface clutter. The experimental investigation has been fulfilled on a special sample containing both subsurface air-filled defects and areas with varying emissivity/absorptivity. The best suppression of the fixed pattern noise was provided by the complex wavelet transform and principle component analysis. Because of 3D heat diffusion, clutter spot boundaries are often underlined by particular data processing algorithms thus producing specific contours. The test situations where subsurface defects are located under localized clutter spots have been analyzed to demonstrate an overshadowing effect of such spots when detecting hidden defects.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"148 ","pages":"Article 103240"},"PeriodicalIF":4.1,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amplitude-dependent second harmonic Lamb waves for discriminating delamination from background nonlinearities in composite plates 振幅相关二次谐波 Lamb 波用于区分复合板中的分层和背景非线性问题
IF 4.1 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Pub Date : 2024-09-17 DOI: 10.1016/j.ndteint.2024.103238
Shengbo Shan , Chi Zhang , Gujun Wu , Yang Song , Ze Liu , Yuanman Zhang , Li Cheng

Early detection of delamination in composite materials is crucial to maintaining operational safety and reducing excessive maintenance costs. Second harmonic Lamb waves have demonstrated exceptional sensitivity to micro defects in materials including breathing delamination. However, differentiating the second harmonic Lamb waves generated by delamination from other inevitable background nonlinearities, exemplified by inherent material nonlinearity in composites, poses a significant challenge for the practical implementation of the second harmonic Lamb wave-based detection methods. To address this bottle-necking issue, this study examines the characteristics of second harmonic Lamb waves generated by delamination and material nonlinearity, respectively, aiming at their differentiation based on their respective amplitude-dependent features. Results are verified through finite element analysis and experimental validations alongside the verification of the effectiveness of the proposed discrimination strategy. It is shown that the amplitude of the second harmonic waves induced by the delamination is linearly proportional to the fundamental wave amplitude, while the one by the material nonlinearity exhibits a quadratic relationship with the fundamental wave amplitude. Based on this understanding, damage indices are proposed, which prove to be effective for characterizing these two sources of nonlinearity, thereby paving the way for practical delamination detection in composite structures.

复合材料分层的早期检测对于维护运行安全和降低过高的维护成本至关重要。二次谐波 Lamb 波已证明对材料中的微缺陷(包括呼吸分层)具有极高的灵敏度。然而,如何将分层产生的二次谐波 Lamb 波与其他不可避免的背景非线性(例如复合材料中固有的材料非线性)区分开来,给基于二次谐波 Lamb 波的检测方法的实际应用带来了巨大挑战。为解决这一瓶颈问题,本研究分别研究了分层和材料非线性产生的二次谐波 Lamb 波的特征,旨在根据它们各自的振幅特征对其进行区分。研究结果通过有限元分析和实验验证,同时还验证了所提出的区分策略的有效性。结果表明,分层诱发的二次谐波振幅与基波振幅成线性比例,而材料非线性诱发的二次谐波振幅与基波振幅呈二次关系。基于这一认识,我们提出了损伤指数,这些指数被证明可有效表征这两种非线性来源,从而为复合材料结构中的实际分层检测铺平了道路。
{"title":"Amplitude-dependent second harmonic Lamb waves for discriminating delamination from background nonlinearities in composite plates","authors":"Shengbo Shan ,&nbsp;Chi Zhang ,&nbsp;Gujun Wu ,&nbsp;Yang Song ,&nbsp;Ze Liu ,&nbsp;Yuanman Zhang ,&nbsp;Li Cheng","doi":"10.1016/j.ndteint.2024.103238","DOIUrl":"10.1016/j.ndteint.2024.103238","url":null,"abstract":"<div><p>Early detection of delamination in composite materials is crucial to maintaining operational safety and reducing excessive maintenance costs. Second harmonic Lamb waves have demonstrated exceptional sensitivity to micro defects in materials including breathing delamination. However, differentiating the second harmonic Lamb waves generated by delamination from other inevitable background nonlinearities, exemplified by inherent material nonlinearity in composites, poses a significant challenge for the practical implementation of the second harmonic Lamb wave-based detection methods. To address this bottle-necking issue, this study examines the characteristics of second harmonic Lamb waves generated by delamination and material nonlinearity, respectively, aiming at their differentiation based on their respective amplitude-dependent features. Results are verified through finite element analysis and experimental validations alongside the verification of the effectiveness of the proposed discrimination strategy. It is shown that the amplitude of the second harmonic waves induced by the delamination is linearly proportional to the fundamental wave amplitude, while the one by the material nonlinearity exhibits a quadratic relationship with the fundamental wave amplitude. Based on this understanding, damage indices are proposed, which prove to be effective for characterizing these two sources of nonlinearity, thereby paving the way for practical delamination detection in composite structures.