Pub Date : 2024-10-24DOI: 10.1038/s43017-024-00599-x
Tim D. Fletcher, Matthew J. Burns, Kathryn L. Russell, Perrine Hamel, Sophie Duchesne, Frédéric Cherqui, Allison H. Roy
Urbanization and climate change are exacerbating the flood risk and ecosystem degradation in urban catchments, with traditional stormwater management systems often overwhelmed. In this Review, we discuss changes in urban hydrology and approaches to stormwater management. Roughly 90% of rainfall on impervious surfaces and drainage infrastructure becomes run-off, enhancing rainfall export away from cities and leading to local water scarcity and downstream flooding and pollution. Projected increases in urban populations (68% in cities by 2050) and rainfall intensity (~12% in the 10-year and 50-year recurrence interval intensity, under 1.5 °C warming) will exacerbate these issues. Transforming stormwater systems is thus urgently needed, to mitigate flood risk and also to address community desires for environmental protection and enhanced water security. Opportunities include rain gardens and other nature-based stormwater control measures (which restore natural flows and offer other ecosystem services), smart sensor monitoring networks and real-time management (which sustain natural flow regimes, mitigate flood risk and protect ecosystem services) and stormwater harvesting (to avoid local water scarcity). Community acceptance of stormwater harvesting is as high as 96% and stormwater is a substantial resource, with volumes often exceeding demand in some parts of the world. Delivering additional transformations globally requires research into strategies to incentivize engagement and investment, and policies to guide governance of decentralized networks. Urbanization and climate-induced rainfall changes are enhancing flood risk, putting increased demand on urban hydrology management. This Review summarizes how perceptions and approaches in stormwater management are evolving, and emphasizes the need to transform stormwater from a hazard to a resource.
{"title":"Concepts and evolution of urban hydrology","authors":"Tim D. Fletcher, Matthew J. Burns, Kathryn L. Russell, Perrine Hamel, Sophie Duchesne, Frédéric Cherqui, Allison H. Roy","doi":"10.1038/s43017-024-00599-x","DOIUrl":"10.1038/s43017-024-00599-x","url":null,"abstract":"Urbanization and climate change are exacerbating the flood risk and ecosystem degradation in urban catchments, with traditional stormwater management systems often overwhelmed. In this Review, we discuss changes in urban hydrology and approaches to stormwater management. Roughly 90% of rainfall on impervious surfaces and drainage infrastructure becomes run-off, enhancing rainfall export away from cities and leading to local water scarcity and downstream flooding and pollution. Projected increases in urban populations (68% in cities by 2050) and rainfall intensity (~12% in the 10-year and 50-year recurrence interval intensity, under 1.5 °C warming) will exacerbate these issues. Transforming stormwater systems is thus urgently needed, to mitigate flood risk and also to address community desires for environmental protection and enhanced water security. Opportunities include rain gardens and other nature-based stormwater control measures (which restore natural flows and offer other ecosystem services), smart sensor monitoring networks and real-time management (which sustain natural flow regimes, mitigate flood risk and protect ecosystem services) and stormwater harvesting (to avoid local water scarcity). Community acceptance of stormwater harvesting is as high as 96% and stormwater is a substantial resource, with volumes often exceeding demand in some parts of the world. Delivering additional transformations globally requires research into strategies to incentivize engagement and investment, and policies to guide governance of decentralized networks. Urbanization and climate-induced rainfall changes are enhancing flood risk, putting increased demand on urban hydrology management. This Review summarizes how perceptions and approaches in stormwater management are evolving, and emphasizes the need to transform stormwater from a hazard to a resource.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 11","pages":"789-801"},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14DOI: 10.1038/s43017-024-00596-0
Fengzhi He , Christiane Zarfl, Klement Tockner, Julian D. Olden, Zilca Campos, Fábio Muniz, Jens-Christian Svenning, Sonja C. Jähnig
