Pub Date : 2024-06-06DOI: 10.1038/s41566-024-01448-5
Giampaolo Pitruzzello
Fluorescence super-resolution microscopy continues to offer new prospects and opportunities to tackle biological questions.
荧光超分辨率显微技术不断为解决生物问题提供新的前景和机遇。
{"title":"Single molecule localization more precise than ever","authors":"Giampaolo Pitruzzello","doi":"10.1038/s41566-024-01448-5","DOIUrl":"10.1038/s41566-024-01448-5","url":null,"abstract":"Fluorescence super-resolution microscopy continues to offer new prospects and opportunities to tackle biological questions.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 6","pages":"533-534"},"PeriodicalIF":35.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141264904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06DOI: 10.1038/s41566-024-01447-6
Xiao-Jun Wang
Advancements in laser-driven ceramic phosphors yield a high-power broadband near-infrared light source which suits applications in next-generation spectroscopy.
激光驱动陶瓷荧光粉的进步产生了适合新一代光谱学应用的高功率宽带近红外光源。
{"title":"Ceramic phosphor creates broadband infrared source","authors":"Xiao-Jun Wang","doi":"10.1038/s41566-024-01447-6","DOIUrl":"10.1038/s41566-024-01447-6","url":null,"abstract":"Advancements in laser-driven ceramic phosphors yield a high-power broadband near-infrared light source which suits applications in next-generation spectroscopy.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 6","pages":"531-532"},"PeriodicalIF":35.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141264846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06DOI: 10.1038/s41566-024-01438-7
Maria Kafesaki, Thomas Koschny, Martin Wegener
We had all been wondering “where is Costas?” and now we learned that we shall not see him again. We have lost a good friend and leader in the photonics community.
{"title":"Costas Soukoulis (1951–2024)","authors":"Maria Kafesaki, Thomas Koschny, Martin Wegener","doi":"10.1038/s41566-024-01438-7","DOIUrl":"10.1038/s41566-024-01438-7","url":null,"abstract":"We had all been wondering “where is Costas?” and now we learned that we shall not see him again. We have lost a good friend and leader in the photonics community.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 6","pages":"525-526"},"PeriodicalIF":35.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-024-01438-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141264882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06DOI: 10.1038/s41566-024-01453-8
Mahmoud Jalali Mehrabad, Mohammad Hafezi
Nanofabricated strained photonic crystals in silicon platforms enable the formation of photonic Landau levels at telecommunication wavelengths, with broad potential applications for enhanced light–matter interactions on-chip.
Wearable displays require mechanical deformability to conform to the skin, as well as long-term stability, multicolour emission and sufficient brightness to enable practically useful applications. However, endowing a single device with all the features remains a challenge. Here we present a rational material design strategy and simple device-manufacturing process for skin-conformable perovskite-based alternating-current electroluminescent (PeACEL) devices. These devices exhibit a narrow emission bandwidth (full-width at half-maximum, <37 nm), continuously tuneable emission wavelength (468–694 nm), high stretchability (400%) and adequate luminance (>200 cd m−2). The approach leverages a new class of perovskite zinc sulfide (PeZS) phosphors, consisting of ZnS phosphors coated with perovskite nanoparticles for electrical excitation via total intraparticle energy transfer. This strategy results in pure red and green emissions and expands the colour gamut of powder-based ACEL devices by 250%. Moreover, our processing technique facilitates the integration of PeACEL displays with wearable electronics, enabling applications in dynamic interactive displays and visual real-time temperature monitoring. These PeACEL displays offer new routes in flexible electronics and hold potential for the development of efficient artificial skins, robotics and biomedical monitoring devices. Perovskite zinc sulphide phosphors in perovskite-based alternating-current electroluminescent devices are employed as skin-wearable devices with high stretchability, monochromaticity and power efficiency.
