Pub Date : 2024-06-07DOI: 10.1038/s41565-024-01683-5
Hang Sun, Bingwei Yang, Qiong Li, Xiaokang Zhu, Erqun Song, Cong Liu, Yang Song, Guibin Jiang
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the dysfunction and progressive death of cerebral and spinal motor neurons. Preliminary epidemiological research has hinted at a relationship between environmental risks and the escalation of ALS, but the underlying reasons remain mostly mysterious. Here we show that nanosize polystyrene plastics (PS) induce ALS-like symptoms and illustrate the related molecular mechanism. When exposed to PS, cells endure internal oxidative stress, which leads to the aggregation of TAR DNA-binding protein 43 kDa (TDP-43), triggering ALS-like characteristics. In addition, the oxidized heat shock protein 70 fails to escort TDP-43 back to the nucleus. The cytoplasmic accumulation of TDP-43 facilitates the formation of a complex between PS and TDP-43, enhancing the condensation and solidification of TDP-43. These findings are corroborated through in silico and in vivo assays. Altogether, our work illustrates a unique toxicological mechanism induced by nanoparticles and provides insights into the connection between environmental pollution and neurodegenerative disorders. The progression of neurological disorders might be influenced by environmental factors. Here the authors show that exposure to polystyrene nanoparticles leads to aggregation of the protein TDP-43, which is involved in amyotrophic lateral sclerosis (ALS), triggering ALS-like symptoms in animal models.
肌萎缩性脊髓侧索硬化症(ALS)是一种神经退行性疾病,其特征是大脑和脊髓运动神经元的功能障碍和进行性死亡。初步的流行病学研究表明,环境风险与 ALS 的升级之间存在关系,但其根本原因仍然十分神秘。在这里,我们展示了纳米级聚苯乙烯塑料(PS)会诱发类似渐冻人症的症状,并说明了相关的分子机制。当暴露于聚苯乙烯塑料中时,细胞会承受内部氧化应激,从而导致 TAR DNA 结合蛋白 43 kDa(TDP-43)聚集,引发类似 ALS 的特征。此外,氧化的热休克蛋白 70 无法护送 TDP-43 回到细胞核。TDP-43 在细胞质中的积累促进了 PS 与 TDP-43 之间复合物的形成,增强了 TDP-43 的凝结和固化。这些研究结果在硅学和体内试验中得到了证实。总之,我们的工作说明了纳米颗粒诱导的一种独特的毒理学机制,并为环境污染与神经退行性疾病之间的联系提供了见解。
{"title":"Polystyrene nanoparticles trigger aberrant condensation of TDP-43 and amyotrophic lateral sclerosis-like symptoms","authors":"Hang Sun, Bingwei Yang, Qiong Li, Xiaokang Zhu, Erqun Song, Cong Liu, Yang Song, Guibin Jiang","doi":"10.1038/s41565-024-01683-5","DOIUrl":"10.1038/s41565-024-01683-5","url":null,"abstract":"Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the dysfunction and progressive death of cerebral and spinal motor neurons. Preliminary epidemiological research has hinted at a relationship between environmental risks and the escalation of ALS, but the underlying reasons remain mostly mysterious. Here we show that nanosize polystyrene plastics (PS) induce ALS-like symptoms and illustrate the related molecular mechanism. When exposed to PS, cells endure internal oxidative stress, which leads to the aggregation of TAR DNA-binding protein 43 kDa (TDP-43), triggering ALS-like characteristics. In addition, the oxidized heat shock protein 70 fails to escort TDP-43 back to the nucleus. The cytoplasmic accumulation of TDP-43 facilitates the formation of a complex between PS and TDP-43, enhancing the condensation and solidification of TDP-43. These findings are corroborated through in silico and in vivo assays. Altogether, our work illustrates a unique toxicological mechanism induced by nanoparticles and provides insights into the connection between environmental pollution and neurodegenerative disorders. The progression of neurological disorders might be influenced by environmental factors. Here the authors show that exposure to polystyrene nanoparticles leads to aggregation of the protein TDP-43, which is involved in amyotrophic lateral sclerosis (ALS), triggering ALS-like symptoms in animal models.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 9","pages":"1354-1365"},"PeriodicalIF":38.1,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141287137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06DOI: 10.1038/s41565-024-01667-5
Gregory V. Lowry, Juan Pablo Giraldo, Nicole F. Steinmetz, Astrid Avellan, Gozde S. Demirer, Kurt D. Ristroph, Gerald J. Wang, Christine O. Hendren, Christopher A. Alabi, Adam Caparco, Washington da Silva, Ivonne González-Gamboa, Khara D. Grieger, Su-Ji Jeon, Mariya V. Khodakovskaya, Hagay Kohay, Vivek Kumar, Raja Muthuramalingam, Hanna Poffenbarger, Swadeshmukul Santra, Robert D. Tilton, Jason C. White
