Pub Date : 2024-09-04DOI: 10.1038/s41566-024-01509-9
Giulia Tagliabue, Harry A. Atwater, Albert Polman, Emiliano Cortés
The mitigation of climate change requires major transformations in the ways we generate energy and operate technologies that release carbon dioxide. Photonic concepts and novel light-driven technologies provide many potential solutions, transforming our current modes of energy use into more effective and sustainable ones.
{"title":"Photonic solutions help fight climate crisis","authors":"Giulia Tagliabue, Harry A. Atwater, Albert Polman, Emiliano Cortés","doi":"10.1038/s41566-024-01509-9","DOIUrl":"10.1038/s41566-024-01509-9","url":null,"abstract":"The mitigation of climate change requires major transformations in the ways we generate energy and operate technologies that release carbon dioxide. Photonic concepts and novel light-driven technologies provide many potential solutions, transforming our current modes of energy use into more effective and sustainable ones.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 9","pages":"879-882"},"PeriodicalIF":32.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1038/s41566-024-01511-1
Mingyang Cai, Fengnian Xia
Silicon photonic circuits offer a promising solution for the interconnect bottleneck for advanced computing systems, but they typically require additional materials, such as germanium for photodetection. An all-silicon receiver capable of handling a data stream at 1.28 terabits per second is paving the way for future optical interconnects.
{"title":"An all-silicon solution","authors":"Mingyang Cai, Fengnian Xia","doi":"10.1038/s41566-024-01511-1","DOIUrl":"10.1038/s41566-024-01511-1","url":null,"abstract":"Silicon photonic circuits offer a promising solution for the interconnect bottleneck for advanced computing systems, but they typically require additional materials, such as germanium for photodetection. An all-silicon receiver capable of handling a data stream at 1.28 terabits per second is paving the way for future optical interconnects.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 9","pages":"890-891"},"PeriodicalIF":32.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1038/s41566-024-01519-7
Rachel Won
Nathalie Picqué, the new director at the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) in Berlin, Germany, tells us all we need to know about frequency combs and dual-comb spectroscopy, and shares with us some golden tips on becoming a successful scientist.
{"title":"Dual-comb wonders","authors":"Rachel Won","doi":"10.1038/s41566-024-01519-7","DOIUrl":"10.1038/s41566-024-01519-7","url":null,"abstract":"Nathalie Picqué, the new director at the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) in Berlin, Germany, tells us all we need to know about frequency combs and dual-comb spectroscopy, and shares with us some golden tips on becoming a successful scientist.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 9","pages":"883-885"},"PeriodicalIF":32.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1038/s41566-024-01498-9
Yasutaka Kitahama, Keisuke Goda
Short-wave infrared photothermal microscopy enables deep-tissue vibrational imaging at millimetre depth with high sensitivity and sub-cellular spatial resolution, offering potential for applications in biological and medical fields.
{"title":"Vibrational imaging goes deeper and finer","authors":"Yasutaka Kitahama, Keisuke Goda","doi":"10.1038/s41566-024-01498-9","DOIUrl":"10.1038/s41566-024-01498-9","url":null,"abstract":"Short-wave infrared photothermal microscopy enables deep-tissue vibrational imaging at millimetre depth with high sensitivity and sub-cellular spatial resolution, offering potential for applications in biological and medical fields.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 9","pages":"888-889"},"PeriodicalIF":32.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1038/s41566-024-01510-2
Susanne Baumann, Sebastian Loth
Terahertz waveforms can now be measured with atomic-scale spatial resolution as a result of a new form of terahertz time-domain spectroscopy that uses tunnelling electrons as an ultrafast, localized probe. The approach paves the way for ultrafast optical surface analysis at the scale of individual molecules or atoms.
{"title":"Shrinking time-domain spectroscopy to atomic dimensions","authors":"Susanne Baumann, Sebastian Loth","doi":"10.1038/s41566-024-01510-2","DOIUrl":"10.1038/s41566-024-01510-2","url":null,"abstract":"Terahertz waveforms can now be measured with atomic-scale spatial resolution as a result of a new form of terahertz time-domain spectroscopy that uses tunnelling electrons as an ultrafast, localized probe. The approach paves the way for ultrafast optical surface analysis at the scale of individual molecules or atoms.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 9","pages":"886-887"},"PeriodicalIF":32.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1038/s41566-024-01514-y
Etienne Brasselet
The nonlinear optical response of achiral molecules spread on chiral nanostructured substrates and subjected to circularly polarized light is examined. The experiment is a step towards confirming a long-standing theoretical prediction: hyper-Raman optical activity.
