Pub Date : 2024-07-24DOI: 10.1038/s41565-024-01728-9
Jared Sisler, Prachi Thureja, Meir Y. Grajower, Ruzan Sokhoyan, Ivy Huang, Harry A. Atwater
Active metasurfaces enable dynamic manipulation of the scattered electromagnetic wavefront by spatially varying the phase and amplitude across arrays of subwavelength scatterers, imparting momentum to outgoing light. Similarly, periodic temporal modulation of active metasurfaces allows for manipulation of the output frequency of light. Here we combine spatial and temporal modulation in electrically modulated reflective metasurfaces operating at 1,530 nm to generate and diffract a spectrum of sidebands at megahertz frequencies. Temporal modulation with tailored waveforms enables the design of a spectrum of sidebands. By impressing a spatial phase gradient on the metasurface, we can diffract selected combinations of sideband frequencies. Combining active temporal and spatial variation can enable unique optical functions, such as frequency mixing, harmonic beam steering or shaping, and breaking of Lorentz reciprocity. Spatiotemporal modulation of an electrically driven metasurface generates harmonic frequencies in space at optical frequency.
{"title":"Electrically tunable space–time metasurfaces at optical frequencies","authors":"Jared Sisler, Prachi Thureja, Meir Y. Grajower, Ruzan Sokhoyan, Ivy Huang, Harry A. Atwater","doi":"10.1038/s41565-024-01728-9","DOIUrl":"10.1038/s41565-024-01728-9","url":null,"abstract":"Active metasurfaces enable dynamic manipulation of the scattered electromagnetic wavefront by spatially varying the phase and amplitude across arrays of subwavelength scatterers, imparting momentum to outgoing light. Similarly, periodic temporal modulation of active metasurfaces allows for manipulation of the output frequency of light. Here we combine spatial and temporal modulation in electrically modulated reflective metasurfaces operating at 1,530 nm to generate and diffract a spectrum of sidebands at megahertz frequencies. Temporal modulation with tailored waveforms enables the design of a spectrum of sidebands. By impressing a spatial phase gradient on the metasurface, we can diffract selected combinations of sideband frequencies. Combining active temporal and spatial variation can enable unique optical functions, such as frequency mixing, harmonic beam steering or shaping, and breaking of Lorentz reciprocity. Spatiotemporal modulation of an electrically driven metasurface generates harmonic frequencies in space at optical frequency.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 10","pages":"1491-1498"},"PeriodicalIF":38.1,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1038/s41565-024-01730-1
Pan He, Hiroki Isobe, Gavin Kok Wai Koon, Jun You Tan, Junxiong Hu, Jingru Li, Naoto Nagaosa, Jian Shen
In two-dimensional systems, perpendicular magnetic fields can induce a bulk band gap and chiral edge states, which gives rise to the quantum Hall effect. The quantum Hall effect is characterized by zero longitudinal resistance (Rxx) and Hall resistance (Rxy) plateaus quantized to h/(υe2) in the linear response regime, where υ is the Landau level filling factor, e is the elementary charge and h is Planck’s constant. Here we explore the nonlinear response of monolayer graphene when tuned to a quantum Hall state. We observe a third-order Hall effect that exhibits a nonzero voltage plateau scaling cubically with the probe current. By contrast, the third-order longitudinal voltage remains zero. The magnitude of the third-order response is insensitive to variations in magnetic field (down to ~5 T) and in temperature (up to ~60 K). Moreover, the third-order response emerges in graphene devices with a variety of geometries, different substrates and stacking configurations. We term the effect third-order nonlinear response of the quantum Hall state and propose that electron–electron interaction between the quantum Hall edge states is the origin of the nonlinear response of the quantum Hall state. Monolayer graphene in the quantum Hall regime exhibits a third-order nonlinear Hall response, which is robust against variations in magnetic field and temperature and provides insights into the interaction of chiral edge states.
