首页 > 最新文献

Nature nanotechnology最新文献

英文 中文
Nanorobots hold PD-L1 and break membrane of colorectal cancer cells for immunotherapy 纳米机器人携带PD-L1并打破结直肠癌细胞的膜进行免疫治疗
IF 34.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-23 DOI: 10.1038/s41565-025-02071-3
Wang Ying, Chuanhao Zheng, Chunli Gong, Junxiao Yuan, Guoyang Xu, Jin Zhou, Chaoqiang Fan, Yuchen Zhang, Jie Luo, Ruijue Dan, Yu Huang, Xin Li, Weiyan Chen, Kebin Zhang, Malcolm Xing, Lei Wang, Hao Wang, Shiming Yang, Qiang Luo
Limited immune cell infiltration is the main reason for poor immunotherapeutic efficacy in colorectal cancer patients. Here we design a peptide-based nanorobot that recognizes PD-L1 and breaks cancer cell membranes by in situ forming fibrils through a pH-responsive module. The nanorobot shows long retention in targeted tumours (>120 h) through interaction with PD-L1 and blocks PD-1/PD-L1 to activate the T cell killing effect. At the same time, in the tumour microenvironment (pH 6.5), it forms fibrils that break the cancer cell membrane, inducing immunogenic cell death with the release of damage-associated molecular patterns and the subsequent infiltration of T cells. The nanorobot shows higher therapeutic efficacy than the regimen of αPD-L1+oxaliplatin in a variety of colorectal-cancer-tumour-bearing mouse models and has good biocompatibility due to the targeted breakage of cancer cells, exhibiting great potential for colorectal cancer immunotherapy in clinic. A peptide-based PD-L1-targeted nanorobot disrupts cancer cell membranes via pH-responsive fibril formation, and enhances T cell infiltration and immune activation, inducing a potent anticancer response in animal models of colorectal cancer.
免疫细胞浸润有限是导致大肠癌患者免疫治疗效果不佳的主要原因。在这里,我们设计了一个基于肽的纳米机器人,它可以识别PD-L1并通过ph响应模块原位形成原纤维来破坏癌细胞膜。该纳米机器人通过与PD-L1相互作用,在靶向肿瘤中显示长时间滞留(>120小时),并阻断PD-1/PD-L1,激活T细胞杀伤作用。同时,在肿瘤微环境(pH 6.5)中,它形成原纤维,打破癌细胞细胞膜,通过释放与损伤相关的分子模式和随后的T细胞浸润诱导免疫原性细胞死亡。纳米机器人在多种结直肠癌-肿瘤小鼠模型中均表现出高于αPD-L1+奥沙利铂方案的治疗效果,并且由于癌细胞的靶向破碎,具有良好的生物相容性,在临床上具有很大的结直肠癌免疫治疗潜力。
{"title":"Nanorobots hold PD-L1 and break membrane of colorectal cancer cells for immunotherapy","authors":"Wang Ying, Chuanhao Zheng, Chunli Gong, Junxiao Yuan, Guoyang Xu, Jin Zhou, Chaoqiang Fan, Yuchen Zhang, Jie Luo, Ruijue Dan, Yu Huang, Xin Li, Weiyan Chen, Kebin Zhang, Malcolm Xing, Lei Wang, Hao Wang, Shiming Yang, Qiang Luo","doi":"10.1038/s41565-025-02071-3","DOIUrl":"10.1038/s41565-025-02071-3","url":null,"abstract":"Limited immune cell infiltration is the main reason for poor immunotherapeutic efficacy in colorectal cancer patients. Here we design a peptide-based nanorobot that recognizes PD-L1 and breaks cancer cell membranes by in situ forming fibrils through a pH-responsive module. The nanorobot shows long retention in targeted tumours (>120 h) through interaction with PD-L1 and blocks PD-1/PD-L1 to activate the T cell killing effect. At the same time, in the tumour microenvironment (pH 6.5), it forms fibrils that break the cancer cell membrane, inducing immunogenic cell death with the release of damage-associated molecular patterns and the subsequent infiltration of T cells. The nanorobot shows higher therapeutic efficacy than the regimen of αPD-L1+oxaliplatin in a variety of colorectal-cancer-tumour-bearing mouse models and has good biocompatibility due to the targeted breakage of cancer cells, exhibiting great potential for colorectal cancer immunotherapy in clinic. A peptide-based PD-L1-targeted nanorobot disrupts cancer cell membranes via pH-responsive fibril formation, and enhances T cell infiltration and immune activation, inducing a potent anticancer response in animal models of colorectal cancer.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"21 1","pages":"156-167"},"PeriodicalIF":34.9,"publicationDate":"2025-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145808176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Portable hand-powered nanocatalysis for water disinfection 用于水消毒的便携式手持纳米催化剂。
IF 34.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-23 DOI: 10.1038/s41565-025-02070-4
In-Yong Suh, Young-Jun Kim, Sang-Woo Kim
A hand-rotation-powered, nanomaterial-enabled disinfection system generates reactive oxygen species that rapidly disinfect a wide range of pathogens by leveraging mechanically induced interfacial electric fields. This electricity-free operation, having high efficiency, safety and long-lasting microbial protection, offers a robust, portable solution for clean-water access in disaster situations and in environments where the electricity grid is unavailable.