Nanocarriers (NCs) that can precisely deliver active agents, nutrients and genetic materials into plants will make crop agriculture more resilient to climate change and sustainable. As a research field, nano-agriculture is still developing, with significant scientific and societal barriers to overcome. In this Review, we argue that lessons can be learned from mammalian nanomedicine. In particular, it may be possible to enhance efficiency and efficacy by improving our understanding of how NC properties affect their interactions with plant surfaces and biomolecules, and their ability to carry and deliver cargo to specific locations. New tools are required to rapidly assess NC–plant interactions and to explore and verify the range of viable targeting approaches in plants. Elucidating these interactions can lead to the creation of computer-generated in silico models (digital twins) to predict the impact of different NC and plant properties, biological responses, and environmental conditions on the efficiency and efficacy of nanotechnology approaches. Finally, we highlight the need for nano-agriculture researchers and social scientists to converge in order to develop sustainable, safe and socially acceptable NCs. Nanocarrier delivery has huge potential in agriculture; however, there are significant scientific and societal barriers to overcome. In this Review, the authors explore the state of the field, what lessons can be learned from nanomedicine, and discuss what scientific and societal issues need to be addressed.
{"title":"Towards realizing nano-enabled precision delivery in plants","authors":"Gregory V. Lowry, Juan Pablo Giraldo, Nicole F. Steinmetz, Astrid Avellan, Gozde S. Demirer, Kurt D. Ristroph, Gerald J. Wang, Christine O. Hendren, Christopher A. Alabi, Adam Caparco, Washington da Silva, Ivonne González-Gamboa, Khara D. Grieger, Su-Ji Jeon, Mariya V. Khodakovskaya, Hagay Kohay, Vivek Kumar, Raja Muthuramalingam, Hanna Poffenbarger, Swadeshmukul Santra, Robert D. Tilton, Jason C. White","doi":"10.1038/s41565-024-01667-5","DOIUrl":"10.1038/s41565-024-01667-5","url":null,"abstract":"Nanocarriers (NCs) that can precisely deliver active agents, nutrients and genetic materials into plants will make crop agriculture more resilient to climate change and sustainable. As a research field, nano-agriculture is still developing, with significant scientific and societal barriers to overcome. In this Review, we argue that lessons can be learned from mammalian nanomedicine. In particular, it may be possible to enhance efficiency and efficacy by improving our understanding of how NC properties affect their interactions with plant surfaces and biomolecules, and their ability to carry and deliver cargo to specific locations. New tools are required to rapidly assess NC–plant interactions and to explore and verify the range of viable targeting approaches in plants. Elucidating these interactions can lead to the creation of computer-generated in silico models (digital twins) to predict the impact of different NC and plant properties, biological responses, and environmental conditions on the efficiency and efficacy of nanotechnology approaches. Finally, we highlight the need for nano-agriculture researchers and social scientists to converge in order to develop sustainable, safe and socially acceptable NCs. Nanocarrier delivery has huge potential in agriculture; however, there are significant scientific and societal barriers to overcome. In this Review, the authors explore the state of the field, what lessons can be learned from nanomedicine, and discuss what scientific and societal issues need to be addressed.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 9","pages":"1255-1269"},"PeriodicalIF":38.1,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141264956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06DOI: 10.1038/s41565-024-01686-2
Thorsten Hugel
Combining single-molecule Förster resonance energy transfer (FRET) and fluorescence lifetime information inside an anti-Brownian electrokinetic (ABEL) trap makes it possible to distinguish dozens of biomolecules in a sample mixture. This method enables extensive barcoding of biomolecules with a minimal set of chemical components and opens up a path toward biomolecule quantification in complex mixtures.