{"title":"Third-order nonlinear Hall effect in a quantum Hall system","authors":"Pan He, Hiroki Isobe, Gavin Kok Wai Koon, Jun You Tan, Junxiong Hu, Jingru Li, Naoto Nagaosa, Jian Shen","doi":"10.1038/s41565-024-01730-1","DOIUrl":"10.1038/s41565-024-01730-1","url":null,"abstract":"In two-dimensional systems, perpendicular magnetic fields can induce a bulk band gap and chiral edge states, which gives rise to the quantum Hall effect. The quantum Hall effect is characterized by zero longitudinal resistance (Rxx) and Hall resistance (Rxy) plateaus quantized to h/(υe2) in the linear response regime, where υ is the Landau level filling factor, e is the elementary charge and h is Planck’s constant. Here we explore the nonlinear response of monolayer graphene when tuned to a quantum Hall state. We observe a third-order Hall effect that exhibits a nonzero voltage plateau scaling cubically with the probe current. By contrast, the third-order longitudinal voltage remains zero. The magnitude of the third-order response is insensitive to variations in magnetic field (down to ~5 T) and in temperature (up to ~60 K). Moreover, the third-order response emerges in graphene devices with a variety of geometries, different substrates and stacking configurations. We term the effect third-order nonlinear response of the quantum Hall state and propose that electron–electron interaction between the quantum Hall edge states is the origin of the nonlinear response of the quantum Hall state. Monolayer graphene in the quantum Hall regime exhibits a third-order nonlinear Hall response, which is robust against variations in magnetic field and temperature and provides insights into the interaction of chiral edge states.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 10","pages":"1460-1465"},"PeriodicalIF":38.1,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1038/s41565-024-01705-2
Rahul Pendurthi, Najam U Sakib, Muhtasim Ul Karim Sadaf, Zhiyu Zhang, Yongwen Sun, Chen Chen, Darsith Jayachandran, Aaryan Oberoi, Subir Ghosh, Shalini Kumari, Sergei P. Stepanoff, Divya Somvanshi, Yang Yang, Joan M. Redwing, Douglas E. Wolfe, Saptarshi Das
The semiconductor industry is transitioning to the ‘More Moore’ era, driven by the adoption of three-dimensional (3D) integration schemes surpassing the limitations of traditional two-dimensional scaling. Although innovative packaging solutions have made 3D integrated circuits (ICs) commercially viable, the inclusion of through-silicon vias and microbumps brings about increased area overhead and introduces parasitic capacitances that limit overall performance. Monolithic 3D integration (M3D) is regarded as the future of 3D ICs, yet its application faces hurdles in silicon ICs due to restricted thermal processing budgets in upper tiers, which can degrade device performance. To overcome these limitations, emerging materials like carbon nanotubes and two-dimensional semiconductors have been integrated into the back end of silicon ICs. Here we report the M3D integration of complementary WSe2 FETs, in which n-type FETs are placed in tier 1 and p-type FETs are placed in tier 2. In particular, we achieve dense and scaled integration through 300 nm vias with a pitch of <1 µm, connecting more than 300 devices in tiers 1 and 2. Moreover, we have effectively implemented vertically integrated logic gates, encompassing inverters, NAND gates and NOR gates. Our demonstration highlights the two-dimensional materials’ role in advancing M3D integration in complementary metal–oxide–semiconductor circuits. Monolithic 3D integration of complementary WSe2 FETs has been achieved, featuring n-type FETs in tier 1 and p-type FETs in tier 2. Dense vias are realized using a pitch of less than 1 µm, facilitating 3D inverters as well as NAND and NOR logic functionalities.