手旋转驱动的纳米材料消毒系统产生活性氧,通过利用机械诱导的界面电场迅速消毒各种病原体。这种无电操作,具有高效率、安全性和持久的微生物保护,为灾害情况下和电网不可用的环境中获得清洁水提供了强大的便携式解决方案。
{"title":"Portable hand-powered nanocatalysis for water disinfection","authors":"In-Yong Suh, Young-Jun Kim, Sang-Woo Kim","doi":"10.1038/s41565-025-02070-4","DOIUrl":"10.1038/s41565-025-02070-4","url":null,"abstract":"A hand-rotation-powered, nanomaterial-enabled disinfection system generates reactive oxygen species that rapidly disinfect a wide range of pathogens by leveraging mechanically induced interfacial electric fields. This electricity-free operation, having high efficiency, safety and long-lasting microbial protection, offers a robust, portable solution for clean-water access in disaster situations and in environments where the electricity grid is unavailable.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"21 1","pages":"15-16"},"PeriodicalIF":34.9,"publicationDate":"2025-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145813383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reversing the polycrystalline rules in single-crystal battery positive electrodes. 逆转单晶电池正极中的多晶规则。
IF 34.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-19 DOI: 10.1038/s41565-025-02078-w
Mikkel Juelsholt
{"title":"Reversing the polycrystalline rules in single-crystal battery positive electrodes.","authors":"Mikkel Juelsholt","doi":"10.1038/s41565-025-02078-w","DOIUrl":"https://doi.org/10.1038/s41565-025-02078-w","url":null,"abstract":"","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":" ","pages":""},"PeriodicalIF":34.9,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145794275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoscopic strain evolution in single-crystal battery positive electrodes. 单晶电池正极的纳米应变演化。
IF 38.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-16 DOI: 10.1038/s41565-025-02079-9
Jing Wang,Tongchao Liu,Weiyuan Huang,Lei Yu,Haozhe Zhang,Tao Zhou,Tianyi Li,Xiaojing Huang,Xianghui Xiao,Lu Ma,Martin V Holt,Kun Ryu,Rachid Amine,Wenqian Xu,Luxi Li,Jianguo Wen,Ying Shirley Meng,Khalil Amine
Single-crystal Ni-rich layered oxides (SC-NMC) with a grain-boundary-free configuration have effectively addressed the long-standing cracking issue of conventional polycrystalline Ni-rich materials (PC-NMC) in lithium-ion batteries, prompting a shift in optimization strategies. However, continued reliance on anisotropic lattice volume change-a well-established failure indicator in PC-NMC-as a metric for understanding strain and guiding compositional design for SC-NMC becomes controversial. Here, by leveraging multiscale diagnostic techniques, we unravelled the distinct nanoscopic strain evolution in SC-NMC during battery operation, challenging the conventional composition-driven strategies and mechanical degradation indicators used for PC-NMC. Through particle-level chemomechanical analysis, we reveal a decoupling between mechanical stability and lattice volume change in SC-NMC, identifying that structural instability in SC materials is primarily driven by multidimensional lattice distortions induced by kinetics-driven reaction heterogeneity and progressively deactivating chemical phases. Using this mechanical failure mode, we redefine the roles of cobalt and manganese in maintaining mechanical stability. Unlike cobalt's detrimental role in PC-NMC, we find cobalt to be critical in enhancing the longevity of SC-NMC by mitigating localized strain along the extended diffusion pathway, whereas manganese exacerbates mechanical degradation.