{"title":"New dimensions for fluorescence-based barcoding in complex mixtures","authors":"Thorsten Hugel","doi":"10.1038/s41565-024-01686-2","DOIUrl":"10.1038/s41565-024-01686-2","url":null,"abstract":"Combining single-molecule Förster resonance energy transfer (FRET) and fluorescence lifetime information inside an anti-Brownian electrokinetic (ABEL) trap makes it possible to distinguish dozens of biomolecules in a sample mixture. This method enables extensive barcoding of biomolecules with a minimal set of chemical components and opens up a path toward biomolecule quantification in complex mixtures.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 8","pages":"1081-1082"},"PeriodicalIF":38.1,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141264829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06DOI: 10.1038/s41565-024-01692-4
Chiral crystals are sought after for their ability to tune the polarization of light. Now, multiwalled boron nitride nanotubes (BNNTs) are shown to be promising chiral crystals with coherently stacked structures, wherein the component tubes display mono-chirality, homo-handedness and unipolarity. This unique architecture endows BNNTs with strong optical nonlinearity and a chiral geometry-dependent chiroptical response.
{"title":"Multiwalled boron nitride nanotubes with a strong nonlinear chiroptical response","authors":"","doi":"10.1038/s41565-024-01692-4","DOIUrl":"10.1038/s41565-024-01692-4","url":null,"abstract":"Chiral crystals are sought after for their ability to tune the polarization of light. Now, multiwalled boron nitride nanotubes (BNNTs) are shown to be promising chiral crystals with coherently stacked structures, wherein the component tubes display mono-chirality, homo-handedness and unipolarity. This unique architecture endows BNNTs with strong optical nonlinearity and a chiral geometry-dependent chiroptical response.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 9","pages":"1251-1252"},"PeriodicalIF":38.1,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141264903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nanomaterials with a large chiroptical response and high structural stability are desirable for advanced miniaturized optical and optoelectronic applications. One-dimensional (1D) nanotubes are robust crystals with inherent and continuously tunable chiral geometries. However, their chiroptical response is typically weak and hard to control, due to the diverse structures of the coaxial tubes. Here we demonstrate that as-grown multiwalled boron nitride nanotubes (BNNTs), featuring coherent-stacking structures including near monochirality, homo-handedness and unipolarity among the component tubes, exhibit a scalable nonlinear chiroptical response. This intrinsic architecture produces a strong nonlinear optical response in individual multiwalled BNNTs, enabling second-harmonic generation (SHG) with a conversion efficiency up to 0.01% and output power at the microwatt level—both excellent figures of merit in the 1D nanomaterials family. We further show that the rich chirality of the nanotubes introduces a controllable nonlinear geometric phase, producing a chirality-dependent SHG circular dichroism with values of −0.7 to +0.7. We envision that our 1D chiral platform will enable novel functions in compact nonlinear light sources and modulators. Multiwalled boron nitride nanotubes, featuring coherently stacked structures with monochirality, homo-handedness and unipolarity among the component tubes, show a large nonlinear chiroptical response.
