Pub Date : 2024-09-19DOI: 10.1038/s43017-024-00590-6
Joshua Culpepper, Ellinor Jakobsson, Gesa A. Weyhenmeyer, Stephanie E. Hampton, Ulrike Obertegger, Kirill Shchapov, R. Iestyn Woolway, Sapna Sharma
Ice phenology has shifted with anthropogenic warming such that many lakes are experiencing a shorter ice season. However, changes to ice quality — the ratio of black and white ice layers — remain little explored, despite relevance to lake physics, ecological function, human recreation and transportation. In this Review, we outline how ice quality is changing and discuss knock-on ecosystem service impacts. Although direct evidence is sparse, there are suggestions that ice quality is diminishing across the Northern Hemisphere, encompassing declining ice thickness, decreasing black ice and increasing white ice. These changes are projected to continue in the future, scaling with global temperature increases, and driving considerable impacts to related ecosystem services. Rising proportions of white ice will markedly reduce bearing strength, implying more dangerous conditions for transportation (limiting operational use of many winter roads) and recreation (increasing the risk of fatal spring-time drownings). Shifts from black to white ice conditions will further reduce the amount of light reaching the water column, minimizing primary production, and altering community composition to favour motile and mixotrophic species; these changes will affect higher trophic levels, including diminished food quantity for zooplankton and fish, with potential developmental consequences. Reliable and translatable in situ sampling methods to assess and predict spatiotemporal variations in ice quality are urgently needed. Lake ice has witnessed considerable changes in its phenology, but less is known about ice quality — the ratio of black ice to white ice. This Review assesses the changes in lake ice quality and its ecosystem services, noting diminished ice quality in observations and projections.
{"title":"Lake ice quality in a warming world","authors":"Joshua Culpepper, Ellinor Jakobsson, Gesa A. Weyhenmeyer, Stephanie E. Hampton, Ulrike Obertegger, Kirill Shchapov, R. Iestyn Woolway, Sapna Sharma","doi":"10.1038/s43017-024-00590-6","DOIUrl":"10.1038/s43017-024-00590-6","url":null,"abstract":"Ice phenology has shifted with anthropogenic warming such that many lakes are experiencing a shorter ice season. However, changes to ice quality — the ratio of black and white ice layers — remain little explored, despite relevance to lake physics, ecological function, human recreation and transportation. In this Review, we outline how ice quality is changing and discuss knock-on ecosystem service impacts. Although direct evidence is sparse, there are suggestions that ice quality is diminishing across the Northern Hemisphere, encompassing declining ice thickness, decreasing black ice and increasing white ice. These changes are projected to continue in the future, scaling with global temperature increases, and driving considerable impacts to related ecosystem services. Rising proportions of white ice will markedly reduce bearing strength, implying more dangerous conditions for transportation (limiting operational use of many winter roads) and recreation (increasing the risk of fatal spring-time drownings). Shifts from black to white ice conditions will further reduce the amount of light reaching the water column, minimizing primary production, and altering community composition to favour motile and mixotrophic species; these changes will affect higher trophic levels, including diminished food quantity for zooplankton and fish, with potential developmental consequences. Reliable and translatable in situ sampling methods to assess and predict spatiotemporal variations in ice quality are urgently needed. Lake ice has witnessed considerable changes in its phenology, but less is known about ice quality — the ratio of black ice to white ice. This Review assesses the changes in lake ice quality and its ecosystem services, noting diminished ice quality in observations and projections.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 10","pages":"671-685"},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1038/s43017-024-00587-1
Tomáš Pánek, Kristian Svennevig, Michal Břežný, Piotr Migoń
The largest terrestrial coalescent landslide areas of the Earth, spanning hundreds to thousands of square kilometres, occur along the fringes of relatively low-relief sedimentary and volcanic tablelands. However, difficulties in landslide recognition in these areas have led to underestimations of their frequency and likelihood. In this Review, we explore the global distribution, controls and dynamics of landslides occurring along tableland fringes. Landslide fringes are caused by the uninterrupted and extensive presence of weak sub-caprock lithologies below a more competent caprock. Topography, escarpment height and caprock thickness do not affect landslide size but can locally influence the type of displacement. Rotational landslides dominate most landslide fringes and will eventually lead to tableland consumption over million-year timescales. Some tableland rims can generate catastrophic long-runout rock avalanches or earthflows, which might in turn trigger tsunamis, river avulsion or outburst floods. Tablelands can also fail by slow (centimetre per year) landslide movements sufficient to cause damage to infrastructure. These hazards are increasing especially in high-latitude tablelands owing to cryosphere degradation, as observed in Western Greenland. A more detailed global inventory of landslide fringe activity is urgently needed to better quantify these potential hazards. The fringes of extensive flat-topped sedimentary or volcanic plateaus, called tablelands, host the largest coalescent landslide areas of the Earth. This Review highlights the factors contributing to extensive landslide fringes and emphasizes how climate change and cryosphere degradation could increase their hazard potential.