具有无晶界结构的单晶富镍层状氧化物(SC-NMC)有效地解决了锂离子电池中传统多晶富镍材料(PC-NMC)长期存在的开裂问题,促使优化策略发生转变。然而,继续依赖各向异性晶格体积变化——pc - nmc中一个公认的失效指标——作为SC-NMC理解应变和指导成分设计的指标,这一观点存在争议。在这里,通过利用多尺度诊断技术,我们揭示了SC-NMC在电池运行过程中独特的纳米尺度应变演变,挑战了PC-NMC使用的传统成分驱动策略和机械退化指标。通过粒子水平的化学力学分析,我们揭示了SC- nmc的机械稳定性和晶格体积变化之间的解耦,确定了SC材料的结构不稳定性主要是由动力学驱动的反应非均质性和化学相逐渐失活引起的多维晶格扭曲所驱动的。利用这种机械失效模式,我们重新定义了钴和锰在维持机械稳定性中的作用。与钴在PC-NMC中的有害作用不同,我们发现钴在延长SC-NMC寿命方面至关重要,通过减轻扩展扩散途径的局部应变,而锰则加剧了机械降解。
{"title":"Nanoscopic strain evolution in single-crystal battery positive electrodes.","authors":"Jing Wang,Tongchao Liu,Weiyuan Huang,Lei Yu,Haozhe Zhang,Tao Zhou,Tianyi Li,Xiaojing Huang,Xianghui Xiao,Lu Ma,Martin V Holt,Kun Ryu,Rachid Amine,Wenqian Xu,Luxi Li,Jianguo Wen,Ying Shirley Meng,Khalil Amine","doi":"10.1038/s41565-025-02079-9","DOIUrl":"https://doi.org/10.1038/s41565-025-02079-9","url":null,"abstract":"Single-crystal Ni-rich layered oxides (SC-NMC) with a grain-boundary-free configuration have effectively addressed the long-standing cracking issue of conventional polycrystalline Ni-rich materials (PC-NMC) in lithium-ion batteries, prompting a shift in optimization strategies. However, continued reliance on anisotropic lattice volume change-a well-established failure indicator in PC-NMC-as a metric for understanding strain and guiding compositional design for SC-NMC becomes controversial. Here, by leveraging multiscale diagnostic techniques, we unravelled the distinct nanoscopic strain evolution in SC-NMC during battery operation, challenging the conventional composition-driven strategies and mechanical degradation indicators used for PC-NMC. Through particle-level chemomechanical analysis, we reveal a decoupling between mechanical stability and lattice volume change in SC-NMC, identifying that structural instability in SC materials is primarily driven by multidimensional lattice distortions induced by kinetics-driven reaction heterogeneity and progressively deactivating chemical phases. Using this mechanical failure mode, we redefine the roles of cobalt and manganese in maintaining mechanical stability. Unlike cobalt's detrimental role in PC-NMC, we find cobalt to be critical in enhancing the longevity of SC-NMC by mitigating localized strain along the extended diffusion pathway, whereas manganese exacerbates mechanical degradation.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"16 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145765300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phonon engineering enables hyperbolic asymptotic line polaritons 声子工程使双曲渐近线极化成为可能
IF 38.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-15 DOI: 10.1038/s41565-025-02090-0
Shu Zhang, Puyi Ma, Oubo You, Shenghan Zhou, Kaijun Feng, Hongyi Yuan, Jinhao Zhang, Chenchen Wu, Yang Luo, Bei Yang, Cheng-Wei Qiu, Xiaoxia Yang, Xiangdong Guo, Yichun Liu, Shuang Zhang, Qing Dai
Advances in polaritonic materials, where coupling between light and matter creates hybrid states, have enhanced our ability to control light propagation at nano and atomic scales. Conventional polariton modulation techniques, particularly topological modulation, are limited by the stringent momentum-matching requirement between light and the material’s coupling mode. Here we propose a phonon-engineering strategy that utilizes anisotropic phononic materials in α-MoO3 to transform circular surface polaritons into hyperbolic asymptotic line polaritons (HALPs) in high-symmetry AlN semiconductors. This approach circumvents the strict requirement for momentum matching via phonon-induced anisotropic Lorentz-type dielectric oscillations. Our system shows broadband modulation of HALP in AlN (~55 cm−1), achieving an approximate 90° tuning range for the isofrequency contour’s open angle. This enables precise phase control for diffraction-free zero-phase propagation. Notably, precise control of atomic isotopes and crystal structure allows further modulation of HALP propagation directions. Our strategy can be generalized to other systems to achieve hyperbolic polaritons in high-symmetry materials.