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"148 ","pages":"Article 103238"},"PeriodicalIF":4.1,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monitoring of damage evolution in carbon fiber reinforced polymer composites by electrical impedance tomography 通过电阻抗断层扫描监测碳纤维增强聚合物复合材料的损伤演变
IF 4.1 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Pub Date : 2024-09-16 DOI: 10.1016/j.ndteint.2024.103239
Xiaoying Cheng , Junling Liu , Kehong Zheng , Zhenyu Wu , Lin Shi , Xudong Hu
Electrical impedance tomography (EIT) has been widely investigated as a nondestructive testing method for carbon fiber reinforced polymer (CFRP) composites. However, the performance of EIT method on the damage process monitoring of the composites is lack of investigation. Herein, quasi-static indentation tests were utilized to introduce damage on CFRP laminates. The damage evolution process was monitored by EIT, while the potential of distinguishing the elastic deformation stage from the plastic stage was analyzed with the aid of acoustic emission. It was found that the changes in conductivity first appeared in the non-central region. With the accumulation of damage, the conductivity changes gradually extended to the center region. The reconstructed damage images were in the crossover shape, which was consist with the micro-CT results that showed the fracture of fibers in ±45° direction. This work further promotes the application of EIT in damage process monitoring of CFRP components.
电阻抗断层扫描(EIT)作为碳纤维增强聚合物(CFRP)复合材料的一种无损检测方法已得到广泛研究。然而,电阻抗层析成像法在复合材料损伤过程监测方面的性能还缺乏研究。在此,利用准静态压痕测试对 CFRP 复合材料引入损伤。利用 EIT 监测了损伤演变过程,并借助声发射分析了区分弹性变形阶段和塑性阶段的潜力。研究发现,电导率的变化首先出现在非中心区域。随着损伤的累积,电导率的变化逐渐扩展到中心区域。重建的损伤图像呈交叉状,这与显微 CT 结果一致,后者显示纤维断裂方向为 ±45°。这项工作进一步推动了 EIT 在 CFRP 组件损伤过程监测中的应用。
{"title":"Monitoring of damage evolution in carbon fiber reinforced polymer composites by electrical impedance tomography","authors":"Xiaoying Cheng ,&nbsp;Junling Liu ,&nbsp;Kehong Zheng ,&nbsp;Zhenyu Wu ,&nbsp;Lin Shi ,&nbsp;Xudong Hu","doi":"10.1016/j.ndteint.2024.103239","DOIUrl":"10.1016/j.ndteint.2024.103239","url":null,"abstract":"<div><div>Electrical impedance tomography (EIT) has been widely investigated as a nondestructive testing method for carbon fiber reinforced polymer (CFRP) composites. However, the performance of EIT method on the damage process monitoring of the composites is lack of investigation. Herein, quasi-static indentation tests were utilized to introduce damage on CFRP laminates. The damage evolution process was monitored by EIT, while the potential of distinguishing the elastic deformation stage from the plastic stage was analyzed with the aid of acoustic emission. It was found that the changes in conductivity first appeared in the non-central region. With the accumulation of damage, the conductivity changes gradually extended to the center region. The reconstructed damage images were in the crossover shape, which was consist with the micro-CT results that showed the fracture of fibers in ±45° direction. This work further promotes the application of EIT in damage process monitoring of CFRP components.</div></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"148 ","pages":"Article 103239"},"PeriodicalIF":4.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasonic waveguide based super resolution imaging using structured channel metamaterial lenses 利用结构化通道超材料透镜实现基于超声波波导的超分辨率成像
IF 4.1 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Pub Date : 2024-09-14 DOI: 10.1016/j.ndteint.2024.103237
Pradeep Kumar, Mohamed Subair Syed Akbar Ali, Sreehari Kollancheri Chelat, Prabhu Rajagopal