Hydropower is a rapidly developing and globally important source of renewable electricity. Globally, over 60% of rivers longer than 500 km are already fragmented and thousands of dams are proposed on rivers in biodiversity hotspots. In this Review, we discuss the impacts of hydropower on aquatic and semi-aquatic species in riverine ecosystems and how these impacts accumulate spatially and temporally across basins. Dams act as physical barriers that disrupt longitudinal connectivity and upstream–downstream movement of species. Impoundment creates still-water habitats upstream of dams and leads to declines in lotic-adapted species. Intermittent water releases modify the natural flow, sediment and thermal regimes in downstream channels, altering water quality, substrate structure and environmental cues that are vital for species to complete their life cycles, resulting in reduced reproduction success. Moreover, retention effects of reservoirs and flow regulation alter river–floodplain exchanges of water, sediment and nutrients, modifying the habitats on which riverine species depend. Improvements to flow regulation, fishway design and sediment redistribution can mitigate these ecological impacts. Future research should support reforms to dam operations and design adaptations to balance renewable electricity development and biodiversity conservation through systematic basin-scale planning, long-term monitoring, adaptive management and involving multiple actors in decision-making. Hydropower is a renewable energy source that can contribute to growing energy demands. This Review considers the ecological consequences of hydropower plants on riverine systems and emphasizes the urgent need to mitigate ecological impacts to ensure sustainable development.
{"title":"Hydropower impacts on riverine biodiversity","authors":"Fengzhi He \u0000 , Christiane Zarfl, Klement Tockner, Julian D. Olden, Zilca Campos, Fábio Muniz, Jens-Christian Svenning, Sonja C. Jähnig","doi":"10.1038/s43017-024-00596-0","DOIUrl":"10.1038/s43017-024-00596-0","url":null,"abstract":"Hydropower is a rapidly developing and globally important source of renewable electricity. Globally, over 60% of rivers longer than 500 km are already fragmented and thousands of dams are proposed on rivers in biodiversity hotspots. In this Review, we discuss the impacts of hydropower on aquatic and semi-aquatic species in riverine ecosystems and how these impacts accumulate spatially and temporally across basins. Dams act as physical barriers that disrupt longitudinal connectivity and upstream–downstream movement of species. Impoundment creates still-water habitats upstream of dams and leads to declines in lotic-adapted species. Intermittent water releases modify the natural flow, sediment and thermal regimes in downstream channels, altering water quality, substrate structure and environmental cues that are vital for species to complete their life cycles, resulting in reduced reproduction success. Moreover, retention effects of reservoirs and flow regulation alter river–floodplain exchanges of water, sediment and nutrients, modifying the habitats on which riverine species depend. Improvements to flow regulation, fishway design and sediment redistribution can mitigate these ecological impacts. Future research should support reforms to dam operations and design adaptations to balance renewable electricity development and biodiversity conservation through systematic basin-scale planning, long-term monitoring, adaptive management and involving multiple actors in decision-making. Hydropower is a renewable energy source that can contribute to growing energy demands. This Review considers the ecological consequences of hydropower plants on riverine systems and emphasizes the urgent need to mitigate ecological impacts to ensure sustainable development.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 11","pages":"755-772"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1038/s43017-024-00591-5
Eva E. Stüeken, Alice Pellerin, Christophe Thomazo, Benjamin W. Johnson, Samuel Duncanson, Shane D. Schoepfer
Earth’s marine nitrogen cycle has co-evolved with life and redox conditions over geological time. In this Review, we provide an account of nitrogen cycling in the world’s oceans over the past ~4 Ga, from the dawn of life to the modern day. Stable nitrogen isotopes from sedimentary rocks, paired with other proxies, provide evidence that the nitrogen cycle has responded to and perhaps modulated events such as the emergence of life, oxygenation events, major climatic perturbations, and mass extinction events. Before the evolution of nitrogen fixation, bioavailable nitrogen was supplied via processes such as lightning, photochemical reactions, meteorite impacts and hydrothermalism. The advent of microbial N2 fixation facilitated the expansion of ecosystems. Establishment of a marine nitrate reservoir in the Neoproterozoic (1,000–541 Ma) probably enabled eukaryotic algae to dominate ocean primary productivity. Phanerozoic nitrogen cycle transitions over 100-Myr timescales are associated with icehouse-to-greenhouse conditions. Short-lived perturbations occurred during mass extinctions and anoxic events, which are linked to evolutionary changes, climatic extremes and ocean stagnation. The impact of the terrestrial biosphere on the global marine nitrogen cycle remains poorly resolved and should be addressed in future research to help answer open questions about the spatial and temporal trends in nutrient availability over Earth’s history. The nitrogen cycle is connected to the evolution of Earth and life. This Review explores the trends and perturbations in the marine nitrogen cycle and highlights how the cycle responded and perhaps modulated major events over Earth’s history.