在三维(3D)集成方案的推动下,半导体行业正在向 "更摩尔"(More Moore)时代过渡,超越了传统二维扩展的局限性。虽然创新的封装解决方案使三维集成电路(IC)具有了商业可行性,但硅通孔和微凸块的加入增加了面积开销,并引入了限制整体性能的寄生电容。单片三维集成(M3D)被认为是三维集成电路的未来发展方向,但在硅集成电路中的应用却面临着障碍,因为上层的热处理预算有限,会降低器件性能。为了克服这些限制,碳纳米管和二维半导体等新兴材料已被集成到硅集成电路的后端。在此,我们报告了互补 WSe2 FET 的 M3D 集成,其中 n 型 FET 位于第 1 层,p 型 FET 位于第 2 层。特别是,我们通过间距为 300 nm 的通孔实现了高密度和按比例的集成。
{"title":"Monolithic three-dimensional integration of complementary two-dimensional field-effect transistors","authors":"Rahul Pendurthi, Najam U Sakib, Muhtasim Ul Karim Sadaf, Zhiyu Zhang, Yongwen Sun, Chen Chen, Darsith Jayachandran, Aaryan Oberoi, Subir Ghosh, Shalini Kumari, Sergei P. Stepanoff, Divya Somvanshi, Yang Yang, Joan M. Redwing, Douglas E. Wolfe, Saptarshi Das","doi":"10.1038/s41565-024-01705-2","DOIUrl":"10.1038/s41565-024-01705-2","url":null,"abstract":"The semiconductor industry is transitioning to the ‘More Moore’ era, driven by the adoption of three-dimensional (3D) integration schemes surpassing the limitations of traditional two-dimensional scaling. Although innovative packaging solutions have made 3D integrated circuits (ICs) commercially viable, the inclusion of through-silicon vias and microbumps brings about increased area overhead and introduces parasitic capacitances that limit overall performance. Monolithic 3D integration (M3D) is regarded as the future of 3D ICs, yet its application faces hurdles in silicon ICs due to restricted thermal processing budgets in upper tiers, which can degrade device performance. To overcome these limitations, emerging materials like carbon nanotubes and two-dimensional semiconductors have been integrated into the back end of silicon ICs. Here we report the M3D integration of complementary WSe2 FETs, in which n-type FETs are placed in tier 1 and p-type FETs are placed in tier 2. In particular, we achieve dense and scaled integration through 300 nm vias with a pitch of <1 µm, connecting more than 300 devices in tiers 1 and 2. Moreover, we have effectively implemented vertically integrated logic gates, encompassing inverters, NAND gates and NOR gates. Our demonstration highlights the two-dimensional materials’ role in advancing M3D integration in complementary metal–oxide–semiconductor circuits. Monolithic 3D integration of complementary WSe2 FETs has been achieved, featuring n-type FETs in tier 1 and p-type FETs in tier 2. Dense vias are realized using a pitch of less than 1 µm, facilitating 3D inverters as well as NAND and NOR logic functionalities.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 7","pages":"970-977"},"PeriodicalIF":38.1,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haematologic malignancies commonly arise from the bone marrow lesion, yet there are currently no effective targeted therapies against tumour cells in this location. Here we constructed a bone-marrow-targeting nanosystem, CSF@E-Hn, which is based on haematopoietic-stem-cell-derived nanovesicles adorned with gripper ligands (aPD-L1 and aNKG2D) and encapsulated with colony-stimulating factor (CSF) for the treatment of haematologic malignancies. CSF@E-Hn targets the bone marrow and, thanks to the gripper ligands, pulls together tumour cells and natural killer cells, activating the latter for specific tumour cell targeting and elimination. The therapeutic efficacy was validated in mice bearing acute myeloid leukaemia and multiple myeloma. The comprehensive assessment of the post-treatment bone marrow microenvironment revealed that the integration of CSF into a bone-marrow-targeted nanosystem promoted haematopoietic stem cell differentiation, boosted memory T cell generation and maintained bone homoeostasis, with long-term prevention of relapse. Our nanosystem represents a promising strategy for the treatment of haematologic malignancies. Blood cancers generally derive from the bone marrow but there are no current targeted treatments. Here the authors present a bone-marrow-targeting nanoparticle that can bind and pull together tumour and natural killer cells for selective elimination of cancer cells, offering a strategy for the treatment of haematologic cancers.