The extension of metamaterial concepts to the ultrasonic domain is challenging because of the shorter wavelength, which necessitates the use of spatially narrow band receiving techniques to capture wavefields past fine features of the metamaterial. Currently, the Laser Doppler Vibrometer is the only option with several drawbacks hampering its widespread practical implementation, including cost and sensitivity to external disturbances. This paper proposes a novel waveguide based reception technique to capture the amplified evanescent fields transmitted through the subwavelength features of the metamaterials. Numerical simulations and experiments are carried out on a structured channel metamaterial and a thin stainless steel waveguide attached to a commercial transducer. A practical super resolution ultrasonic imaging down to a third of the operating wavelength is successfully demonstrated in comparison with a commercial laser receiver. The physics of the imaging and dispersion characteristics of the waveguide enabling the process are discussed. The promising results showcase broadband, low-cost, portable alternatives with important implications for high-resolution ultrasonic imaging in industrial and biomedical applications.

将超材料概念扩展到超声波领域具有挑战性,因为超材料的波长较短,需要使用空间窄带接收技术来捕捉经过超材料精细特征的波场。目前,激光多普勒测振仪是唯一的选择,但其成本和对外部干扰的敏感性等几个缺点阻碍了它的广泛实际应用。本文提出了一种基于波导的新型接收技术,用于捕捉通过超材料亚波长特征传输的放大的蒸发场。本文对结构化通道超材料和连接到商用换能器的薄不锈钢波导进行了数值模拟和实验。通过与商用激光接收器的比较,成功地演示了低至工作波长三分之一的实用超分辨率超声波成像。本文讨论了成像的物理学原理和波导的色散特性。这些令人鼓舞的成果展示了宽带、低成本、便携式替代品,对工业和生物医学应用中的高分辨率超声波成像具有重要意义。
{"title":"Ultrasonic waveguide based super resolution imaging using structured channel metamaterial lenses","authors":"Pradeep Kumar,&nbsp;Mohamed Subair Syed Akbar Ali,&nbsp;Sreehari Kollancheri Chelat,&nbsp;Prabhu Rajagopal","doi":"10.1016/j.ndteint.2024.103237","DOIUrl":"10.1016/j.ndteint.2024.103237","url":null,"abstract":"<div><p>The extension of metamaterial concepts to the ultrasonic domain is challenging because of the shorter wavelength, which necessitates the use of spatially narrow band receiving techniques to capture wavefields past fine features of the metamaterial. Currently, the Laser Doppler Vibrometer is the only option with several drawbacks hampering its widespread practical implementation, including cost and sensitivity to external disturbances. This paper proposes a novel waveguide based reception technique to capture the amplified evanescent fields transmitted through the subwavelength features of the metamaterials. Numerical simulations and experiments are carried out on a structured channel metamaterial and a thin stainless steel waveguide attached to a commercial transducer. A practical super resolution ultrasonic imaging down to a third of the operating wavelength is successfully demonstrated in comparison with a commercial laser receiver. The physics of the imaging and dispersion characteristics of the waveguide enabling the process are discussed. The promising results showcase broadband, low-cost, portable alternatives with important implications for high-resolution ultrasonic imaging in industrial and biomedical applications.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"148 ","pages":"Article 103237"},"PeriodicalIF":4.1,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite-difference time-domain method of ground penetrating radar images for accurate estimation of subsurface pipe properties 利用有限差分时域法处理透地雷达图像,准确估算地下管道特性
IF 4.1 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Pub Date : 2024-09-13 DOI: 10.1016/j.ndteint.2024.103235
Rain Man Raja, Takahiro Yamaguchi, Tsukasa Mizutani

The increasing length of subsurface pipe causes overlapping, accumulation, and occasionally the old pipe layout is not also available. Consequently, accidents, damages, time delays, and financial losses occur during construction of new structures or installation of new pipes. Therefore, depth, radius, material of the existing pipe, and map of pipe are indispensable for knowing proper construction planning. In this article, an algorithm is proposed to estimate the properties of subsurface pipes and show 3D maps. Using this algorithm, the radius of the field pipes was estimated with 83, 67, and 89 % accuracy and depth with 95, 95, and 98 % accuracy. The effect of pipe radius should be considered to assess the pipe depth with higher accuracy. The material of the field pipe was successfully determined using the evaluated relative permittivity. A 3D map of the field pipe was developed by applying the tracing algorithm and linear regression on estimated depth.