{"title":"Marine biogeochemical nitrogen cycling through Earth’s history","authors":"Eva E. Stüeken, Alice Pellerin, Christophe Thomazo, Benjamin W. Johnson, Samuel Duncanson, Shane D. Schoepfer","doi":"10.1038/s43017-024-00591-5","DOIUrl":"10.1038/s43017-024-00591-5","url":null,"abstract":"Earth’s marine nitrogen cycle has co-evolved with life and redox conditions over geological time. In this Review, we provide an account of nitrogen cycling in the world’s oceans over the past ~4 Ga, from the dawn of life to the modern day. Stable nitrogen isotopes from sedimentary rocks, paired with other proxies, provide evidence that the nitrogen cycle has responded to and perhaps modulated events such as the emergence of life, oxygenation events, major climatic perturbations, and mass extinction events. Before the evolution of nitrogen fixation, bioavailable nitrogen was supplied via processes such as lightning, photochemical reactions, meteorite impacts and hydrothermalism. The advent of microbial N2 fixation facilitated the expansion of ecosystems. Establishment of a marine nitrate reservoir in the Neoproterozoic (1,000–541 Ma) probably enabled eukaryotic algae to dominate ocean primary productivity. Phanerozoic nitrogen cycle transitions over 100-Myr timescales are associated with icehouse-to-greenhouse conditions. Short-lived perturbations occurred during mass extinctions and anoxic events, which are linked to evolutionary changes, climatic extremes and ocean stagnation. The impact of the terrestrial biosphere on the global marine nitrogen cycle remains poorly resolved and should be addressed in future research to help answer open questions about the spatial and temporal trends in nutrient availability over Earth’s history. The nitrogen cycle is connected to the evolution of Earth and life. This Review explores the trends and perturbations in the marine nitrogen cycle and highlights how the cycle responded and perhaps modulated major events over Earth’s history.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 10","pages":"732-747"},"PeriodicalIF":0.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1038/s43017-024-00590-6
Joshua Culpepper, Ellinor Jakobsson, Gesa A. Weyhenmeyer, Stephanie E. Hampton, Ulrike Obertegger, Kirill Shchapov, R. Iestyn Woolway, Sapna Sharma
Ice phenology has shifted with anthropogenic warming such that many lakes are experiencing a shorter ice season. However, changes to ice quality — the ratio of black and white ice layers — remain little explored, despite relevance to lake physics, ecological function, human recreation and transportation. In this Review, we outline how ice quality is changing and discuss knock-on ecosystem service impacts. Although direct evidence is sparse, there are suggestions that ice quality is diminishing across the Northern Hemisphere, encompassing declining ice thickness, decreasing black ice and increasing white ice. These changes are projected to continue in the future, scaling with global temperature increases, and driving considerable impacts to related ecosystem services. Rising proportions of white ice will markedly reduce bearing strength, implying more dangerous conditions for transportation (limiting operational use of many winter roads) and recreation (increasing the risk of fatal spring-time drownings). Shifts from black to white ice conditions will further reduce the amount of light reaching the water column, minimizing primary production, and altering community composition to favour motile and mixotrophic species; these changes will affect higher trophic levels, including diminished food quantity for zooplankton and fish, with potential developmental consequences. Reliable and translatable in situ sampling methods to assess and predict spatiotemporal variations in ice quality are urgently needed. Lake ice has witnessed considerable changes in its phenology, but less is known about ice quality — the ratio of black ice to white ice. This Review assesses the changes in lake ice quality and its ecosystem services, noting diminished ice quality in observations and projections.