可穿戴式显示器要求具有贴合皮肤的机械变形能力,以及长期稳定性、多色发射和足够的亮度,以实现实际有用的应用。然而,要使单个设备具备所有这些功能仍是一项挑战。在此,我们提出了一种合理的材料设计策略和简单的器件制造工艺,用于制造皮肤可变形的基于包晶石的交变电流电致发光(PeACEL)器件。这些器件具有窄发射带宽(半最大全宽,37 nm)、连续可调的发射波长(468-694 nm)、高拉伸性(400%)和足够的亮度(200 cd m-2)。该方法利用了一类新型的过氧化物硫化锌(PeZS)荧光粉,该荧光粉由镀有过氧化物纳米颗粒的硫化锌荧光粉组成,可通过颗粒内的总能量转移进行电激发。这种策略可产生纯正的红色和绿色发射,并将粉末型 ACEL 器件的色域扩大了 250%。此外,我们的加工技术还有助于将 PeACEL 显示器与可穿戴电子设备集成,从而实现动态互动显示和可视化实时温度监测等应用。这些 PeACEL 显示屏为柔性电子产品提供了新的途径,并为开发高效人造皮肤、机器人和生物医学监测设备提供了潜力。
{"title":"Multicolour stretchable perovskite electroluminescent devices for user-interactive displays","authors":"Fengjun Chun, Binbin Zhang, Yuyu Gao, Xiaohe Wei, Qiang Zhang, Weilin Zheng, Jingkun Zhou, Yang Guo, Xin Zhang, Zhifeng Xing, Xinge Yu, Feng Wang","doi":"10.1038/s41566-024-01455-6","DOIUrl":"10.1038/s41566-024-01455-6","url":null,"abstract":"Wearable displays require mechanical deformability to conform to the skin, as well as long-term stability, multicolour emission and sufficient brightness to enable practically useful applications. However, endowing a single device with all the features remains a challenge. Here we present a rational material design strategy and simple device-manufacturing process for skin-conformable perovskite-based alternating-current electroluminescent (PeACEL) devices. These devices exhibit a narrow emission bandwidth (full-width at half-maximum, <37 nm), continuously tuneable emission wavelength (468–694 nm), high stretchability (400%) and adequate luminance (>200 cd m−2). The approach leverages a new class of perovskite zinc sulfide (PeZS) phosphors, consisting of ZnS phosphors coated with perovskite nanoparticles for electrical excitation via total intraparticle energy transfer. This strategy results in pure red and green emissions and expands the colour gamut of powder-based ACEL devices by 250%. Moreover, our processing technique facilitates the integration of PeACEL displays with wearable electronics, enabling applications in dynamic interactive displays and visual real-time temperature monitoring. These PeACEL displays offer new routes in flexible electronics and hold potential for the development of efficient artificial skins, robotics and biomedical monitoring devices. Perovskite zinc sulphide phosphors in perovskite-based alternating-current electroluminescent devices are employed as skin-wearable devices with high stretchability, monochromaticity and power efficiency.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 8","pages":"856-863"},"PeriodicalIF":32.3,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-024-01455-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141246318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-28DOI: 10.1038/s41566-024-01465-4
Feifei Wang, Yeteng Zhong, Oliver Bruns, Yongye Liang, Hongjie Dai
{"title":"Author Correction: In vivo NIR-II fluorescence imaging for biology and medicine","authors":"Feifei Wang, Yeteng Zhong, Oliver Bruns, Yongye Liang, Hongjie Dai","doi":"10.1038/s41566-024-01465-4","DOIUrl":"10.1038/s41566-024-01465-4","url":null,"abstract":"","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 7","pages":"766-766"},"PeriodicalIF":32.3,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-024-01465-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-23DOI: 10.1038/s41566-024-01446-7
Rohin McIntosh, Arthur Goetschy, Nicholas Bender, Alexey Yamilov, Chia Wei Hsu, Hasan Yılmaz, Hui Cao
Wavefront shaping enables the targeted delivery of coherent light into random-scattering media, such as biological tissue, by the constructive interference of scattered waves. However, broadband waves have short coherence times, weakening the interference effect. Here we introduce a broadband deposition matrix that identifies a single input wavefront that maximizes the broadband energy delivered to an extended target deep inside a diffusive system. We experimentally demonstrate that long-range spatial and spectral correlations result in sixfold energy enhancement for targets containing 1,700 speckle grains and located at a depth of up to ten transport mean free paths, even when the coherence time is an order of magnitude shorter than the diffusion dwell time of light in the scattering sample. In the broadband (fast decoherence) limit, enhancement of energy delivery to extended targets becomes nearly independent of the target depth and dissipation. Our experiments, numerical simulations and analytic theory establish the fundamental limit for broadband energy delivery deep into a diffusive system, which has important consequences for practical applications. Owing to spectral long-range correlation, broadband energy can be delivered to extended targets deep inside a multiple-scattering system, greatly broadening the scope of controlling wave transport in disordered systems.