地下管道的长度不断增加,造成重叠、堆积,有时还无法利用旧管道布局。因此,在建造新建筑物或安装新管道时,会发生事故、损坏、时间延误和经济损失。因此,要了解正确的施工规划,现有管道的深度、半径、材料和管道图是必不可少的。本文提出了一种估算地下管道属性并显示三维地图的算法。使用该算法,现场管道半径的估算精度分别为 83%、67% 和 89%,深度的估算精度分别为 95%、95% 和 98%。要更准确地评估管道深度,应考虑管道半径的影响。利用评估的相对介电常数成功确定了野外管道的材料。通过对估计深度应用追踪算法和线性回归,绘制了野外管道的三维地图。
{"title":"Finite-difference time-domain method of ground penetrating radar images for accurate estimation of subsurface pipe properties","authors":"Rain Man Raja,&nbsp;Takahiro Yamaguchi,&nbsp;Tsukasa Mizutani","doi":"10.1016/j.ndteint.2024.103235","DOIUrl":"10.1016/j.ndteint.2024.103235","url":null,"abstract":"<div><p>The increasing length of subsurface pipe causes overlapping, accumulation, and occasionally the old pipe layout is not also available. Consequently, accidents, damages, time delays, and financial losses occur during construction of new structures or installation of new pipes. Therefore, depth, radius, material of the existing pipe, and map of pipe are indispensable for knowing proper construction planning. In this article, an algorithm is proposed to estimate the properties of subsurface pipes and show 3D maps. Using this algorithm, the radius of the field pipes was estimated with 83, 67, and 89 % accuracy and depth with 95, 95, and 98 % accuracy. The effect of pipe radius should be considered to assess the pipe depth with higher accuracy. The material of the field pipe was successfully determined using the evaluated relative permittivity. A 3D map of the field pipe was developed by applying the tracing algorithm and linear regression on estimated depth.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"148 ","pages":"Article 103235"},"PeriodicalIF":4.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interface stiffness identification of rough and weak bonded interface using developed ultrasonic reflection phase derivative spectrum 利用开发的超声波反射相位导数谱识别粗糙和弱粘接界面的界面刚度
IF 4.1 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Pub Date : 2024-09-13 DOI: 10.1016/j.ndteint.2024.103236
Zhiyuan Ma , Jiwei Yang , Haoyang Shen , Tianzhi Qi , Li Lin

The thickness and interface roughness of coatings both affect the interface bonded quality. Existed ultrasonic testing methods based on traditional phase screen approximation or spring model assumption are difficult to simultaneously identify the interface roughness and stiffness of coating. This paper, a new method for integrated identifying coating thickness, interface roughness, and interface stiffness using developed ultrasonic reflection phase derivative spectrum (URPDS) is proposed. A phase-screen-approximated spring-model (PSASM) for ultrasound vertically propagating into rough and weak bonded interface is constructed. On basis of PSASM, a URPDS of coating/substrate structure is developed for identifying the interface stiffness and other parameters of coated parts. Cross-correlation analysis is used to eliminate the phase deviation of URPDS introduced by reference signal and initial phase of tested signal. Sensitivity analysis is used to determine the high-sensitivity regions of URPDS to interface roughness and interface stiffness. Genetic algorithm optimization is used to achieve integrated identification of coating thickness, interface roughness, and interface stiffness. The rationality of PSASM is verified through numerical simulation using a series of coating/substrate models with rough and weak bonded interface, and the relationship between the high-sensitivity regions and the high-precision measurement ranges of interface roughness Rq and interface stiffness Kn is clarified. Ultrasonic experiments are implemented on Nickel-coating samples and coated parts using plane wave probe. The coating thickness, interface roughness, and interface stiffness could be identified accurately, which shows that the proposed URPDS method can identify the interface stiffness of rough contacted dissimilar media or coated parts with rough interface.