极化材料的进步,光和物质之间的耦合产生混合态,增强了我们在纳米和原子尺度上控制光传播的能力。传统的极化调制技术,特别是拓扑调制,受到光与材料耦合模式之间严格的动量匹配要求的限制。本文提出了一种声子工程策略,利用α-MoO3中的各向异性声子材料将高对称AlN半导体中的圆形表面极化子转化为双曲渐近线极化子(HALPs)。这种方法绕过了声子诱导的各向异性洛伦兹型介电振荡对动量匹配的严格要求。我们的系统显示了AlN (~55 cm−1)的宽带调制HALP,实现了大约90°的调谐范围,用于等频轮廓的打开角。这使得精确的相位控制无衍射零相位传播。值得注意的是,原子同位素和晶体结构的精确控制允许进一步调制HALP传播方向。我们的策略可以推广到其他系统,以实现高对称材料中的双曲极化。
{"title":"Phonon engineering enables hyperbolic asymptotic line polaritons","authors":"Shu Zhang, Puyi Ma, Oubo You, Shenghan Zhou, Kaijun Feng, Hongyi Yuan, Jinhao Zhang, Chenchen Wu, Yang Luo, Bei Yang, Cheng-Wei Qiu, Xiaoxia Yang, Xiangdong Guo, Yichun Liu, Shuang Zhang, Qing Dai","doi":"10.1038/s41565-025-02090-0","DOIUrl":"https://doi.org/10.1038/s41565-025-02090-0","url":null,"abstract":"Advances in polaritonic materials, where coupling between light and matter creates hybrid states, have enhanced our ability to control light propagation at nano and atomic scales. Conventional polariton modulation techniques, particularly topological modulation, are limited by the stringent momentum-matching requirement between light and the material’s coupling mode. Here we propose a phonon-engineering strategy that utilizes anisotropic phononic materials in α-MoO3 to transform circular surface polaritons into hyperbolic asymptotic line polaritons (HALPs) in high-symmetry AlN semiconductors. This approach circumvents the strict requirement for momentum matching via phonon-induced anisotropic Lorentz-type dielectric oscillations. Our system shows broadband modulation of HALP in AlN (~55 cm−1), achieving an approximate 90° tuning range for the isofrequency contour’s open angle. This enables precise phase control for diffraction-free zero-phase propagation. Notably, precise control of atomic isotopes and crystal structure allows further modulation of HALP propagation directions. Our strategy can be generalized to other systems to achieve hyperbolic polaritons in high-symmetry materials.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"13 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145759846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA nanodevice for analysis of force-activated protein extension and interactions 用于分析力激活蛋白延伸和相互作用的DNA纳米器件
IF 38.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-15 DOI: 10.1038/s41565-025-02086-w
Kun Zhou, Minhwan Chung, Shankar Pandey, Jing Cheng, John T. Powell, Qi Yan, Jun Liu, Yong Xiong, Martin A. Schwartz, Chenxiang Lin
Force-induced changes in protein structure and function mediate cellular responses to mechanical stresses that are important in human development, physiology and diseases. However, existing methods to study proteins under mechanical force are generally single-molecule techniques unsuitable for biochemical and structural analysis. Taking advantage of DNA nanotechnology, including the well-defined geometry of DNA origami and the programmable mechanics of DNA hairpins, we built a nanodevice to apply controlled forces to proteins. This device was used to study the R1-R2 segment of the talin1 rod domain as a model protein. R1-R2 consists of two α-helical bundles that reversibly unfold under tension to expose binding sites for the cytoskeletal protein vinculin. Electron microscopy confirmed tension-dependent protein extension, and biochemical analysis demonstrated enhanced vinculin binding under tension. Using the device in pull-down assays with cell lysates, we identified filamins as novel tension-dependent talin binders. The DNA nanodevice thus provides a valuable molecular tool for studying mechanosensitive proteins on a biochemical scale.