{"title":"Delivering broadband light deep inside diffusive media","authors":"Rohin McIntosh, Arthur Goetschy, Nicholas Bender, Alexey Yamilov, Chia Wei Hsu, Hasan Yılmaz, Hui Cao","doi":"10.1038/s41566-024-01446-7","DOIUrl":"10.1038/s41566-024-01446-7","url":null,"abstract":"Wavefront shaping enables the targeted delivery of coherent light into random-scattering media, such as biological tissue, by the constructive interference of scattered waves. However, broadband waves have short coherence times, weakening the interference effect. Here we introduce a broadband deposition matrix that identifies a single input wavefront that maximizes the broadband energy delivered to an extended target deep inside a diffusive system. We experimentally demonstrate that long-range spatial and spectral correlations result in sixfold energy enhancement for targets containing 1,700 speckle grains and located at a depth of up to ten transport mean free paths, even when the coherence time is an order of magnitude shorter than the diffusion dwell time of light in the scattering sample. In the broadband (fast decoherence) limit, enhancement of energy delivery to extended targets becomes nearly independent of the target depth and dissipation. Our experiments, numerical simulations and analytic theory establish the fundamental limit for broadband energy delivery deep into a diffusive system, which has important consequences for practical applications. Owing to spectral long-range correlation, broadband energy can be delivered to extended targets deep inside a multiple-scattering system, greatly broadening the scope of controlling wave transport in disordered systems.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 7","pages":"744-750"},"PeriodicalIF":32.3,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141085446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-22DOI: 10.1038/s41566-024-01449-4
Shunfa Liu, Xueshi Li, Hanqing Liu, Guixin Qiu, Jiantao Ma, Liang Nie, Yun Meng, Xiaolong Hu, Haiqiao Ni, Zhichuan Niu, Cheng-Wei Qiu, Xuehua Wang, Jin Liu
Solid-state quantum emitters coupled to integrated photonic nanostructures are quintessential for exploring fundamental phenomena in cavity quantum electrodynamics and are used in a wide range of photonic quantum technologies. One of the most exciting prospects for integrated photonics is the potential for massive production of miniaturized devices on a single chip. However, the efficiency and reproducibility of light–matter coupling are hindered by the spectral and spatial mismatch between the single solid-state quantum emitters and the optical modes supported by the photonic nanostructures. Here we develop a platform and method for hyperspectral imaging of solid-state quantum emitters to address this long-standing issue. Spatially distributed and spectrally broadened InAs quantum dots are embedded in a GaAs/AlGaAs one-dimensional (1D) planar cavity that consists of two distributed Bragg reflectors acting as mirrors. By exploiting the extended mode of the dispersive 1D cavity and the way it shapes the out-of-plane emission from the quantum dots, we extract the spatial position and emission wavelength of each dot from a single wide-field photoluminescence image, with a spatial and spectral accuracy down to 15 nm and 0.4 nm, respectively. We then fabricate quantum light sources by etching the 1D confined planar cavity into 3D confined micropillars. Extension of this technique using an open planar cavity can be exploited for a variety of compact quantum photonic devices with expanded functionalities for large-scale integration. Our technology is particularly appealing for quantum photonic applications that involve the spatial and spectral characterization of a large number of solid-state quantum emitters. The position and emission wavelengths of single quantum dots embedded in a one-dimensional planar cavity can be simultaneously determined from a single photoluminescence image with 15 nm spatial accuracy and subnanometric spectral accuracy in the near-infrared.