{"title":"Chiral nonlinear optical inheritance","authors":"Etienne Brasselet","doi":"10.1038/s41566-024-01514-y","DOIUrl":"10.1038/s41566-024-01514-y","url":null,"abstract":"The nonlinear optical response of achiral molecules spread on chiral nanostructured substrates and subjected to circularly polarized light is examined. The experiment is a step towards confirming a long-standing theoretical prediction: hyper-Raman optical activity.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 9","pages":"892-893"},"PeriodicalIF":32.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The nuclear industry’s expansion to encompass carbon-free electricity generation from small modular reactors and nuclear fuel reprocessing necessitates enhanced detection and monitoring of pure beta-emitting radioactive elements such as 3H and 85Kr; this endeavour is crucial for nuclear safety authorities tasked with environmental monitoring. However, the short range of electrons emitted by these gases makes detection challenging. Current methods, such as ionization chambers and liquid scintillation, do not offer at the same time good sensitivity, real-time analysis and ease of implementation. We demonstrate an approach using a gas–solid mixture to overcome these limitations. We synthetized a transparent and scintillating nanoporous material, an aerogel of Y3Al5O12:Ce4+, and achieved real-time detection with an efficiency of 96% for 85Kr and 18% for 3H. The method reaches a sensitivity below 100 mBq per cm3 over 100 s measurement time. We are able to measure simultaneously as mixtures containing both 3H and 85Kr a capability not possible previously. Our results demonstrate a compact and robust detection system for inline measurement of strategic radioactive gases. This combination of concept and method enhances nuclear power plant management and contributes to environmental safeguarding. Beyond the detection issues, this concept opens a wide field of new methods for radionuclide metrology. Using a gas–solid mixture approach, researchers used a transparent, scintillating nanoporous material for real-time detection of 85Kr and 3H, two pure beta emitters. They also simultaneously measure a mixture of them. The broadly applicable approach may be useful for nuclear industry and environmental safeguarding.
{"title":"Real-time detection and discrimination of radioactive gas mixtures using nanoporous inorganic scintillators","authors":"Raphael Marie-Luce, Pavlo Mai, Frederic Lerouge, Yannis Cheref, Sylvie Pierre, Benoit Sabot, Frederic Chaput, Christophe Dujardin","doi":"10.1038/s41566-024-01507-x","DOIUrl":"10.1038/s41566-024-01507-x","url":null,"abstract":"The nuclear industry’s expansion to encompass carbon-free electricity generation from small modular reactors and nuclear fuel reprocessing necessitates enhanced detection and monitoring of pure beta-emitting radioactive elements such as 3H and 85Kr; this endeavour is crucial for nuclear safety authorities tasked with environmental monitoring. However, the short range of electrons emitted by these gases makes detection challenging. Current methods, such as ionization chambers and liquid scintillation, do not offer at the same time good sensitivity, real-time analysis and ease of implementation. We demonstrate an approach using a gas–solid mixture to overcome these limitations. We synthetized a transparent and scintillating nanoporous material, an aerogel of Y3Al5O12:Ce4+, and achieved real-time detection with an efficiency of 96% for 85Kr and 18% for 3H. The method reaches a sensitivity below 100 mBq per cm3 over 100 s measurement time. We are able to measure simultaneously as mixtures containing both 3H and 85Kr a capability not possible previously. Our results demonstrate a compact and robust detection system for inline measurement of strategic radioactive gases. This combination of concept and method enhances nuclear power plant management and contributes to environmental safeguarding. Beyond the detection issues, this concept opens a wide field of new methods for radionuclide metrology. Using a gas–solid mixture approach, researchers used a transparent, scintillating nanoporous material for real-time detection of 85Kr and 3H, two pure beta emitters. They also simultaneously measure a mixture of them. The broadly applicable approach may be useful for nuclear industry and environmental safeguarding.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 10","pages":"1037-1043"},"PeriodicalIF":32.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-024-01507-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1038/s41566-024-01528-6
R. Panico, P. Comaron, M. Matuszewski, A. S. Lanotte, D. Trypogeorgos, G. Gigli, M. De Giorgi, V. Ardizzone, D. Sanvitto, D. Ballarini