血液恶性肿瘤通常来自骨髓病变,但目前还没有针对该部位肿瘤细胞的有效靶向疗法。在这里,我们构建了一种骨髓靶向纳米系统 CSF@E-Hn,它基于造血干细胞衍生的纳米颗粒,颗粒上装饰有抓取配体(aPD-L1 和 aNKG2D),并包裹有集落刺激因子(CSF),用于治疗血液恶性肿瘤。CSF@E-Hn以骨髓为靶点,通过抓取配体将肿瘤细胞和自然杀伤细胞聚集在一起,激活后者进行特异性肿瘤细胞靶向清除。在罹患急性髓性白血病和多发性骨髓瘤的小鼠身上验证了其疗效。对治疗后骨髓微环境的综合评估显示,将 CSF 纳入骨髓靶向纳米系统可促进造血干细胞分化,促进记忆 T 细胞的生成,维持骨平衡,长期预防复发。我们的纳米系统是治疗血液恶性肿瘤的一种前景广阔的策略。
{"title":"A bispecific nanosystem activates endogenous natural killer cells in the bone marrow for haematologic malignancies therapy","authors":"Yanqin Zhang, Yanfang Deng, Yuewen Zhai, Yu Li, Yuting Li, Juequan Li, Yueqing Gu, Siwen Li","doi":"10.1038/s41565-024-01736-9","DOIUrl":"10.1038/s41565-024-01736-9","url":null,"abstract":"Haematologic malignancies commonly arise from the bone marrow lesion, yet there are currently no effective targeted therapies against tumour cells in this location. Here we constructed a bone-marrow-targeting nanosystem, CSF@E-Hn, which is based on haematopoietic-stem-cell-derived nanovesicles adorned with gripper ligands (aPD-L1 and aNKG2D) and encapsulated with colony-stimulating factor (CSF) for the treatment of haematologic malignancies. CSF@E-Hn targets the bone marrow and, thanks to the gripper ligands, pulls together tumour cells and natural killer cells, activating the latter for specific tumour cell targeting and elimination. The therapeutic efficacy was validated in mice bearing acute myeloid leukaemia and multiple myeloma. The comprehensive assessment of the post-treatment bone marrow microenvironment revealed that the integration of CSF into a bone-marrow-targeted nanosystem promoted haematopoietic stem cell differentiation, boosted memory T cell generation and maintained bone homoeostasis, with long-term prevention of relapse. Our nanosystem represents a promising strategy for the treatment of haematologic malignancies. Blood cancers generally derive from the bone marrow but there are no current targeted treatments. Here the authors present a bone-marrow-targeting nanoparticle that can bind and pull together tumour and natural killer cells for selective elimination of cancer cells, offering a strategy for the treatment of haematologic cancers.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 10","pages":"1558-1568"},"PeriodicalIF":38.1,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1038/s41565-024-01735-w
D. Karpov, K. Djeghdi, M. Holler, S. Narjes Abdollahi, K. Godlewska, C. Donnelly, T. Yuasa, H. Sai, U. B. Wiesner, B. D. Wilts, U. Steiner, M. Musya, S. Fukami, H. Ohno, I. Gunkel, A. Diaz, J. Llandro
Topological defects—extended lattice deformations that are robust against local defects and annealing—have been exploited to engineer novel properties in both hard and soft materials. Yet, their formation kinetics and nanoscale three-dimensional structure are poorly understood, impeding their benefits for nanofabrication. We describe the fabrication of a pair of topological defects in the volume of a single-diamond network (space group Fd $$bar{3}$$ m) templated into gold from a triblock terpolymer crystal. Using X-ray nanotomography, we resolve the three-dimensional structure of nearly 70,000 individual single-diamond unit cells with a spatial resolution of 11.2 nm, allowing analysis of the long-range order of the network. The defects observed morphologically resemble the comet and trefoil patterns of equal and opposite half-integer topological charges observed in liquid crystals. Yet our analysis of strain in the network suggests typical hard matter behaviour. Our analysis approach does not require a priori knowledge of the expected positions of the nodes in three-dimensional nanostructured systems, allowing the identification of distorted morphologies and defects in large samples. Large-volume high-resolution X-ray nanotomography is used to identify topological defects emerging in a self-assembled triblock terpolymer single-diamond network.