涂层的厚度和界面粗糙度都会影响界面粘合质量。现有的超声波检测方法基于传统的相屏近似或弹簧模型假设,很难同时识别涂层的界面粗糙度和刚度。本文提出了一种利用开发的超声波反射相位导数谱(URPDS)综合识别涂层厚度、界面粗糙度和界面刚度的新方法。构建了超声波垂直传播到粗糙和弱粘接界面的相屏近似弹簧模型(PSASM)。在 PSASM 的基础上,开发了涂层/基底结构的 URPDS,用于识别涂层部件的界面刚度和其他参数。交叉相关分析用于消除由参考信号和测试信号初始相位引入的 URPDS 相位偏差。利用灵敏度分析确定 URPDS 对界面粗糙度和界面刚度的高灵敏度区域。利用遗传算法优化实现涂层厚度、界面粗糙度和界面刚度的综合识别。通过使用一系列具有粗糙和弱结合界面的涂层/基底模型进行数值模拟,验证了 PSASM 的合理性,并阐明了高灵敏度区域与界面粗糙度 Rq 和界面刚度 Kn 的高精度测量范围之间的关系。使用平面波探头对镍涂层样品和涂层部件进行了超声波实验。涂层厚度、界面粗糙度和界面刚度都能被准确识别,这表明所提出的 URPDS 方法可以识别粗糙接触异种介质或具有粗糙界面的涂层部件的界面刚度。
{"title":"Interface stiffness identification of rough and weak bonded interface using developed ultrasonic reflection phase derivative spectrum","authors":"Zhiyuan Ma ,&nbsp;Jiwei Yang ,&nbsp;Haoyang Shen ,&nbsp;Tianzhi Qi ,&nbsp;Li Lin","doi":"10.1016/j.ndteint.2024.103236","DOIUrl":"10.1016/j.ndteint.2024.103236","url":null,"abstract":"<div><p>The thickness and interface roughness of coatings both affect the interface bonded quality. Existed ultrasonic testing methods based on traditional phase screen approximation or spring model assumption are difficult to simultaneously identify the interface roughness and stiffness of coating. This paper, a new method for integrated identifying coating thickness, interface roughness, and interface stiffness using developed ultrasonic reflection phase derivative spectrum (URPDS) is proposed. A phase-screen-approximated spring-model (PSASM) for ultrasound vertically propagating into rough and weak bonded interface is constructed. On basis of PSASM, a URPDS of coating/substrate structure is developed for identifying the interface stiffness and other parameters of coated parts. Cross-correlation analysis is used to eliminate the phase deviation of URPDS introduced by reference signal and initial phase of tested signal. Sensitivity analysis is used to determine the high-sensitivity regions of URPDS to interface roughness and interface stiffness. Genetic algorithm optimization is used to achieve integrated identification of coating thickness, interface roughness, and interface stiffness. The rationality of PSASM is verified through numerical simulation using a series of coating/substrate models with rough and weak bonded interface, and the relationship between the high-sensitivity regions and the high-precision measurement ranges of interface roughness <em>Rq</em> and interface stiffness <em>K</em><sub>n</sub> is clarified. Ultrasonic experiments are implemented on Nickel-coating samples and coated parts using plane wave probe. The coating thickness, interface roughness, and interface stiffness could be identified accurately, which shows that the proposed URPDS method can identify the interface stiffness of rough contacted dissimilar media or coated parts with rough interface.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"148 ","pages":"Article 103236"},"PeriodicalIF":4.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acoustic source localization by deep-learning attention-based modulation of microphone array data 通过基于深度学习注意力的麦克风阵列数据调制实现声源定位
IF 4.1 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Pub Date : 2024-09-06 DOI: 10.1016/j.ndteint.2024.103233
Georg Karl Kocur, Denny Thaler, Bernd Markert

We proposed a deep-learning attention-based methodology to predict acoustic sources obtained from pendulum impact experiments using the Cluster-Self Adaptive Network (CSAN) and showed that the experimental data required for training can be reduced by 50% without losing significant localization accuracy. Acoustic signals due to pendulum impacts on a homogeneous steel plate were recorded by an asymmetric microphone array. Important wavelet features were extracted by transforming the acoustic signals using continuous wavelet functions and reduced the data dimensionality by principal component analysis. Two data sampling strategies (random and Latin hypercube) were investigated to study the effect of the density of training domains on the model performance. The attention-based modulation strategy was employed on microphone positions for data augmentation and prediction of acoustic sources. A comprehensive analysis of the CSAN-based localization results including error estimation was performed. The outcome was contrasted against delay-and-sum beamforming localization results.