{"title":"The occurrence, mechanisms and hazards of large landslides along tablelands","authors":"Tomáš Pánek, Kristian Svennevig, Michal Břežný, Piotr Migoń","doi":"10.1038/s43017-024-00587-1","DOIUrl":"10.1038/s43017-024-00587-1","url":null,"abstract":"The largest terrestrial coalescent landslide areas of the Earth, spanning hundreds to thousands of square kilometres, occur along the fringes of relatively low-relief sedimentary and volcanic tablelands. However, difficulties in landslide recognition in these areas have led to underestimations of their frequency and likelihood. In this Review, we explore the global distribution, controls and dynamics of landslides occurring along tableland fringes. Landslide fringes are caused by the uninterrupted and extensive presence of weak sub-caprock lithologies below a more competent caprock. Topography, escarpment height and caprock thickness do not affect landslide size but can locally influence the type of displacement. Rotational landslides dominate most landslide fringes and will eventually lead to tableland consumption over million-year timescales. Some tableland rims can generate catastrophic long-runout rock avalanches or earthflows, which might in turn trigger tsunamis, river avulsion or outburst floods. Tablelands can also fail by slow (centimetre per year) landslide movements sufficient to cause damage to infrastructure. These hazards are increasing especially in high-latitude tablelands owing to cryosphere degradation, as observed in Western Greenland. A more detailed global inventory of landslide fringe activity is urgently needed to better quantify these potential hazards. The fringes of extensive flat-topped sedimentary or volcanic plateaus, called tablelands, host the largest coalescent landslide areas of the Earth. This Review highlights the factors contributing to extensive landslide fringes and emphasizes how climate change and cryosphere degradation could increase their hazard potential.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 10","pages":"686-700"},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1038/s43017-024-00584-4
Axel Timmermann, Pasquale Raia, Alessandro Mondanaro, Christoph P. E. Zollikofer, Marcia Ponce de León, Elke Zeller, Kyung-Sook Yun
The genus Homo evolved during the Pleistocene — an epoch of gradual cooling and amplification of glacial cycles. The changing climates influenced early human survival, adaptation and evolution in complex ways. In this Review, we present current knowledge about the effects of past climate changes on the evolutionary trajectory of human species. Humans emerged in dry grassland and shrubland when average climate conditions were warm. As global climate started cooling down, human species needed either to track their preferred habitats or to adapt to new local conditions, each of which is indicated in the archaeological record. Limited dispersal ability and narrow ecological preferences were predominant in early species, whereas cultural innovations and consequently wider ecological niches became commonplace in later species, allowing them to live in colder extratropical climates. Yet, despite their growing ecological versatility, all species but one eventually went extinct. Future research should explore cultural transmission between and within species, and the influence of climate change on human genetic diversification. Climate variability can strongly influence species evolution and survival via environmental niche adaptation and selection. This Review outlines the methods of modelling past climate variations and their impact on human evolution.