{"title":"High-resolution three-dimensional imaging of topological textures in nanoscale single-diamond networks","authors":"D. Karpov, K. Djeghdi, M. Holler, S. Narjes Abdollahi, K. Godlewska, C. Donnelly, T. Yuasa, H. Sai, U. B. Wiesner, B. D. Wilts, U. Steiner, M. Musya, S. Fukami, H. Ohno, I. Gunkel, A. Diaz, J. Llandro","doi":"10.1038/s41565-024-01735-w","DOIUrl":"10.1038/s41565-024-01735-w","url":null,"abstract":"Topological defects—extended lattice deformations that are robust against local defects and annealing—have been exploited to engineer novel properties in both hard and soft materials. Yet, their formation kinetics and nanoscale three-dimensional structure are poorly understood, impeding their benefits for nanofabrication. We describe the fabrication of a pair of topological defects in the volume of a single-diamond network (space group Fd $$bar{3}$$ m) templated into gold from a triblock terpolymer crystal. Using X-ray nanotomography, we resolve the three-dimensional structure of nearly 70,000 individual single-diamond unit cells with a spatial resolution of 11.2 nm, allowing analysis of the long-range order of the network. The defects observed morphologically resemble the comet and trefoil patterns of equal and opposite half-integer topological charges observed in liquid crystals. Yet our analysis of strain in the network suggests typical hard matter behaviour. Our analysis approach does not require a priori knowledge of the expected positions of the nodes in three-dimensional nanostructured systems, allowing the identification of distorted morphologies and defects in large samples. Large-volume high-resolution X-ray nanotomography is used to identify topological defects emerging in a self-assembled triblock terpolymer single-diamond network.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 10","pages":"1499-1506"},"PeriodicalIF":38.1,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.1038/s41565-024-01725-y
Chiara Villa, Valeria Secchi, Mirco Macchi, Luana Tripodi, Elena Trombetta, Desiree Zambroni, Francesco Padelli, Michele Mauri, Monica Molinaro, Rebecca Oddone, Andrea Farini, Antonella De Palma, Laura Varela Pinzon, Federica Santarelli, Roberto Simonutti, PierLuigi Mauri, Laura Porretti, Marcello Campione, Domenico Aquino, Angelo Monguzzi, Yvan Torrente
Exosomes are promising therapeutics for tissue repair and regeneration to induce and guide appropriate immune responses in dystrophic pathologies. However, manipulating exosomes to control their biodistribution and targeting them in vivo to achieve adequate therapeutic benefits still poses a major challenge. Here we overcome this limitation by developing an externally controlled delivery system for primed annexin A1 myo-exosomes (Exomyo). Effective nanocarriers are realized by immobilizing the Exomyo onto ferromagnetic nanotubes to achieve controlled delivery and localization of Exomyo to skeletal muscles by systemic injection using an external magnetic field. Quantitative muscle-level analyses revealed that macrophages dominate the uptake of Exomyo from these ferromagnetic nanotubes in vivo to synergistically promote beneficial muscle responses in a murine animal model of Duchenne muscular dystrophy. Our findings provide insights into the development of exosome-based therapies for muscle diseases and, in general, highlight the formulation of effective functional nanocarriers aimed at optimizing exosome biodistribution. Exosome targeting for therapeutic needs remains a challenge. Here, the authors show that ferromagnetic-nanotube-passivated exosomes promote the transition of proinflammatory macrophages to an anti-inflammatory state and myogenic maturation of dystrophic muscle progenitors in a murine model.