{"title":"Author Correction: Onset of vortex clustering and inverse energy cascade in dissipative quantum fluids","authors":"R. Panico, P. Comaron, M. Matuszewski, A. S. Lanotte, D. Trypogeorgos, G. Gigli, M. De Giorgi, V. Ardizzone, D. Sanvitto, D. Ballarini","doi":"10.1038/s41566-024-01528-6","DOIUrl":"10.1038/s41566-024-01528-6","url":null,"abstract":"","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 10","pages":"1121-1121"},"PeriodicalIF":32.3,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-024-01528-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1038/s41566-024-01482-3
Lang Liu, Shi-Yu Liu, Yuanpeng Shi, Cui-Ling Fang, Shan Zhao, Huai-Yi Shen, Ming-Xing Chen, Ze-Jie Wang, Yan Ma, Yan Liu, Yan Feng, Jiang Tang, Heng-Yun Ye, Guangda Niu
Halide perovskites have shown promising potential for direct X-ray detection due to their high X-ray absorption coefficient, low trap states and convenient fabrication process. However, it is still a challenge to achieve high sensitivity, low dark current and low detection limit in a single material. The deep reason for this is the trade-off between the material’s μτ product and resistivity. Here we report the construction of an organic–inorganic hybrid anti-perovskite ((2-Habch)3Cl(PtI6)) with indirect transition and low orbital symmetry at the band edge to achieve an ultralong intrinsic lifetime and thus break the trade-off. (2-Habch)3Cl(PtI6) achieves an unprecedented long carrier lifetime of >3 ms, leading to a large μτ product of 6.25 × 10−3 cm2 V−1 and high resistivity of 1012 Ω cm, outperforming most X-ray detection materials. These properties enabled the development of X-ray detectors that simultaneously achieve an ultralow dark current of 0.21 nA cm−2, high sensitivity of 1.0 × 104 µC Gyair−1 cm−2, ultralow detection limit of 2.4 nGyair s−1 and excellent operational stability with no observable baseline drift, outperforming state-of-the-art perovskite single-crystal detectors. The rare combination of high performance in almost every figure of merit in the anti-perovskite-based X-ray detector could enable new-generation X-ray detection systems. The researchers synthesize organic–inorganic hybrid inverse perovskites that exhibit excellent carrier lifetime and mobility–lifetime product and high resistivity, enabling stable X-ray detectors with performance arguably outperforming state-of-the-art perovskite single-crystal detectors.
卤化物过氧化物具有高 X 射线吸收系数、低阱态和方便的制造工艺,因此在直接 X 射线探测方面具有广阔的发展前景。然而,在单一材料中实现高灵敏度、低暗电流和低探测极限仍是一项挑战。其深层原因在于材料的μτ乘积和电阻率之间的权衡。在此,我们报告了一种有机-无机混合反超晶石((2-Habch)3Cl(PtI6))的构造,它具有间接转变和带边缘低轨道对称性,可实现超长的本征寿命,从而打破了这种权衡。(2-Habch)3Cl(PtI6)实现了前所未有的长载流子寿命(3 ms),从而产生了 6.25 × 10-3 cm2 V-1 的大μτ乘积和 1012 Ω cm 的高电阻率,优于大多数 X 射线探测材料。这些特性使得 X 射线探测器能够同时实现 0.21 nA cm-2 的超低暗电流、1.0 × 104 µC Gyair-1 cm-2 的高灵敏度、2.4 nGyair s-1 的超低探测极限,以及出色的工作稳定性,没有可观察到的基线漂移,性能优于最先进的过氧化物单晶探测器。基于反包晶石的 X 射线探测器在几乎所有性能指标上都实现了罕见的高性能组合,可用于新一代 X 射线探测系统。
{"title":"Anti-perovskites with long carrier lifetime for ultralow dose and stable X-ray detection","authors":"Lang Liu, Shi-Yu Liu, Yuanpeng Shi, Cui-Ling Fang, Shan Zhao, Huai-Yi Shen, Ming-Xing Chen, Ze-Jie Wang, Yan Ma, Yan Liu, Yan Feng, Jiang Tang, Heng-Yun Ye, Guangda Niu","doi":"10.1038/s41566-024-01482-3","DOIUrl":"10.1038/s41566-024-01482-3","url":null,"abstract":"Halide perovskites have shown promising potential for direct X-ray detection due to their high X-ray absorption coefficient, low trap states and convenient fabrication process. However, it is still a challenge to achieve high sensitivity, low dark current and low detection limit in a single material. The deep reason for this is the trade-off between the material’s μτ product and resistivity. Here we report the construction of an organic–inorganic hybrid anti-perovskite ((2-Habch)3Cl(PtI6)) with indirect transition and low orbital symmetry at the band edge to achieve an ultralong intrinsic lifetime and thus break the trade-off. (2-Habch)3Cl(PtI6) achieves an unprecedented long carrier lifetime of >3 ms, leading to a large μτ product of 6.25 × 10−3 cm2 V−1 and high resistivity of 1012 Ω cm, outperforming most X-ray detection materials. These properties enabled the development of X-ray detectors that simultaneously achieve an ultralow dark current of 0.21 nA cm−2, high sensitivity of 1.0 × 104 µC Gyair−1 cm−2, ultralow detection limit of 2.4 nGyair s−1 and excellent operational stability with no observable baseline drift, outperforming state-of-the-art perovskite single-crystal detectors. The rare combination of high performance in almost every figure of merit in the anti-perovskite-based X-ray detector could enable new-generation X-ray detection systems. The researchers synthesize organic–inorganic hybrid inverse perovskites that exhibit excellent carrier lifetime and mobility–lifetime product and high resistivity, enabling stable X-ray detectors with performance arguably outperforming state-of-the-art perovskite single-crystal detectors.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 9","pages":"990-997"},"PeriodicalIF":32.3,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142042674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-19DOI: 10.1038/s41566-024-01508-w