{"title":"Strong chiroptical nonlinearity in coherently stacked boron nitride nanotubes","authors":"Chaojie Ma, Chenjun Ma, Chang Liu, Quanlin Guo, Chen Huang, Guangjie Yao, Meiyun Li, Jiajie Qi, Biao Qin, Xin Sui, Jiacheng Li, Muhong Wu, Peng Gao, Wenlong Wang, Xuedong Bai, Zhipei Sun, Enge Wang, Hao Hong, Kaihui Liu","doi":"10.1038/s41565-024-01685-3","DOIUrl":"10.1038/s41565-024-01685-3","url":null,"abstract":"Nanomaterials with a large chiroptical response and high structural stability are desirable for advanced miniaturized optical and optoelectronic applications. One-dimensional (1D) nanotubes are robust crystals with inherent and continuously tunable chiral geometries. However, their chiroptical response is typically weak and hard to control, due to the diverse structures of the coaxial tubes. Here we demonstrate that as-grown multiwalled boron nitride nanotubes (BNNTs), featuring coherent-stacking structures including near monochirality, homo-handedness and unipolarity among the component tubes, exhibit a scalable nonlinear chiroptical response. This intrinsic architecture produces a strong nonlinear optical response in individual multiwalled BNNTs, enabling second-harmonic generation (SHG) with a conversion efficiency up to 0.01% and output power at the microwatt level—both excellent figures of merit in the 1D nanomaterials family. We further show that the rich chirality of the nanotubes introduces a controllable nonlinear geometric phase, producing a chirality-dependent SHG circular dichroism with values of −0.7 to +0.7. We envision that our 1D chiral platform will enable novel functions in compact nonlinear light sources and modulators. Multiwalled boron nitride nanotubes, featuring coherently stacked structures with monochirality, homo-handedness and unipolarity among the component tubes, show a large nonlinear chiroptical response.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 9","pages":"1299-1305"},"PeriodicalIF":38.1,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141264979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06DOI: 10.1038/s41565-024-01677-3
Bruno Melo, Marc T. Cuairan, Grégoire F. M. Tomassi, Nadine Meyer, Romain Quidant
By isolating from the environment and precisely controlling mesoscopic objects, levitation in vacuum has evolved into a versatile technique that has already benefited diverse scientific directions, from force sensing and thermodynamics to materials science and chemistry. It also holds great promise for advancing the study of quantum mechanics in the unexplored macroscopic regime. However, most current levitation platforms are complex and bulky. Recent efforts in miniaturization of vacuum levitation set-ups have comprised electrostatic and optical traps, but robustness is still a concern for integration into confined settings, such as cryostats or portable devices. Here we show levitation and motion control in high vacuum of a silica nanoparticle at the surface of a hybrid optical–electrostatic chip. By combining fibre-based optical trapping and sensitive position detection with cold damping through planar electrodes, we cool the particle motion to a few hundred phonons. We envisage that our fully integrated platform is the starting point for on-chip devices combining integrated photonics and nanophotonics with precisely engineered electric potentials, enhancing control over the particle motion towards complex state preparation and read-out. By combining fibre-based trapping and position detection with cold damping through planar electrodes, cooling of a silica nanoparticle particle motion to a few hundred phonons on a chip is achieved.
{"title":"Vacuum levitation and motion control on chip","authors":"Bruno Melo, Marc T. Cuairan, Grégoire F. M. Tomassi, Nadine Meyer, Romain Quidant","doi":"10.1038/s41565-024-01677-3","DOIUrl":"10.1038/s41565-024-01677-3","url":null,"abstract":"By isolating from the environment and precisely controlling mesoscopic objects, levitation in vacuum has evolved into a versatile technique that has already benefited diverse scientific directions, from force sensing and thermodynamics to materials science and chemistry. It also holds great promise for advancing the study of quantum mechanics in the unexplored macroscopic regime. However, most current levitation platforms are complex and bulky. Recent efforts in miniaturization of vacuum levitation set-ups have comprised electrostatic and optical traps, but robustness is still a concern for integration into confined settings, such as cryostats or portable devices. Here we show levitation and motion control in high vacuum of a silica nanoparticle at the surface of a hybrid optical–electrostatic chip. By combining fibre-based optical trapping and sensitive position detection with cold damping through planar electrodes, we cool the particle motion to a few hundred phonons. We envisage that our fully integrated platform is the starting point for on-chip devices combining integrated photonics and nanophotonics with precisely engineered electric potentials, enhancing control over the particle motion towards complex state preparation and read-out. By combining fibre-based trapping and position detection with cold damping through planar electrodes, cooling of a silica nanoparticle particle motion to a few hundred phonons on a chip is achieved.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 9","pages":"1270-1276"},"PeriodicalIF":38.1,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41565-024-01677-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141264869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-27DOI: 10.1038/s41565-024-01679-1