{"title":"Lake ice quality in a warming world","authors":"Joshua Culpepper, Ellinor Jakobsson, Gesa A. Weyhenmeyer, Stephanie E. Hampton, Ulrike Obertegger, Kirill Shchapov, R. Iestyn Woolway, Sapna Sharma","doi":"10.1038/s43017-024-00590-6","DOIUrl":"10.1038/s43017-024-00590-6","url":null,"abstract":"Ice phenology has shifted with anthropogenic warming such that many lakes are experiencing a shorter ice season. However, changes to ice quality — the ratio of black and white ice layers — remain little explored, despite relevance to lake physics, ecological function, human recreation and transportation. In this Review, we outline how ice quality is changing and discuss knock-on ecosystem service impacts. Although direct evidence is sparse, there are suggestions that ice quality is diminishing across the Northern Hemisphere, encompassing declining ice thickness, decreasing black ice and increasing white ice. These changes are projected to continue in the future, scaling with global temperature increases, and driving considerable impacts to related ecosystem services. Rising proportions of white ice will markedly reduce bearing strength, implying more dangerous conditions for transportation (limiting operational use of many winter roads) and recreation (increasing the risk of fatal spring-time drownings). Shifts from black to white ice conditions will further reduce the amount of light reaching the water column, minimizing primary production, and altering community composition to favour motile and mixotrophic species; these changes will affect higher trophic levels, including diminished food quantity for zooplankton and fish, with potential developmental consequences. Reliable and translatable in situ sampling methods to assess and predict spatiotemporal variations in ice quality are urgently needed. Lake ice has witnessed considerable changes in its phenology, but less is known about ice quality — the ratio of black ice to white ice. This Review assesses the changes in lake ice quality and its ecosystem services, noting diminished ice quality in observations and projections.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 10","pages":"671-685"},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1038/s43017-024-00587-1
Tomáš Pánek, Kristian Svennevig, Michal Břežný, Piotr Migoń
The largest terrestrial coalescent landslide areas of the Earth, spanning hundreds to thousands of square kilometres, occur along the fringes of relatively low-relief sedimentary and volcanic tablelands. However, difficulties in landslide recognition in these areas have led to underestimations of their frequency and likelihood. In this Review, we explore the global distribution, controls and dynamics of landslides occurring along tableland fringes. Landslide fringes are caused by the uninterrupted and extensive presence of weak sub-caprock lithologies below a more competent caprock. Topography, escarpment height and caprock thickness do not affect landslide size but can locally influence the type of displacement. Rotational landslides dominate most landslide fringes and will eventually lead to tableland consumption over million-year timescales. Some tableland rims can generate catastrophic long-runout rock avalanches or earthflows, which might in turn trigger tsunamis, river avulsion or outburst floods. Tablelands can also fail by slow (centimetre per year) landslide movements sufficient to cause damage to infrastructure. These hazards are increasing especially in high-latitude tablelands owing to cryosphere degradation, as observed in Western Greenland. A more detailed global inventory of landslide fringe activity is urgently needed to better quantify these potential hazards. The fringes of extensive flat-topped sedimentary or volcanic plateaus, called tablelands, host the largest coalescent landslide areas of the Earth. This Review highlights the factors contributing to extensive landslide fringes and emphasizes how climate change and cryosphere degradation could increase their hazard potential.