力诱导的蛋白质结构和功能变化介导细胞对机械应力的反应,这在人类发育、生理和疾病中很重要。然而,现有的研究机械力作用下蛋白质的方法通常是单分子技术,不适合进行生化和结构分析。利用DNA纳米技术,包括DNA折纸的明确几何形状和DNA发夹的可编程机制,我们建立了一个纳米装置来对蛋白质施加控制力。该装置用于研究talin1棒结构域的R1-R2片段作为模型蛋白。R1-R2由两个α-螺旋束组成,在张力下可逆地展开,暴露出细胞骨架蛋白的结合位点。电镜证实张力依赖性蛋白延伸,生化分析证实张力下血管蛋白结合增强。使用该装置在细胞裂解物的下拉试验中,我们确定了丝蛋白是一种新的张力依赖的talin粘合剂。因此,DNA纳米装置为在生化尺度上研究机械敏感蛋白提供了一个有价值的分子工具。
{"title":"DNA nanodevice for analysis of force-activated protein extension and interactions","authors":"Kun Zhou, Minhwan Chung, Shankar Pandey, Jing Cheng, John T. Powell, Qi Yan, Jun Liu, Yong Xiong, Martin A. Schwartz, Chenxiang Lin","doi":"10.1038/s41565-025-02086-w","DOIUrl":"https://doi.org/10.1038/s41565-025-02086-w","url":null,"abstract":"Force-induced changes in protein structure and function mediate cellular responses to mechanical stresses that are important in human development, physiology and diseases. However, existing methods to study proteins under mechanical force are generally single-molecule techniques unsuitable for biochemical and structural analysis. Taking advantage of DNA nanotechnology, including the well-defined geometry of DNA origami and the programmable mechanics of DNA hairpins, we built a nanodevice to apply controlled forces to proteins. This device was used to study the R1-R2 segment of the talin1 rod domain as a model protein. R1-R2 consists of two α-helical bundles that reversibly unfold under tension to expose binding sites for the cytoskeletal protein vinculin. Electron microscopy confirmed tension-dependent protein extension, and biochemical analysis demonstrated enhanced vinculin binding under tension. Using the device in pull-down assays with cell lysates, we identified filamins as novel tension-dependent talin binders. The DNA nanodevice thus provides a valuable molecular tool for studying mechanosensitive proteins on a biochemical scale.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"30 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145759845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sb-contacted MoS2 flash memory for analogue in-memory searches sb接触MoS2闪存模拟内存搜索
IF 38.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-15 DOI: 10.1038/s41565-025-02089-7
Guoyun Gao, Bo Wen, Ni Yang, Zhiyuan Du, Mingrui Jiang, Ruibin Mao, Rui Qiu, Yingnan Cao, Hongxia Xue, Deng Zou, Pak San Yip, Qihan Liu, Yi Wan, Dong-Keun Ki, Jinyao Tang, Paddy K. L. Chan, Hao Jiang, Han Wang, Lain-Jong Li, Can Li
The explosion of artificial intelligence and edge devices has exposed a critical bottleneck in traditional hardware: the slow data transfer between memory and processing. Content-addressable memories offer a promising solution by processing information directly within the memory, but existing implementations using static random-access memory and, more recently, those using emerging non-volatile memories are constrained by the performance of silicon transistors. Here we introduce an analogue content-addressable memory utilizing atomically thin two-dimensional MoS2 flash memories with semimetal antimony contacts. Our device achieves a high read-out current (60 μA μm−1) and large ON/OFF ratios (>109) in two-dimensional flash memories. These breakthroughs have led to very low energy consumption (under 0.1 fJ per search per cell) and latency (36 ps) during analogue in-memory search operations within our 8 × 16 analogue content-addressable memory array, featuring 256 MoS2 flash memory devices. We have also successfully demonstrated analogue Hamming distance computing for k-nearest neighbour classification, showcasing high accuracy, high energy efficiency and low latency for machine learning applications. This research highlights the transformative potential of two-dimensional materials in overcoming current hardware limitations, enabling more efficient and scalable computing solutions in intelligent edge devices.