Jingjing Zhang, Yanmei Li, Fengyuan Zeng, Changyong Mu, Change Liu, Lichun Wang, Xiaowu Peng, Liping He, Yanrui Su, Hongbing Li, An Wang, Lin Feng, Dongxiu Gao, Zhixiao Zhang, Gang Xu, Yixuan Wang, Rong Yue, Junbo Si, Lichun Zheng, Xiong Zhang, Fuyun He, Hongkun Yi, Zhongshu Tang, Gaocan Li, Kaili Ma, Qihan Li
Improved vaccination requires better delivery of antigens and activation of the natural immune response. Here we report a lipid nanoparticle system with the capacity to carry antigens, including mRNA and proteins, which is formed into a virus-like structure by surface decoration with spike proteins, demonstrating application against SARS-CoV-2 variants. The strategy uses S1 protein from Omicron BA.1 on the surface to deliver mRNA of S1 protein from XBB.1. The virus-like particle enables specific augmentation of mRNAs expressed in human respiratory epithelial cells and macrophages via the interaction the surface S1 protein with ACE2 or DC-SIGN receptors. Activation of macrophages and dendritic cells is demonstrated by the same receptor binding. The combination of protein and mRNA increases the antibody response in BALB/c mice compared with mRNA and protein vaccines alone. Our exploration of the mechanism of this robust immunity suggests it might involve cross-presentation to diverse subsets of dendritic cells ranging from activated innate immune signals to adaptive immune signals. This paper presents a virus-like lipid nanoparticle decorated with spike proteins capable of carrying antigens, including mRNA and proteins, for vaccination against SARS-CoV-2 variants.
{"title":"Virus-like structures for combination antigen protein mRNA vaccination","authors":"Jingjing Zhang, Yanmei Li, Fengyuan Zeng, Changyong Mu, Change Liu, Lichun Wang, Xiaowu Peng, Liping He, Yanrui Su, Hongbing Li, An Wang, Lin Feng, Dongxiu Gao, Zhixiao Zhang, Gang Xu, Yixuan Wang, Rong Yue, Junbo Si, Lichun Zheng, Xiong Zhang, Fuyun He, Hongkun Yi, Zhongshu Tang, Gaocan Li, Kaili Ma, Qihan Li","doi":"10.1038/s41565-024-01679-1","DOIUrl":"10.1038/s41565-024-01679-1","url":null,"abstract":"Improved vaccination requires better delivery of antigens and activation of the natural immune response. Here we report a lipid nanoparticle system with the capacity to carry antigens, including mRNA and proteins, which is formed into a virus-like structure by surface decoration with spike proteins, demonstrating application against SARS-CoV-2 variants. The strategy uses S1 protein from Omicron BA.1 on the surface to deliver mRNA of S1 protein from XBB.1. The virus-like particle enables specific augmentation of mRNAs expressed in human respiratory epithelial cells and macrophages via the interaction the surface S1 protein with ACE2 or DC-SIGN receptors. Activation of macrophages and dendritic cells is demonstrated by the same receptor binding. The combination of protein and mRNA increases the antibody response in BALB/c mice compared with mRNA and protein vaccines alone. Our exploration of the mechanism of this robust immunity suggests it might involve cross-presentation to diverse subsets of dendritic cells ranging from activated innate immune signals to adaptive immune signals. This paper presents a virus-like lipid nanoparticle decorated with spike proteins capable of carrying antigens, including mRNA and proteins, for vaccination against SARS-CoV-2 variants.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 8","pages":"1224-1233"},"PeriodicalIF":38.1,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41565-024-01679-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141156643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-27DOI: 10.1038/s41565-024-01681-7
Ziyu Wu, Lin Chen, Wenyan Guo, Jun Wang, Haiya Ni, Jianing Liu, Wentao Jiang, Jian Shen, Chun Mao, Min Zhou, Mimi Wan
Mitochondrial transplantation is an important therapeutic strategy for restoring energy supply in patients with ischaemic heart disease (IHD); however, it is limited by the invasiveness of the transplantation method and loss of mitochondrial activity. Here we report successful mitochondrial transplantation by oral administration for IHD therapy. A nitric-oxide-releasing nanomotor is modified on the mitochondria surface to obtain nanomotorized mitochondria with chemotactic targeting ability towards damaged heart tissue due to nanomotor action. The nanomotorized mitochondria are packaged in enteric capsules to protect them from gastric acid erosion. After oral delivery the mitochondria are released in the intestine, where they are quickly absorbed by intestinal cells and secreted into the bloodstream, allowing delivery to the damaged heart tissue. The regulation of disease microenvironment by the nanomotorized mitochondria can not only achieve rapid uptake and high retention of mitochondria by damaged cardiomyocytes but also maintains high activity of the transplanted mitochondria. Furthermore, results from animal models of IHD indicate that the accumulated nanomotorized mitochondria in the damaged heart tissue can regulate cardiac metabolism at the transcriptional level, thus preventing IHD progression. This strategy has the potential to change the therapeutic strategy used to treat IHD. Ischaemic heart disease, which poses a severe threat to human health, is characterized by mitochondria damage and energy metabolism disorder. Here mitochondria were orally transplanted to the heart using nanomotors to restore energy metabolism by non-invasive administration.