Tao Hua, Xiaosong Cao, Jingsheng Miao, Xiaojun Yin, Zhanxiang Chen, Zhongyan Huang, Chuluo Yang
Multiple-resonance thermally activated delayed fluorescence materials have emerged as promising candidates for next-generation ultrahigh-definition displays due to their narrowband emission and triplet-harvesting capability. However, achieving optimal colour purity and device efficiency for blue multiple-resonance thermally activated delayed fluorescence emitters has presented challenges. Here we demonstrate an effective approach to attain superior deep-blue molecules by constructing twisted-boron-/nitrogen-/oxygen-embedded higher-order fused-ring frameworks with fully resonating structures. The optimized emitter exhibits high rigidity and minimized bonding/antibonding character for ultrasharp emission, along with a small singlet–triplet gap and large spin–orbit couplings for rapid spin flip. This combination results in deep-blue emission at 458 nm with a narrow full-width at half-maximum of 12 nm in solution and a reverse intersystem crossing rate constant of 2.29 × 106 s−1, on par with those of heavy-atom-based multiple-resonance thermally activated delayed fluorescence molecules. The related single-unit organic light-emitting diode achieves an external quantum efficiency of 39.2% with colour coordinates of (0.141, 0.050) and a narrow full-width at half-maximum of 14 nm. Furthermore, a two-unit stacked tandem hyperfluorescence organic light-emitting diode achieves an ultrahigh external quantum efficiency of 74.5% with low efficiency roll-off at high luminance values. This performance represents a remarkable balance between efficiency and colour purity in the deep-blue region, marking an important step towards power-efficient ultrawide-colour-gamut displays. Highly twisted multi-boron-based multiple-resonance thermally activated delayed fluorescence emitters enable deep-blue organic light-emitting diodes with high colour purity, a narrow full-width at half-maximum of 14 nm and a peak external quantum efficiency of 39.2%.
{"title":"Deep-blue organic light-emitting diodes for ultrahigh-definition displays","authors":"Tao Hua, Xiaosong Cao, Jingsheng Miao, Xiaojun Yin, Zhanxiang Chen, Zhongyan Huang, Chuluo Yang","doi":"10.1038/s41566-024-01508-w","DOIUrl":"10.1038/s41566-024-01508-w","url":null,"abstract":"Multiple-resonance thermally activated delayed fluorescence materials have emerged as promising candidates for next-generation ultrahigh-definition displays due to their narrowband emission and triplet-harvesting capability. However, achieving optimal colour purity and device efficiency for blue multiple-resonance thermally activated delayed fluorescence emitters has presented challenges. Here we demonstrate an effective approach to attain superior deep-blue molecules by constructing twisted-boron-/nitrogen-/oxygen-embedded higher-order fused-ring frameworks with fully resonating structures. The optimized emitter exhibits high rigidity and minimized bonding/antibonding character for ultrasharp emission, along with a small singlet–triplet gap and large spin–orbit couplings for rapid spin flip. This combination results in deep-blue emission at 458 nm with a narrow full-width at half-maximum of 12 nm in solution and a reverse intersystem crossing rate constant of 2.29 × 106 s−1, on par with those of heavy-atom-based multiple-resonance thermally activated delayed fluorescence molecules. The related single-unit organic light-emitting diode achieves an external quantum efficiency of 39.2% with colour coordinates of (0.141, 0.050) and a narrow full-width at half-maximum of 14 nm. Furthermore, a two-unit stacked tandem hyperfluorescence organic light-emitting diode achieves an ultrahigh external quantum efficiency of 74.5% with low efficiency roll-off at high luminance values. This performance represents a remarkable balance between efficiency and colour purity in the deep-blue region, marking an important step towards power-efficient ultrawide-colour-gamut displays. Highly twisted multi-boron-based multiple-resonance thermally activated delayed fluorescence emitters enable deep-blue organic light-emitting diodes with high colour purity, a narrow full-width at half-maximum of 14 nm and a peak external quantum efficiency of 39.2%.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 11","pages":"1161-1169"},"PeriodicalIF":32.3,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142002835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}