Pub Date : 2024-10-28DOI: 10.1038/s41565-024-01801-3
Yang Liu, Runhan Liu, Jiawei Dong, Xue Xia, Haoying Yang, Sijun Wei, Linlin Fan, Mengke Fang, Yan Zou, Meng Zheng, Kam W. Leong, Bingyang Shi
Strategies that selectively bind proteins of interest and target them to the intracellular protein recycling machinery for targeted protein degradation have recently emerged as powerful tools for undruggable targets in biomedical research and the pharmaceutical industry. However, targeting any new protein of interest with current degradation tools requires a laborious case-by-case design for different diseases and cell types, especially for extracellular targets. Here we observe that nanoparticles can mediate specific receptor-independent internalization of a bound protein and further develop a general strategy for degradation of extracellular proteins of interest by making full use of clinically approved components. This extremely flexible strategy aids in targeted protein degradation tool development and provides knowledge for targeted drug therapies and nanomedicine design.
{"title":"Targeted protein degradation via cellular trafficking of nanoparticles","authors":"Yang Liu, Runhan Liu, Jiawei Dong, Xue Xia, Haoying Yang, Sijun Wei, Linlin Fan, Mengke Fang, Yan Zou, Meng Zheng, Kam W. Leong, Bingyang Shi","doi":"10.1038/s41565-024-01801-3","DOIUrl":"https://doi.org/10.1038/s41565-024-01801-3","url":null,"abstract":"<p>Strategies that selectively bind proteins of interest and target them to the intracellular protein recycling machinery for targeted protein degradation have recently emerged as powerful tools for undruggable targets in biomedical research and the pharmaceutical industry. However, targeting any new protein of interest with current degradation tools requires a laborious case-by-case design for different diseases and cell types, especially for extracellular targets. Here we observe that nanoparticles can mediate specific receptor-independent internalization of a bound protein and further develop a general strategy for degradation of extracellular proteins of interest by making full use of clinically approved components. This extremely flexible strategy aids in targeted protein degradation tool development and provides knowledge for targeted drug therapies and nanomedicine design.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"35 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1038/s41565-024-01806-y
Deung-Jang Choi, Dario Bercioux
Scanning tunnelling microscopy experiments enable the realization of artificially built topological quantum magnets with titanium atoms and graphene goblets.
通过扫描隧道显微镜实验,实现了用钛原子和石墨烯小球人工制造拓扑量子磁体。
{"title":"Unravelling topological states in quantum spin chains","authors":"Deung-Jang Choi, Dario Bercioux","doi":"10.1038/s41565-024-01806-y","DOIUrl":"10.1038/s41565-024-01806-y","url":null,"abstract":"Scanning tunnelling microscopy experiments enable the realization of artificially built topological quantum magnets with titanium atoms and graphene goblets.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 12","pages":"1763-1764"},"PeriodicalIF":38.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1038/s41565-024-01800-4
Hui Yue, Yan Li, Tao Yang, Yecheng Wang, Qing Bao, Yajing Xu, Xiangyu Liu, Yao Miao, Mingying Yang, Chuanbin Mao
Programmed cell death-ligand 1 (PD-L1) blockers have advanced immunotherapy, but their lack of tumour homing capability represents a substantial challenge. Here we show that genetically engineered filamentous phages can be used as tumour-targeting immunotherapeutic agents that reduce the side effects caused by untargeted delivery of PD-L1 blockers. Specifically, we improved biopanning to discover a peptide binding the extracellular domain of PD-L1 and another targeting both melanoma tissues and cancer cells. The two peptides were genetically fused to the sidewall protein and tip protein of fd phages, respectively. The intravenously injected phages homed to tumours and bound PD-L1 on cancer cells, effectively blocking PD-1/PD-L1 recognition to trigger targeted immunotherapy without body weight loss, organ abnormalities and haematological aberrations. The phages, cost-effectively replicated by bacteria, are cancer-targeting immunotherapeutic nanofibres that can be flexibly designed to target different cancer types and immune checkpoints.