{"title":"Oral mitochondrial transplantation using nanomotors to treat ischaemic heart disease","authors":"Ziyu Wu, Lin Chen, Wenyan Guo, Jun Wang, Haiya Ni, Jianing Liu, Wentao Jiang, Jian Shen, Chun Mao, Min Zhou, Mimi Wan","doi":"10.1038/s41565-024-01681-7","DOIUrl":"10.1038/s41565-024-01681-7","url":null,"abstract":"Mitochondrial transplantation is an important therapeutic strategy for restoring energy supply in patients with ischaemic heart disease (IHD); however, it is limited by the invasiveness of the transplantation method and loss of mitochondrial activity. Here we report successful mitochondrial transplantation by oral administration for IHD therapy. A nitric-oxide-releasing nanomotor is modified on the mitochondria surface to obtain nanomotorized mitochondria with chemotactic targeting ability towards damaged heart tissue due to nanomotor action. The nanomotorized mitochondria are packaged in enteric capsules to protect them from gastric acid erosion. After oral delivery the mitochondria are released in the intestine, where they are quickly absorbed by intestinal cells and secreted into the bloodstream, allowing delivery to the damaged heart tissue. The regulation of disease microenvironment by the nanomotorized mitochondria can not only achieve rapid uptake and high retention of mitochondria by damaged cardiomyocytes but also maintains high activity of the transplanted mitochondria. Furthermore, results from animal models of IHD indicate that the accumulated nanomotorized mitochondria in the damaged heart tissue can regulate cardiac metabolism at the transcriptional level, thus preventing IHD progression. This strategy has the potential to change the therapeutic strategy used to treat IHD. Ischaemic heart disease, which poses a severe threat to human health, is characterized by mitochondria damage and energy metabolism disorder. Here mitochondria were orally transplanted to the heart using nanomotors to restore energy metabolism by non-invasive administration.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 9","pages":"1375-1385"},"PeriodicalIF":38.1,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141156646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-27DOI: 10.1038/s41565-024-01651-z
Dragana Slavkovic-Lukic, Luca Gattinoni
Nanowires enable efficient genetic engineering of non-activated naive T cells, providing a technological platform for the generation of gene-modified T cells with maximal therapeutic efficacy.
纳米线可对非活化的天真 T 细胞进行高效的基因工程改造,为生成具有最大疗效的基因修饰 T 细胞提供了一个技术平台。
{"title":"Nanowires engineer naive T cells for immunotherapy","authors":"Dragana Slavkovic-Lukic, Luca Gattinoni","doi":"10.1038/s41565-024-01651-z","DOIUrl":"10.1038/s41565-024-01651-z","url":null,"abstract":"Nanowires enable efficient genetic engineering of non-activated naive T cells, providing a technological platform for the generation of gene-modified T cells with maximal therapeutic efficacy.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 8","pages":"1085-1086"},"PeriodicalIF":38.1,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141156630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}