{"title":"Past climate change effects on human evolution","authors":"Axel Timmermann, Pasquale Raia, Alessandro Mondanaro, Christoph P. E. Zollikofer, Marcia Ponce de León, Elke Zeller, Kyung-Sook Yun","doi":"10.1038/s43017-024-00584-4","DOIUrl":"10.1038/s43017-024-00584-4","url":null,"abstract":"The genus Homo evolved during the Pleistocene — an epoch of gradual cooling and amplification of glacial cycles. The changing climates influenced early human survival, adaptation and evolution in complex ways. In this Review, we present current knowledge about the effects of past climate changes on the evolutionary trajectory of human species. Humans emerged in dry grassland and shrubland when average climate conditions were warm. As global climate started cooling down, human species needed either to track their preferred habitats or to adapt to new local conditions, each of which is indicated in the archaeological record. Limited dispersal ability and narrow ecological preferences were predominant in early species, whereas cultural innovations and consequently wider ecological niches became commonplace in later species, allowing them to live in colder extratropical climates. Yet, despite their growing ecological versatility, all species but one eventually went extinct. Future research should explore cultural transmission between and within species, and the influence of climate change on human genetic diversification. Climate variability can strongly influence species evolution and survival via environmental niche adaptation and selection. This Review outlines the methods of modelling past climate variations and their impact on human evolution.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 10","pages":"701-716"},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1038/s43017-024-00586-2
Xin Zhang, Robert Sabo, Lorenzo Rosa, Hassan Niazi, Page Kyle, Jun Suk Byun, Yanyu Wang, Xiaoyuan Yan, Baojing Gu, Eric A. Davidson
Decarbonization is crucial to combat climate change. However, some decarbonization strategies could profoundly impact the nitrogen cycle. In this Review, we explore the nitrogen requirements of five major decarbonization strategies to reveal the complex interconnections between the carbon and nitrogen cycles and identify opportunities to enhance their mutually sustainable management. Some decarbonization strategies require substantial new nitrogen production, potentially leading to increased nutrient pollution and exacerbation of eutrophication in aquatic systems. For example, the strategy of substituting 44% of fossil fuels used in marine shipping with ammonia-based fuels could reduce CO2 emissions by up to 0.38 Gt CO2-eq yr−1 but would require a corresponding increase in new nitrogen synthesis of 212 Tg N yr−1. Similarly, using biofuels to achieve 0.7 ± 0.3 Gt CO2-eq yr−1 mitigation would require new nitrogen inputs to croplands of 21–42 Tg N yr−1. To avoid increasing nitrogen losses and exacerbating eutrophication, decarbonization efforts should be designed to provide carbon–nitrogen co-benefits. Reducing the use of carbon-intensive synthetic nitrogen fertilizer is one example that can simultaneously reduce both nitrogen inputs by 14 Tg N yr−1 and CO2 emissions by 0.04 (0.03–0.06) Gt CO2-eq yr−1. Future research should guide decarbonization efforts to mitigate eutrophication and enhance nitrogen use efficiency in agriculture, food and energy systems. Decarbonization strategies can perturb the nitrogen cycle through elevating nitrogen inputs to the environment, potentially driving increased eutrophication. This Review explores the potential synergistic and antagonistic impacts on carbon and nitrogen emissions from five major decarbonization strategies.
{"title":"Nitrogen management during decarbonization","authors":"Xin Zhang, Robert Sabo, Lorenzo Rosa, Hassan Niazi, Page Kyle, Jun Suk Byun, Yanyu Wang, Xiaoyuan Yan, Baojing Gu, Eric A. Davidson","doi":"10.1038/s43017-024-00586-2","DOIUrl":"10.1038/s43017-024-00586-2","url":null,"abstract":"Decarbonization is crucial to combat climate change. However, some decarbonization strategies could profoundly impact the nitrogen cycle. In this Review, we explore the nitrogen requirements of five major decarbonization strategies to reveal the complex interconnections between the carbon and nitrogen cycles and identify opportunities to enhance their mutually sustainable management. Some decarbonization strategies require substantial new nitrogen production, potentially leading to increased nutrient pollution and exacerbation of eutrophication in aquatic systems. For example, the strategy of substituting 44% of fossil fuels used in marine shipping with ammonia-based fuels could reduce CO2 emissions by up to 0.38 Gt CO2-eq yr−1 but would require a corresponding increase in new nitrogen synthesis of 212 Tg N yr−1. Similarly, using biofuels to achieve 0.7 ± 0.3 Gt CO2-eq yr−1 mitigation would require new nitrogen inputs to croplands of 21–42 Tg N yr−1. To avoid increasing nitrogen losses and exacerbating eutrophication, decarbonization efforts should be designed to provide carbon–nitrogen co-benefits. Reducing the use of carbon-intensive synthetic nitrogen fertilizer is one example that can simultaneously reduce both nitrogen inputs by 14 Tg N yr−1 and CO2 emissions by 0.04 (0.03–0.06) Gt CO2-eq yr−1. Future research should guide decarbonization efforts to mitigate eutrophication and enhance nitrogen use efficiency in agriculture, food and energy systems. Decarbonization strategies can perturb the nitrogen cycle through elevating nitrogen inputs to the environment, potentially driving increased eutrophication. This Review explores the potential synergistic and antagonistic impacts on carbon and nitrogen emissions from five major decarbonization strategies.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 10","pages":"717-731"},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1038/s43017-024-00595-1
Leah Brinch-Iversen
Leah Brinch-Iversen explains how lab-on-chip sensors can be used to monitor the deep ocean.