{"title":"Magnetic-field-driven targeting of exosomes modulates immune and metabolic changes in dystrophic muscle","authors":"Chiara Villa, Valeria Secchi, Mirco Macchi, Luana Tripodi, Elena Trombetta, Desiree Zambroni, Francesco Padelli, Michele Mauri, Monica Molinaro, Rebecca Oddone, Andrea Farini, Antonella De Palma, Laura Varela Pinzon, Federica Santarelli, Roberto Simonutti, PierLuigi Mauri, Laura Porretti, Marcello Campione, Domenico Aquino, Angelo Monguzzi, Yvan Torrente","doi":"10.1038/s41565-024-01725-y","DOIUrl":"10.1038/s41565-024-01725-y","url":null,"abstract":"Exosomes are promising therapeutics for tissue repair and regeneration to induce and guide appropriate immune responses in dystrophic pathologies. However, manipulating exosomes to control their biodistribution and targeting them in vivo to achieve adequate therapeutic benefits still poses a major challenge. Here we overcome this limitation by developing an externally controlled delivery system for primed annexin A1 myo-exosomes (Exomyo). Effective nanocarriers are realized by immobilizing the Exomyo onto ferromagnetic nanotubes to achieve controlled delivery and localization of Exomyo to skeletal muscles by systemic injection using an external magnetic field. Quantitative muscle-level analyses revealed that macrophages dominate the uptake of Exomyo from these ferromagnetic nanotubes in vivo to synergistically promote beneficial muscle responses in a murine animal model of Duchenne muscular dystrophy. Our findings provide insights into the development of exosome-based therapies for muscle diseases and, in general, highlight the formulation of effective functional nanocarriers aimed at optimizing exosome biodistribution. Exosome targeting for therapeutic needs remains a challenge. Here, the authors show that ferromagnetic-nanotube-passivated exosomes promote the transition of proinflammatory macrophages to an anti-inflammatory state and myogenic maturation of dystrophic muscle progenitors in a murine model.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 10","pages":"1532-1543"},"PeriodicalIF":38.1,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41565-024-01725-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141736952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the presence of a high magnetic field, quantum Hall systems usually host both even- and odd-integer quantized states because of lifted band degeneracies. Selective control of these quantized states is challenging but essential to understand the exotic ground states and manipulate the spin textures. Here we demonstrate the quantum Hall effect in Bi2O2Se thin films. In magnetic fields as high as 50 T, we observe only even-integer quantum Hall states, but there is no sign of odd-integer states. However, when reducing the thickness of the epitaxial Bi2O2Se film to one unit cell, we observe both odd- and even-integer states in this Janus (asymmetric) film grown on SrTiO3. By means of a Rashba bilayer model based on the ab initio band structures of Bi2O2Se thin films, we can ascribe the only even-integer states in thicker films to the hidden Rasbha effect, where the local inversion-symmetry breaking in two sectors of the [Bi2O2]2+ layer yields opposite Rashba spin polarizations, which compensate with each other. In the one-unit-cell Bi2O2Se film grown on SrTiO3, the asymmetry introduced by the top surface and bottom interface induces a net polar field. The resulting global Rashba effect lifts the band degeneracies present in the symmetric case of thicker films. In Bi2O2Se thin films, the local inversion-symmetry breaking in two sectors of the [Bi2O2]2+ layer yields opposite Rashba spin polarizations, which compensate each other and give rise to the hidden Rashba effect. Hence, the films exhibit only even-integer quantum Hall states, but there is no sign of odd-integer states.