{"title":"Filamentous phages as tumour-targeting immunotherapeutic bionanofibres","authors":"Hui Yue, Yan Li, Tao Yang, Yecheng Wang, Qing Bao, Yajing Xu, Xiangyu Liu, Yao Miao, Mingying Yang, Chuanbin Mao","doi":"10.1038/s41565-024-01800-4","DOIUrl":"https://doi.org/10.1038/s41565-024-01800-4","url":null,"abstract":"<p>Programmed cell death-ligand 1 (PD-L1) blockers have advanced immunotherapy, but their lack of tumour homing capability represents a substantial challenge. Here we show that genetically engineered filamentous phages can be used as tumour-targeting immunotherapeutic agents that reduce the side effects caused by untargeted delivery of PD-L1 blockers. Specifically, we improved biopanning to discover a peptide binding the extracellular domain of PD-L1 and another targeting both melanoma tissues and cancer cells. The two peptides were genetically fused to the sidewall protein and tip protein of fd phages, respectively. The intravenously injected phages homed to tumours and bound PD-L1 on cancer cells, effectively blocking PD-1/PD-L1 recognition to trigger targeted immunotherapy without body weight loss, organ abnormalities and haematological aberrations. The phages, cost-effectively replicated by bacteria, are cancer-targeting immunotherapeutic nanofibres that can be flexibly designed to target different cancer types and immune checkpoints.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"31 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alkaline-earth metal peroxides (MO2, M = Ca, Sr, Ba) represent a category of versatile and clean solid oxidizers, while the synthesis process usually consumes excessive hydrogen peroxide (H2O2). Here we discover that H2O2 synthesized via two-electron electrochemical oxygen reduction (2e− ORR) on the electrode surface can be efficiently and durably consumed to produce high-purity MO2 in an alkaline environment. The crucial factor lies in the in-time detachment of in situ-generated MO2 from the self-cleaning electrode, where the solid products spontaneously detach from the electrode to solve the block issue. The self-cleaning electrode is achieved by constructing micro-/nanostructure of a highly active catalyst with appropriate surface modification. In experiments, an unprecedented accumulated selectivity (~99%) and durability (>1,000 h, 50 mA cm−2) are achieved for electrochemical synthesis of MO2. Moreover, the comparability of CaO2 and H2O2 for tetracycline degradation with hydrodynamic cavitation is validated in terms of their close efficacies (degradation efficiency of 87.9% and 93.6% for H2O2 and CaO2, respectively).
{"title":"Self-cleaning electrode for stable synthesis of alkaline-earth metal peroxides","authors":"Minli Wang, Jinhuan Cheng, Wenwen Xu, Dandan Zhu, Wuyong Zhang, Yingjie Wen, Wanbing Guan, Jinping Jia, Zhiyi Lu","doi":"10.1038/s41565-024-01815-x","DOIUrl":"https://doi.org/10.1038/s41565-024-01815-x","url":null,"abstract":"<p>Alkaline-earth metal peroxides (MO<sub>2</sub>, M = Ca, Sr, Ba) represent a category of versatile and clean solid oxidizers, while the synthesis process usually consumes excessive hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). Here we discover that H<sub>2</sub>O<sub>2</sub> synthesized via two-electron electrochemical oxygen reduction (2e<sup>−</sup> ORR) on the electrode surface can be efficiently and durably consumed to produce high-purity MO<sub>2</sub> in an alkaline environment. The crucial factor lies in the in-time detachment of in situ-generated MO<sub>2</sub> from the self-cleaning electrode, where the solid products spontaneously detach from the electrode to solve the block issue. The self-cleaning electrode is achieved by constructing micro-/nanostructure of a highly active catalyst with appropriate surface modification. In experiments, an unprecedented accumulated selectivity (~99%) and durability (>1,000 h, 50 mA cm<sup>−</sup><sup>2</sup>) are achieved for electrochemical synthesis of MO<sub>2</sub>. Moreover, the comparability of CaO<sub>2</sub> and H<sub>2</sub>O<sub>2</sub> for tetracycline degradation with hydrodynamic cavitation is validated in terms of their close efficacies (degradation efficiency of 87.9% and 93.6% for H<sub>2</sub>O<sub>2</sub> and CaO<sub>2</sub>, respectively).</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"35 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1038/s41565-024-01748-5
From a single library of siloxane-based lipidoids, siloxane-incorporated lipid nanoparticles (SiLNPs) involving minor alterations in lipid chemistry yield tissue-specific mRNA delivery to the liver, lung, or spleen. Upon enhanced intracellular delivery, these SiLNPs show clinical promise for protein replacement therapies, regenerative medicine, and CRISPR–Cas-based gene editing applications.