我们提出了一种基于注意力的深度学习方法,利用聚类自适应网络(CSAN)预测从摆锤撞击实验中获得的声源,结果表明训练所需的实验数据可减少 50%,而定位精度不会明显降低。不对称麦克风阵列记录了摆锤撞击均质钢板时产生的声学信号。通过使用连续小波函数对声学信号进行变换,提取了重要的小波特征,并通过主成分分析降低了数据维度。研究了两种数据采样策略(随机和拉丁超立方),以研究训练域密度对模型性能的影响。在麦克风位置上采用了基于注意力的调制策略,用于数据增强和声源预测。对基于 CSAN 的定位结果(包括误差估计)进行了综合分析。分析结果与延迟和波束成形定位结果进行了对比。
{"title":"Acoustic source localization by deep-learning attention-based modulation of microphone array data","authors":"Georg Karl Kocur,&nbsp;Denny Thaler,&nbsp;Bernd Markert","doi":"10.1016/j.ndteint.2024.103233","DOIUrl":"10.1016/j.ndteint.2024.103233","url":null,"abstract":"<div><p>We proposed a deep-learning attention-based methodology to predict acoustic sources obtained from pendulum impact experiments using the Cluster-Self Adaptive Network (CSAN) and showed that the experimental data required for training can be reduced by 50% without losing significant localization accuracy. Acoustic signals due to pendulum impacts on a homogeneous steel plate were recorded by an asymmetric microphone array. Important wavelet features were extracted by transforming the acoustic signals using continuous wavelet functions and reduced the data dimensionality by principal component analysis. Two data sampling strategies (random and Latin hypercube) were investigated to study the effect of the density of training domains on the model performance. The attention-based modulation strategy was employed on microphone positions for data augmentation and prediction of acoustic sources. A comprehensive analysis of the CSAN-based localization results including error estimation was performed. The outcome was contrasted against delay-and-sum beamforming localization results.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"148 ","pages":"Article 103233"},"PeriodicalIF":4.1,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0963869524001981/pdfft?md5=3c45c1331f7d4d84f0e91bf1ee6b0971&pid=1-s2.0-S0963869524001981-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acoustic emission-based weld crack leakage monitoring via FGI and MCCF-CondenseNet convolutional neural network 通过 FGI 和 MCCF-CondenseNet 卷积神经网络进行基于声发射的焊接裂缝泄漏监测
IF 4.1 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Pub Date : 2024-09-03 DOI: 10.1016/j.ndteint.2024.103232
Yanlong Yu , Zhifen Zhang , Jing Huang , Yongjie Li , Rui Qin , Guangrui Wen , Wei Cheng , Xuefeng Chen

Online monitoring of weld crack leakage in pressure pipelines of nuclear power ship based on acoustic emission (AE) technology is of great significance for maintaining the safe and stable operation of the system. However, most of the current leakage studies are conducted through artificially designed pipeline hole types, which deviate from the actual crack morphology and are weakly online, with low identification accuracy and slow monitoring speed. Therefore, a convolutional network of FGI and multi-scale channel information cross fusion based on AE technology is proposed in this paper. First, the FBank feature of the AE signal of pipeline weld leakage are extracted. On this basis, the Gini Index (GI) preference feature is used to filter the useless information in the FBank feature. Then, a multi-scale channel information cross fusion module is designed to improve the feature learning ability of the network through the interaction and fusion of different channel information. Finally, the superiority of the proposed FGI feature extraction method and the effectiveness of the proposed multi-scale channel information cross fusion CondenseNet (MCCF-CondenseNet) convolutional neural network are verified by the pipeline leakage AE monitoring experiments under three crack morphologies. The results show that the identification accuracy of the proposed method is as high as 96.42 %, and the identification speed is significantly faster than other state-of-the-art approaches under the premise of ensuring the identification accuracy. This work provides a new method for the online leakage monitoring of nuclear power pressure pipelines, and has important supporting significance for the online leakage monitoring of other large and complex equipment.