Leah Brinch-Iversen 解释了如何利用片上实验室传感器监测深海。
{"title":"Exploring the hadal zone with lab-on-chip sensors","authors":"Leah Brinch-Iversen","doi":"10.1038/s43017-024-00595-1","DOIUrl":"10.1038/s43017-024-00595-1","url":null,"abstract":"Leah Brinch-Iversen explains how lab-on-chip sensors can be used to monitor the deep ocean.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 10","pages":"670-670"},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1038/s43017-024-00594-2
James D. Ford, Santiago Clerici, Dylan G. Clark, Robbert Biesbroek, Sherilee Harper
Since 2001, the IPCC has utilized ‘burning embers’ to visualize risk at different levels of anthropogenic warming. An ethnoclimatological approach offers an opportunity to expand these figures, aligning the assessment of risk with the lived realities of vulnerable populations.
{"title":"Re-conceptualizing the IPCC’s ‘burning embers’","authors":"James D. Ford, Santiago Clerici, Dylan G. Clark, Robbert Biesbroek, Sherilee Harper","doi":"10.1038/s43017-024-00594-2","DOIUrl":"10.1038/s43017-024-00594-2","url":null,"abstract":"Since 2001, the IPCC has utilized ‘burning embers’ to visualize risk at different levels of anthropogenic warming. An ethnoclimatological approach offers an opportunity to expand these figures, aligning the assessment of risk with the lived realities of vulnerable populations.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 10","pages":"667-669"},"PeriodicalIF":0.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1038/s43017-024-00583-5
Huw J. Griffiths, Vonda J. Cummings, Anton Van de Putte, Rowan J. Whittle, Catherine L. Waller
The benthic community around Antarctica is diverse and highly endemic. These cold-adapted species are under threat from local and global drivers, including warming, acidification and changes to the cryosphere. In this Review, we summarize observed, experimental and modelled Antarctic benthic ecological change. Warming, glacial melt and retreat, and reduced ice cover are causing regional benthic biomass to increase or decrease, depending on the additional influences of ice scour, turbidity and freshening. Additionally, the dominance of previously cold-restricted or light-restricted taxa is increasing, and several ecological tipping points have already been breached, leading to ecological phase shifts in some habitats. The largest changes have been observed in communities in the shallows of the West Antarctic Peninsula, notably change to distribution, biodiversity, biomass and trophic structure. Models based on observational and experimental evidence indicate that these changes will spread deeper and eastwards throughout this century. Available data are primarily limited to a handful of shallow-water taxa; thus, future work will need to involve multispecies observations and experiments encompassing multiple drivers to understand community and ecosystem responses, and autonomous monitoring techniques to fill geographical, bathymetric, seasonal and taxonomic gaps; advances in environmental DNA and artificial-intelligence-based techniques will help to rapidly analyse such data. The cold-adapted communities on the seafloor around Antarctica are vulnerable to environmental changes. This Review summarizes the regional variations in present and future benthic ecological changes driven by the impacts of climate change and acidification.