{"title":"Small structural changes in siloxane-based lipidoids improve tissue-specific mRNA delivery","authors":"","doi":"10.1038/s41565-024-01748-5","DOIUrl":"https://doi.org/10.1038/s41565-024-01748-5","url":null,"abstract":"From a single library of siloxane-based lipidoids, siloxane-incorporated lipid nanoparticles (SiLNPs) involving minor alterations in lipid chemistry yield tissue-specific mRNA delivery to the liver, lung, or spleen. Upon enhanced intracellular delivery, these SiLNPs show clinical promise for protein replacement therapies, regenerative medicine, and CRISPR–Cas-based gene editing applications.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"194 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1038/s41565-024-01808-w
Sunghwan Kim
The amphiphilic silk fibroin is a natural surfactant. It influences interface interactions and enables wetting hydrophobic surfaces with aqueous solutions. This offers a sustainable route for fabricating water-processed nanodevices without prior surface modification.
{"title":"Silk protein connecting water and nanofabrication","authors":"Sunghwan Kim","doi":"10.1038/s41565-024-01808-w","DOIUrl":"10.1038/s41565-024-01808-w","url":null,"abstract":"The amphiphilic silk fibroin is a natural surfactant. It influences interface interactions and enables wetting hydrophobic surfaces with aqueous solutions. This offers a sustainable route for fabricating water-processed nanodevices without prior surface modification.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 11","pages":"1581-1582"},"PeriodicalIF":38.1,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1038/s41565-024-01807-x
Jie Zhao, Yue Guo, Zhiqi Zhang, Xilin Zhang, Qianqian Ji, Hua Zhang, Zhaoqi Song, Dongqing Liu, Jianrong Zeng, Chenghao Chuang, Erhuan Zhang, Yuhao Wang, Guangzhi Hu, Muhammad Asim Mushtaq, Waseem Raza, Xingke Cai, Francesco Ciucci
Advancements in single-atom-based catalysts are crucial for enhancing oxygen evolution reaction (OER) performance while reducing precious metal usage. A comprehensive understanding of underlying mechanisms will expedite this progress further. Here we report Ir single atoms coordinated out-of-plane with dimethylimidazole (MI) on CoFe hydroxide (Ir1/(Co,Fe)-OH/MI). This Ir1/(Co,Fe)-OH/MI catalyst, which was prepared using a simple immersion method, delivers ultralow overpotentials of 179 mV at a current density of 10 mA cm−2 and 257 mV at 600 mA cm−2 as well as an ultra-small Tafel slope of 24 mV dec−1. Furthermore, Ir1/(Co,Fe)-OH/MI has a total mass activity exceeding that of commercial IrO2 by a factor of 58.4. Ab initio simulations indicate that the coordination of MI leads to electron redistribution around the Ir sites. This causes a positive shift in the d-band centre at adjacent Ir and Co sites, facilitating an optimal energy pathway for OER.
单原子催化剂的进步对于提高氧进化反应(OER)性能并减少贵金属用量至关重要。全面了解潜在的机理将进一步加快这一进程。在此,我们报告了氢氧化钴铁上与二甲基咪唑(MI)平面外配位的 Ir 单原子(Ir1/(Co,Fe)-OH/MI)。这种Ir1/(Co,Fe)-OH/MI催化剂采用简单的浸泡法制备,在电流密度为10 mA cm-2时具有179 mV的超低过电位,在电流密度为600 mA cm-2时具有257 mV的超低过电位,以及24 mV dec-1的超小塔菲尔斜率。此外,Ir1/(Co,Fe)-OH/MI 的总质量活性比商用二氧化铱高出 58.4 倍。Ab initio 模拟表明,MI 的配位导致电子在 Ir 位点周围重新分布。这导致相邻 Ir 和 Co 位点的 d 带中心发生正向移动,从而为 OER 提供了最佳的能量途径。
{"title":"Out-of-plane coordination of iridium single atoms with organic molecules and cobalt–iron hydroxides to boost oxygen evolution reaction","authors":"Jie Zhao, Yue Guo, Zhiqi Zhang, Xilin Zhang, Qianqian Ji, Hua Zhang, Zhaoqi Song, Dongqing Liu, Jianrong Zeng, Chenghao Chuang, Erhuan Zhang, Yuhao Wang, Guangzhi Hu, Muhammad Asim Mushtaq, Waseem Raza, Xingke Cai, Francesco Ciucci","doi":"10.1038/s41565-024-01807-x","DOIUrl":"https://doi.org/10.1038/s41565-024-01807-x","url":null,"abstract":"<p>Advancements in single-atom-based catalysts are crucial for enhancing oxygen evolution reaction (OER) performance while reducing precious metal usage. A comprehensive understanding of underlying mechanisms will expedite this progress further. Here we report Ir single atoms coordinated out-of-plane with dimethylimidazole (MI) on CoFe hydroxide (Ir<sub>1</sub>/(Co,Fe)-OH/MI). This Ir<sub>1</sub>/(Co,Fe)-OH/MI catalyst, which was prepared using a simple immersion method, delivers ultralow overpotentials of 179 mV at a current density of 10 mA cm<sup>−2</sup> and 257 mV at 600 mA cm<sup>−2</sup> as well as an ultra-small Tafel slope of 24 mV dec<sup>−1</sup>. Furthermore, Ir<sub>1</sub>/(Co,Fe)-OH/MI has a total mass activity exceeding that of commercial IrO<sub>2</sub> by a factor of 58.4. Ab initio simulations indicate that the coordination of MI leads to electron redistribution around the Ir sites. This causes a positive shift in the <i>d</i>-band centre at adjacent Ir and Co sites, facilitating an optimal energy pathway for OER.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"41 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1038/s41565-024-01811-1