基于声发射(AE)技术的核动力船舶压力管道焊缝泄漏在线监测对维护系统安全稳定运行具有重要意义。然而,目前大多数泄漏研究都是通过人工设计的管道孔型来进行的,与实际裂纹形态存在偏差,在线能力较弱,识别精度低,监测速度慢。因此,本文提出了一种基于 AE 技术的 FGI 卷积网络和多尺度通道信息交叉融合技术。首先,提取管道焊缝泄漏 AE 信号的 FBank 特征。在此基础上,使用基尼指数(GI)偏好特征过滤 FBank 特征中的无用信息。然后,设计了一个多尺度信道信息交叉融合模块,通过不同信道信息的交互融合来提高网络的特征学习能力。最后,通过三种裂缝形态下的管道泄漏 AE 监测实验,验证了所提出的 FGI 特征提取方法的优越性和所提出的多尺度信道信息交叉融合 CondenseNet(MCCF-CondenseNet)卷积神经网络的有效性。结果表明,所提方法的识别准确率高达 96.42%,在保证识别准确率的前提下,识别速度明显快于其他先进方法。这项工作为核电压力管道的在线泄漏监测提供了一种新方法,对其他大型复杂设备的在线泄漏监测也具有重要的支撑意义。
{"title":"Acoustic emission-based weld crack leakage monitoring via FGI and MCCF-CondenseNet convolutional neural network","authors":"Yanlong Yu ,&nbsp;Zhifen Zhang ,&nbsp;Jing Huang ,&nbsp;Yongjie Li ,&nbsp;Rui Qin ,&nbsp;Guangrui Wen ,&nbsp;Wei Cheng ,&nbsp;Xuefeng Chen","doi":"10.1016/j.ndteint.2024.103232","DOIUrl":"10.1016/j.ndteint.2024.103232","url":null,"abstract":"<div><p>Online monitoring of weld crack leakage in pressure pipelines of nuclear power ship based on acoustic emission (AE) technology is of great significance for maintaining the safe and stable operation of the system. However, most of the current leakage studies are conducted through artificially designed pipeline hole types, which deviate from the actual crack morphology and are weakly online, with low identification accuracy and slow monitoring speed. Therefore, a convolutional network of FGI and multi-scale channel information cross fusion based on AE technology is proposed in this paper. First, the FBank feature of the AE signal of pipeline weld leakage are extracted. On this basis, the Gini Index (GI) preference feature is used to filter the useless information in the FBank feature. Then, a multi-scale channel information cross fusion module is designed to improve the feature learning ability of the network through the interaction and fusion of different channel information. Finally, the superiority of the proposed FGI feature extraction method and the effectiveness of the proposed multi-scale channel information cross fusion CondenseNet (MCCF-CondenseNet) convolutional neural network are verified by the pipeline leakage AE monitoring experiments under three crack morphologies. The results show that the identification accuracy of the proposed method is as high as 96.42 %, and the identification speed is significantly faster than other state-of-the-art approaches under the premise of ensuring the identification accuracy. This work provides a new method for the online leakage monitoring of nuclear power pressure pipelines, and has important supporting significance for the online leakage monitoring of other large and complex equipment.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"148 ","pages":"Article 103232"},"PeriodicalIF":4.1,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel amplitude enhancement method of EMAT for High-frequency Rayleigh-like waves in Circumferential propagation 针对环向传播高频雷电波的 EMAT 新型振幅增强方法
IF 4.1 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Pub Date : 2024-09-02 DOI: 10.1016/j.ndteint.2024.103231
Xu Zhang , Bo Li , Xudong Niu , Zhengyang Qu , Fan Shi , Jun Tu , Xiaochun Song , Qiao Wu