南极洲周围的底栖生物群落种类繁多,且极具地方特色。这些适应寒冷的物种正受到当地和全球驱动因素的威胁,包括气候变暖、酸化和冰冻圈的变化。在这篇综述中,我们总结了观测、实验和模拟的南极底栖生物生态变化。气候变暖、冰川融化和后退以及冰盖减少正在导致区域底栖生物量的增加或减少,这取决于冰层冲刷、浑浊和清新的额外影响。此外,以前受冷限制或受光限制的类群的优势地位正在增加,一些生态临界点已经被突破,导致一些栖息地的生态阶段性转变。在南极半岛西部浅滩的群落中观察到了最大的变化,特别是分布、生物多样性、生物量和营养结构的变化。根据观测和实验证据建立的模型显示,这些变化将在本世纪向更深处和东部蔓延。现有数据主要局限于少数浅水类群;因此,未来的工作需要进行多物种观测和实验,包括多种驱动因素,以了解群落和生态系统的反应,并采用自主监测技术来填补地理、水深、季节和分类学方面的空白;环境 DNA 和基于人工智能的技术的进步将有助于快速分析这些数据。南极洲周围海底的冷适应群落很容易受到环境变化的影响。本综述总结了气候变化和酸化影响导致的目前和未来海底生态变化的区域差异。
{"title":"Antarctic benthic ecological change","authors":"Huw J. Griffiths, Vonda J. Cummings, Anton Van de Putte, Rowan J. Whittle, Catherine L. Waller","doi":"10.1038/s43017-024-00583-5","DOIUrl":"10.1038/s43017-024-00583-5","url":null,"abstract":"The benthic community around Antarctica is diverse and highly endemic. These cold-adapted species are under threat from local and global drivers, including warming, acidification and changes to the cryosphere. In this Review, we summarize observed, experimental and modelled Antarctic benthic ecological change. Warming, glacial melt and retreat, and reduced ice cover are causing regional benthic biomass to increase or decrease, depending on the additional influences of ice scour, turbidity and freshening. Additionally, the dominance of previously cold-restricted or light-restricted taxa is increasing, and several ecological tipping points have already been breached, leading to ecological phase shifts in some habitats. The largest changes have been observed in communities in the shallows of the West Antarctic Peninsula, notably change to distribution, biodiversity, biomass and trophic structure. Models based on observational and experimental evidence indicate that these changes will spread deeper and eastwards throughout this century. Available data are primarily limited to a handful of shallow-water taxa; thus, future work will need to involve multispecies observations and experiments encompassing multiple drivers to understand community and ecosystem responses, and autonomous monitoring techniques to fill geographical, bathymetric, seasonal and taxonomic gaps; advances in environmental DNA and artificial-intelligence-based techniques will help to rapidly analyse such data. The cold-adapted communities on the seafloor around Antarctica are vulnerable to environmental changes. This Review summarizes the regional variations in present and future benthic ecological changes driven by the impacts of climate change and acidification.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 9","pages":"645-664"},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43017-024-00583-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1038/s43017-024-00593-3
Estel Font
Estel Font explains how underwater robotic gliders can be used to monitor the changing ocean.
Estel Font 解释了如何利用水下机器人滑翔机监测不断变化的海洋。
{"title":"Autonomous underwater gliders to observe the ocean","authors":"Estel Font","doi":"10.1038/s43017-024-00593-3","DOIUrl":"10.1038/s43017-024-00593-3","url":null,"abstract":"Estel Font explains how underwater robotic gliders can be used to monitor the changing ocean.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 9","pages":"610-610"},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantifying progress towards sustainability goals in food systems requires a universal, threshold-based Food Sustainability Index. Integrating artificial intelligence, remote sensing and empirical observations with system dynamics modelling can help guide sustainable transformations.
{"title":"Guiding sustainable transformations in food systems","authors":"Asim Biswas, Isabel Maddocks, Tirtha Dhar, Laurette Dube, Animesh Dutta, Byomkesh Talukder, Kumaraswamy Ponnambalam","doi":"10.1038/s43017-024-00588-0","DOIUrl":"10.1038/s43017-024-00588-0","url":null,"abstract":"Quantifying progress towards sustainability goals in food systems requires a universal, threshold-based Food Sustainability Index. Integrating artificial intelligence, remote sensing and empirical observations with system dynamics modelling can help guide sustainable transformations.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 9","pages":"607-608"},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}