Laura Heinen, Marco van den Noort, Martin S. King, Edmund R. S. Kunji, Bert Poolman
Living systems depend on continuous energy input for growth, replication and information processing. Cells use membrane proteins as nanomachines to convert light or chemical energy of nutrients into other forms of energy, such as ion gradients or adenosine triphosphate (ATP). However, engineering sustained fuel supply and metabolic energy conversion in synthetic systems is challenging. Here, inspired by endosymbionts that rely on the host cell for their nutrients, we introduce the concept of cross-feeding to exchange ATP and ADP between lipid-based compartments hundreds of nanometres in size. One population of vesicles enzymatically produces ATP in the mM concentration range and exports it. A second population of vesicles takes up this ATP to fuel internal reactions. The produced ADP feeds back to the first vesicles, and ATP-dependent reactions can be fuelled sustainably for up to at least 24 h. The vesicles are a platform technology to fuel ATP-dependent processes in a sustained fashion, with potential applications in synthetic cells and nanoreactors. Fundamentally, the vesicles enable studying non-equilibrium processes in an energy-controlled environment and promote the development and understanding of constructing life-like metabolic systems on the nanoscale.
生命系统的生长、复制和信息处理都依赖于持续的能量输入。细胞利用膜蛋白作为纳米机器,将光或营养物质的化学能转化为其他形式的能量,如离子梯度或三磷酸腺苷(ATP)。然而,在合成系统中进行持续的燃料供应和代谢能量转换工程具有挑战性。在这里,受依赖宿主细胞获取营养的内共生体的启发,我们引入了交叉进食的概念,在数百纳米大小的脂质隔间交换 ATP 和 ADP。一个囊泡群以酶促方式产生毫摩尔浓度范围内的 ATP 并将其输出。第二组囊泡吸收这种 ATP,为内部反应提供燃料。这种囊泡是一种平台技术,可持续为依赖 ATP 的过程提供燃料,有望应用于合成细胞和纳米反应器。从根本上说,囊泡能够在能量受控的环境中研究非平衡过程,并促进在纳米尺度上构建类似生命的新陈代谢系统的发展和理解。
{"title":"Synthetic syntrophy for adenine nucleotide cross-feeding between metabolically active nanoreactors","authors":"Laura Heinen, Marco van den Noort, Martin S. King, Edmund R. S. Kunji, Bert Poolman","doi":"10.1038/s41565-024-01811-1","DOIUrl":"https://doi.org/10.1038/s41565-024-01811-1","url":null,"abstract":"<p>Living systems depend on continuous energy input for growth, replication and information processing. Cells use membrane proteins as nanomachines to convert light or chemical energy of nutrients into other forms of energy, such as ion gradients or adenosine triphosphate (ATP). However, engineering sustained fuel supply and metabolic energy conversion in synthetic systems is challenging. Here, inspired by endosymbionts that rely on the host cell for their nutrients, we introduce the concept of cross-feeding to exchange ATP and ADP between lipid-based compartments hundreds of nanometres in size. One population of vesicles enzymatically produces ATP in the mM concentration range and exports it. A second population of vesicles takes up this ATP to fuel internal reactions. The produced ADP feeds back to the first vesicles, and ATP-dependent reactions can be fuelled sustainably for up to at least 24 h. The vesicles are a platform technology to fuel ATP-dependent processes in a sustained fashion, with potential applications in synthetic cells and nanoreactors. Fundamentally, the vesicles enable studying non-equilibrium processes in an energy-controlled environment and promote the development and understanding of constructing life-like metabolic systems on the nanoscale.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"45 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1038/s41565-024-01790-3
Seung Ju Kim, In Hyuk Im, Ji Hyun Baek, Sungkyun Choi, Sung Hyuk Park, Da Eun Lee, Jae Young Kim, Soo Young Kim, Nam-Gyu Park, Donghwa Lee, J. Joshua Yang, Ho Won Jang