在高磁场条件下,量子霍尔系统通常同时存在偶数和奇数整数量子化态,这是因为提升带变性的缘故。选择性地控制这些量子化态具有挑战性,但对于理解奇异基态和操纵自旋纹理至关重要。在这里,我们展示了 Bi2O2Se 薄膜中的量子霍尔效应。在高达 50 T 的磁场中,我们只观察到偶整数量子霍尔态,而没有奇整数态的迹象。然而,当把外延 Bi2O2Se 薄膜的厚度减小到一个晶胞时,我们在这种生长在 SrTiO3 上的 Janus(非对称)薄膜中观察到奇数和偶数整数态。通过基于 Bi2O2Se 薄膜的ab initio 带结构的拉什巴双层模型,我们可以将较厚薄膜中唯一的偶整数态归因于隐藏的拉什巴效应,即[Bi2O2]2+ 层两个扇区的局部反转对称破缺产生了相反的拉什巴自旋极化,而这两种极化相互补偿。在生长在 SrTiO3 上的单胞 Bi2O2Se 薄膜中,顶部表面和底部界面引入的不对称会诱发净极性场。由此产生的全局拉什巴效应消除了较厚薄膜对称情况下的带退行性。
{"title":"Even-integer quantum Hall effect in an oxide caused by a hidden Rashba effect","authors":"Jingyue Wang, Junwei Huang, Daniel Kaplan, Xuehan Zhou, Congwei Tan, Jing Zhang, Gangjian Jin, Xuzhong Cong, Yongchao Zhu, Xiaoyin Gao, Yan Liang, Huakun Zuo, Zengwei Zhu, Ruixue Zhu, Ady Stern, Hongtao Liu, Peng Gao, Binghai Yan, Hongtao Yuan, Hailin Peng","doi":"10.1038/s41565-024-01732-z","DOIUrl":"10.1038/s41565-024-01732-z","url":null,"abstract":"In the presence of a high magnetic field, quantum Hall systems usually host both even- and odd-integer quantized states because of lifted band degeneracies. Selective control of these quantized states is challenging but essential to understand the exotic ground states and manipulate the spin textures. Here we demonstrate the quantum Hall effect in Bi2O2Se thin films. In magnetic fields as high as 50 T, we observe only even-integer quantum Hall states, but there is no sign of odd-integer states. However, when reducing the thickness of the epitaxial Bi2O2Se film to one unit cell, we observe both odd- and even-integer states in this Janus (asymmetric) film grown on SrTiO3. By means of a Rashba bilayer model based on the ab initio band structures of Bi2O2Se thin films, we can ascribe the only even-integer states in thicker films to the hidden Rasbha effect, where the local inversion-symmetry breaking in two sectors of the [Bi2O2]2+ layer yields opposite Rashba spin polarizations, which compensate with each other. In the one-unit-cell Bi2O2Se film grown on SrTiO3, the asymmetry introduced by the top surface and bottom interface induces a net polar field. The resulting global Rashba effect lifts the band degeneracies present in the symmetric case of thicker films. In Bi2O2Se thin films, the local inversion-symmetry breaking in two sectors of the [Bi2O2]2+ layer yields opposite Rashba spin polarizations, which compensate each other and give rise to the hidden Rashba effect. Hence, the films exhibit only even-integer quantum Hall states, but there is no sign of odd-integer states.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 10","pages":"1452-1459"},"PeriodicalIF":38.1,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141736953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1038/s41565-024-01752-9
Agostino Di Francescantonio, Attilio Zilli, Davide Rocco, Vincent Vinel, Laure Coudrat, Fabrizio Conti, Paolo Biagioni, Lamberto Duò, Aristide Lemaître, Costantino De Angelis, Giuseppe Leo, Marco Finazzi, Michele Celebrano
{"title":"Author Correction: All-optical free-space routing of upconverted light by metasurfaces via nonlinear interferometry","authors":"Agostino Di Francescantonio, Attilio Zilli, Davide Rocco, Vincent Vinel, Laure Coudrat, Fabrizio Conti, Paolo Biagioni, Lamberto Duò, Aristide Lemaître, Costantino De Angelis, Giuseppe Leo, Marco Finazzi, Michele Celebrano","doi":"10.1038/s41565-024-01752-9","DOIUrl":"10.1038/s41565-024-01752-9","url":null,"abstract":"","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 8","pages":"1235-1235"},"PeriodicalIF":38.1,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41565-024-01752-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1038/s41565-024-01743-w
We present a Focus issue on how the research community is continually pushing the device performance boundaries of 2D transistors and explore the pivotal role that these devices play in the future computing landscape.
{"title":"Reimagining computing with 2D semiconductors","authors":"","doi":"10.1038/s41565-024-01743-w","DOIUrl":"10.1038/s41565-024-01743-w","url":null,"abstract":"We present a Focus issue on how the research community is continually pushing the device performance boundaries of 2D transistors and explore the pivotal role that these devices play in the future computing landscape.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 7","pages":"879-879"},"PeriodicalIF":38.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41565-024-01743-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}