Currently, in terms of resolution and excitation efficiency for pipeline inspection, the high-frequency Rayleigh-like wave excited by an EMAT with a traditional Rayleigh wave EMAT structure is not optimal when using the same magnet volume. This paper introduces an EMAT performance evaluation method focused on 'bandwidth' in the high-frequency-thickness region of circumferential guided waves. A wavenumber spectrum analysis method utilizing combined equivalent surface stresses is proposed to quantify this optimize design. Comparative studies, including theoretical analysis and experimental validation, demonstrate that incorporating bandwidth significantly improves the design of Rayleigh-like waves at high frequencies. The proposed EMAT achieves a performance improvement of 2.4 times for inside pipe excitation and 2.6 times for outside pipe excitation over the conventional structure. The occurrence of multiple wave packets outside the optimal excitation frequency range is acknowledged. Therefore, this method offers a new approach for optimizing EMATs for Rayleigh-like waves.

目前,就管道检测的分辨率和激发效率而言,在使用相同磁体体积的情况下,采用传统瑞利波 EMAT 结构的 EMAT 激发的高频瑞利波并不理想。本文介绍了一种 EMAT 性能评估方法,重点是圆周导波高频厚度区域的 "带宽"。本文提出了一种利用组合等效表面应力的波谱分析方法来量化这种优化设计。包括理论分析和实验验证在内的比较研究表明,带宽的加入能显著改善高频率的类雷利波设计。与传统结构相比,所提出的电磁超声波处理技术在管内激励方面的性能提高了 2.4 倍,在管外激励方面提高了 2.6 倍。在最佳激振频率范围之外出现多个波包的情况得到了认可。因此,这种方法为优化雷电样波电磁超声衰减器提供了一种新方法。
{"title":"A novel amplitude enhancement method of EMAT for High-frequency Rayleigh-like waves in Circumferential propagation","authors":"Xu Zhang ,&nbsp;Bo Li ,&nbsp;Xudong Niu ,&nbsp;Zhengyang Qu ,&nbsp;Fan Shi ,&nbsp;Jun Tu ,&nbsp;Xiaochun Song ,&nbsp;Qiao Wu","doi":"10.1016/j.ndteint.2024.103231","DOIUrl":"10.1016/j.ndteint.2024.103231","url":null,"abstract":"<div><p>Currently, in terms of resolution and excitation efficiency for pipeline inspection, the high-frequency Rayleigh-like wave excited by an EMAT with a traditional Rayleigh wave EMAT structure is not optimal when using the same magnet volume. This paper introduces an EMAT performance evaluation method focused on 'bandwidth' in the high-frequency-thickness region of circumferential guided waves. A wavenumber spectrum analysis method utilizing combined equivalent surface stresses is proposed to quantify this optimize design. Comparative studies, including theoretical analysis and experimental validation, demonstrate that incorporating bandwidth significantly improves the design of Rayleigh-like waves at high frequencies. The proposed EMAT achieves a performance improvement of 2.4 times for inside pipe excitation and 2.6 times for outside pipe excitation over the conventional structure. The occurrence of multiple wave packets outside the optimal excitation frequency range is acknowledged. Therefore, this method offers a new approach for optimizing EMATs for Rayleigh-like waves.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"148 ","pages":"Article 103231"},"PeriodicalIF":4.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Ndt & E International
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1