The exotic properties of three-dimensional halide perovskites, such as mixed ionic–electronic conductivity and feasible ion migration, have enabled them to challenge traditional memristive materials. However, the poor moisture stability and difficulty in controlling ion transport due to their polycrystalline nature have hindered their use as a neuromorphic hardware. Recently, two-dimensional (2D) halide perovskites have emerged as promising artificial synapses owing to their phase versatility, microstructural anisotropy in electrical and optoelectronic properties, and excellent moisture resistance. However, their asymmetrical and nonlinear conductance changes still limit the efficiency of training and accuracy of inference. Here we achieve highly linear and symmetrical conductance changes in Dion–Jacobson 2D perovskites. We further build a 7 × 7 crossbar array based on analogue perovskite synapses, achieving a high device yield, low variation with synaptic weight storing capability, multi-level analogue states with long retention, and moisture stability over 7 months. We explore the potential of such devices in large-scale image inference via simulations and show an accuracy within 0.08% of the theoretical limit. The excellent device performance is attributed to the elimination of gaps between inorganic layers, allowing the halide vacancies to migrate homogeneously regardless of grain boundaries. This was confirmed by first-principles calculations and experimental analysis.
{"title":"Linearly programmable two-dimensional halide perovskite memristor arrays for neuromorphic computing","authors":"Seung Ju Kim, In Hyuk Im, Ji Hyun Baek, Sungkyun Choi, Sung Hyuk Park, Da Eun Lee, Jae Young Kim, Soo Young Kim, Nam-Gyu Park, Donghwa Lee, J. Joshua Yang, Ho Won Jang","doi":"10.1038/s41565-024-01790-3","DOIUrl":"https://doi.org/10.1038/s41565-024-01790-3","url":null,"abstract":"<p>The exotic properties of three-dimensional halide perovskites, such as mixed ionic–electronic conductivity and feasible ion migration, have enabled them to challenge traditional memristive materials. However, the poor moisture stability and difficulty in controlling ion transport due to their polycrystalline nature have hindered their use as a neuromorphic hardware. Recently, two-dimensional (2D) halide perovskites have emerged as promising artificial synapses owing to their phase versatility, microstructural anisotropy in electrical and optoelectronic properties, and excellent moisture resistance. However, their asymmetrical and nonlinear conductance changes still limit the efficiency of training and accuracy of inference. Here we achieve highly linear and symmetrical conductance changes in Dion–Jacobson 2D perovskites. We further build a 7 × 7 crossbar array based on analogue perovskite synapses, achieving a high device yield, low variation with synaptic weight storing capability, multi-level analogue states with long retention, and moisture stability over 7 months. We explore the potential of such devices in large-scale image inference via simulations and show an accuracy within 0.08% of the theoretical limit. The excellent device performance is attributed to the elimination of gaps between inorganic layers, allowing the halide vacancies to migrate homogeneously regardless of grain boundaries. This was confirmed by first-principles calculations and experimental analysis.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"193 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1038/s41565-024-01789-w
Reducing the duration of current pulses used to perform magnetization switching via spin–orbit torques in ferromagnetic and ferrimagnetic samples from microseconds to picoseconds leads to a continuous decrease in the energy consumption. These findings show that speed and efficiency of switching can be combined in various magnetic materials with different properties.
{"title":"Energy-efficient magnetization manipulation using picosecond current pulses","authors":"","doi":"10.1038/s41565-024-01789-w","DOIUrl":"https://doi.org/10.1038/s41565-024-01789-w","url":null,"abstract":"Reducing the duration of current pulses used to perform magnetization switching via spin–orbit torques in ferromagnetic and ferrimagnetic samples from microseconds to picoseconds leads to a continuous decrease in the energy consumption. These findings show that speed and efficiency of switching can be combined in various magnetic materials with different properties.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"44 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}