{"title":"The occurrence, mechanisms and hazards of large landslides along tablelands","authors":"Tomáš Pánek, Kristian Svennevig, Michal Břežný, Piotr Migoń","doi":"10.1038/s43017-024-00587-1","DOIUrl":"10.1038/s43017-024-00587-1","url":null,"abstract":"The largest terrestrial coalescent landslide areas of the Earth, spanning hundreds to thousands of square kilometres, occur along the fringes of relatively low-relief sedimentary and volcanic tablelands. However, difficulties in landslide recognition in these areas have led to underestimations of their frequency and likelihood. In this Review, we explore the global distribution, controls and dynamics of landslides occurring along tableland fringes. Landslide fringes are caused by the uninterrupted and extensive presence of weak sub-caprock lithologies below a more competent caprock. Topography, escarpment height and caprock thickness do not affect landslide size but can locally influence the type of displacement. Rotational landslides dominate most landslide fringes and will eventually lead to tableland consumption over million-year timescales. Some tableland rims can generate catastrophic long-runout rock avalanches or earthflows, which might in turn trigger tsunamis, river avulsion or outburst floods. Tablelands can also fail by slow (centimetre per year) landslide movements sufficient to cause damage to infrastructure. These hazards are increasing especially in high-latitude tablelands owing to cryosphere degradation, as observed in Western Greenland. A more detailed global inventory of landslide fringe activity is urgently needed to better quantify these potential hazards. The fringes of extensive flat-topped sedimentary or volcanic plateaus, called tablelands, host the largest coalescent landslide areas of the Earth. This Review highlights the factors contributing to extensive landslide fringes and emphasizes how climate change and cryosphere degradation could increase their hazard potential.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 10","pages":"686-700"},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1038/s43017-024-00584-4
Axel Timmermann, Pasquale Raia, Alessandro Mondanaro, Christoph P. E. Zollikofer, Marcia Ponce de León, Elke Zeller, Kyung-Sook Yun
The genus Homo evolved during the Pleistocene — an epoch of gradual cooling and amplification of glacial cycles. The changing climates influenced early human survival, adaptation and evolution in complex ways. In this Review, we present current knowledge about the effects of past climate changes on the evolutionary trajectory of human species. Humans emerged in dry grassland and shrubland when average climate conditions were warm. As global climate started cooling down, human species needed either to track their preferred habitats or to adapt to new local conditions, each of which is indicated in the archaeological record. Limited dispersal ability and narrow ecological preferences were predominant in early species, whereas cultural innovations and consequently wider ecological niches became commonplace in later species, allowing them to live in colder extratropical climates. Yet, despite their growing ecological versatility, all species but one eventually went extinct. Future research should explore cultural transmission between and within species, and the influence of climate change on human genetic diversification. Climate variability can strongly influence species evolution and survival via environmental niche adaptation and selection. This Review outlines the methods of modelling past climate variations and their impact on human evolution.
{"title":"Past climate change effects on human evolution","authors":"Axel Timmermann, Pasquale Raia, Alessandro Mondanaro, Christoph P. E. Zollikofer, Marcia Ponce de León, Elke Zeller, Kyung-Sook Yun","doi":"10.1038/s43017-024-00584-4","DOIUrl":"10.1038/s43017-024-00584-4","url":null,"abstract":"The genus Homo evolved during the Pleistocene — an epoch of gradual cooling and amplification of glacial cycles. The changing climates influenced early human survival, adaptation and evolution in complex ways. In this Review, we present current knowledge about the effects of past climate changes on the evolutionary trajectory of human species. Humans emerged in dry grassland and shrubland when average climate conditions were warm. As global climate started cooling down, human species needed either to track their preferred habitats or to adapt to new local conditions, each of which is indicated in the archaeological record. Limited dispersal ability and narrow ecological preferences were predominant in early species, whereas cultural innovations and consequently wider ecological niches became commonplace in later species, allowing them to live in colder extratropical climates. Yet, despite their growing ecological versatility, all species but one eventually went extinct. Future research should explore cultural transmission between and within species, and the influence of climate change on human genetic diversification. Climate variability can strongly influence species evolution and survival via environmental niche adaptation and selection. This Review outlines the methods of modelling past climate variations and their impact on human evolution.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 10","pages":"701-716"},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}