人工智能和边缘设备的爆炸式增长暴露了传统硬件的一个关键瓶颈:内存和处理之间缓慢的数据传输。内容寻址存储器通过直接在存储器中处理信息提供了一个很有前途的解决方案,但是现有的使用静态随机存取存储器的实现以及最近使用新兴的非易失性存储器的实现受到硅晶体管性能的限制。在这里,我们介绍了一种模拟内容可寻址存储器,利用具有半金属锑触点的原子薄二维MoS2闪存。我们的器件在二维闪存中实现了高读出电流(60 μA μm−1)和大开/关比(>109)。这些突破使得我们在8 × 16模拟内容可寻址存储器阵列中进行模拟内存搜索操作时的能耗非常低(每个单元每次搜索低于0.1 fJ)和延迟(36 ps),该阵列具有256个MoS2闪存器件。我们还成功地演示了用于k近邻分类的模拟汉明距离计算,展示了机器学习应用的高精度,高能效和低延迟。这项研究强调了二维材料在克服当前硬件限制方面的变革潜力,在智能边缘设备中实现更高效和可扩展的计算解决方案。
{"title":"Sb-contacted MoS2 flash memory for analogue in-memory searches","authors":"Guoyun Gao, Bo Wen, Ni Yang, Zhiyuan Du, Mingrui Jiang, Ruibin Mao, Rui Qiu, Yingnan Cao, Hongxia Xue, Deng Zou, Pak San Yip, Qihan Liu, Yi Wan, Dong-Keun Ki, Jinyao Tang, Paddy K. L. Chan, Hao Jiang, Han Wang, Lain-Jong Li, Can Li","doi":"10.1038/s41565-025-02089-7","DOIUrl":"https://doi.org/10.1038/s41565-025-02089-7","url":null,"abstract":"The explosion of artificial intelligence and edge devices has exposed a critical bottleneck in traditional hardware: the slow data transfer between memory and processing. Content-addressable memories offer a promising solution by processing information directly within the memory, but existing implementations using static random-access memory and, more recently, those using emerging non-volatile memories are constrained by the performance of silicon transistors. Here we introduce an analogue content-addressable memory utilizing atomically thin two-dimensional MoS2 flash memories with semimetal antimony contacts. Our device achieves a high read-out current (60 μA μm−1) and large ON/OFF ratios (>109) in two-dimensional flash memories. These breakthroughs have led to very low energy consumption (under 0.1 fJ per search per cell) and latency (36 ps) during analogue in-memory search operations within our 8 × 16 analogue content-addressable memory array, featuring 256 MoS2 flash memory devices. We have also successfully demonstrated analogue Hamming distance computing for k-nearest neighbour classification, showcasing high accuracy, high energy efficiency and low latency for machine learning applications. This research highlights the transformative potential of two-dimensional materials in overcoming current hardware limitations, enabling more efficient and scalable computing solutions in intelligent edge devices.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"111 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145759848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linking nanotechnology and sustainability 将纳米技术与可持续性联系起来。
IF 34.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-12 DOI: 10.1038/s41565-025-02105-w
The path towards high technology readiness levels in nanotechnology research and development goes through the sustainability route.
在纳米技术研究和发展中,通往高技术准备水平的道路是通过可持续性路线的。
{"title":"Linking nanotechnology and sustainability","authors":"","doi":"10.1038/s41565-025-02105-w","DOIUrl":"10.1038/s41565-025-02105-w","url":null,"abstract":"The path towards high technology readiness levels in nanotechnology research and development goes through the sustainability route.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"20 12","pages":"1713-1713"},"PeriodicalIF":34.9,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41565-025-02105-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145742756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualizing the origin of picosecond quantum transients 皮秒量子瞬态的起源可视化。
IF 34.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-12 DOI: 10.1038/s41565-025-02097-7
Zeyu Zhang, Juan Du
Picosecond quantum transients have been traced to nanotwinning superlattices in bulk FAPbI3 films, using a combination of ultrafast spectroscopy and microscopy.
皮秒量子瞬态已被追踪到体FAPbI3薄膜中的纳米孪晶超晶格,使用超快光谱和显微镜相结合。
{"title":"Visualizing the origin of picosecond quantum transients","authors":"Zeyu Zhang, Juan Du","doi":"10.1038/s41565-025-02097-7","DOIUrl":"10.1038/s41565-025-02097-7","url":null,"abstract":"Picosecond quantum transients have been traced to nanotwinning superlattices in bulk FAPbI3 films, using a combination of ultrafast spectroscopy and microscopy.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"20 12","pages":"1721-1722"},"PeriodicalIF":34.9,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145732827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brain–computer interfaces race to the clinic 脑机接口竞相进入临床。
IF 34.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-12 DOI: 10.1038/s41565-025-02096-8
Mark Peplow
Advances in materials science, microelectronics and semiconductor manufacturing are helping these devices to benefit patients.
材料科学、微电子和半导体制造的进步正在帮助这些设备造福患者。
{"title":"Brain–computer interfaces race to the clinic","authors":"Mark Peplow","doi":"10.1038/s41565-025-02096-8","DOIUrl":"10.1038/s41565-025-02096-8","url":null,"abstract":"Advances in materials science, microelectronics and semiconductor manufacturing are helping these devices to benefit patients.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"20 12","pages":"1714-1716"},"PeriodicalIF":34.9,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145732828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature nanotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1