{"title":"Super-resolved snapshot hyperspectral imaging of solid-state quantum emitters for high-throughput integrated quantum technologies","authors":"Shunfa Liu, Xueshi Li, Hanqing Liu, Guixin Qiu, Jiantao Ma, Liang Nie, Yun Meng, Xiaolong Hu, Haiqiao Ni, Zhichuan Niu, Cheng-Wei Qiu, Xuehua Wang, Jin Liu","doi":"10.1038/s41566-024-01449-4","DOIUrl":"10.1038/s41566-024-01449-4","url":null,"abstract":"Solid-state quantum emitters coupled to integrated photonic nanostructures are quintessential for exploring fundamental phenomena in cavity quantum electrodynamics and are used in a wide range of photonic quantum technologies. One of the most exciting prospects for integrated photonics is the potential for massive production of miniaturized devices on a single chip. However, the efficiency and reproducibility of light–matter coupling are hindered by the spectral and spatial mismatch between the single solid-state quantum emitters and the optical modes supported by the photonic nanostructures. Here we develop a platform and method for hyperspectral imaging of solid-state quantum emitters to address this long-standing issue. Spatially distributed and spectrally broadened InAs quantum dots are embedded in a GaAs/AlGaAs one-dimensional (1D) planar cavity that consists of two distributed Bragg reflectors acting as mirrors. By exploiting the extended mode of the dispersive 1D cavity and the way it shapes the out-of-plane emission from the quantum dots, we extract the spatial position and emission wavelength of each dot from a single wide-field photoluminescence image, with a spatial and spectral accuracy down to 15 nm and 0.4 nm, respectively. We then fabricate quantum light sources by etching the 1D confined planar cavity into 3D confined micropillars. Extension of this technique using an open planar cavity can be exploited for a variety of compact quantum photonic devices with expanded functionalities for large-scale integration. Our technology is particularly appealing for quantum photonic applications that involve the spatial and spectral characterization of a large number of solid-state quantum emitters. The position and emission wavelengths of single quantum dots embedded in a one-dimensional planar cavity can be simultaneously determined from a single photoluminescence image with 15 nm spatial accuracy and subnanometric spectral accuracy in the near-infrared.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 9","pages":"967-974"},"PeriodicalIF":32.3,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141079146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-14DOI: 10.1038/s41566-024-01434-x
Liuxin Gu, Lifu Zhang, Ruihao Ni, Ming Xie, Dominik S. Wild, Suji Park, Houk Jang, Takashi Taniguchi, Kenji Watanabe, Mohammad Hafezi, You Zhou
Realizing strong nonlinear optical responses is a long-standing goal of both fundamental and technological importance. Recently, substantial efforts have been focused on exploring excitons in solids to achieve nonlinearities even down to few-photon levels. However, a crucial tradeoff arises as strong light–matter interactions require large oscillator strength and short radiative lifetime of excitons, which limits their nonlinearity. Here we experimentally demonstrate strong nonlinear optical responses with large oscillator strength by exploiting the coupling between excitons and carriers in an atomically thin semiconductor. By controlling the electric field and electrostatic doping of trilayer WSe2, we observe the hybridization between intralayer and interlayer excitons and the formation of Fermi polarons. Substantial optical nonlinearity is observed under continuous-wave and pulsed laser excitation, where the Fermi polaron resonance blueshifts by as much as ~10 meV. Intriguingly, we observe a remarkable asymmetry in the optical nonlinearity between electron and hole doping, which is tunable by the applied electric field. We attribute these features to the optically induced valley polarization due to the interactions between excitons and free charges. Our results establish atomically thin heterostructures as a highly versatile platform for engineering nonlinear optical response with applications to classical and quantum optoelectronics. Exploiting the interactions between bright excitons and free carriers in an atomically thin semiconductor of trilayer tungsten diselenide WSe2 results in Fermi polarons that exhibit unusually large nonlinearity.
{"title":"Giant optical nonlinearity of Fermi polarons in atomically thin semiconductors","authors":"Liuxin Gu, Lifu Zhang, Ruihao Ni, Ming Xie, Dominik S. Wild, Suji Park, Houk Jang, Takashi Taniguchi, Kenji Watanabe, Mohammad Hafezi, You Zhou","doi":"10.1038/s41566-024-01434-x","DOIUrl":"10.1038/s41566-024-01434-x","url":null,"abstract":"Realizing strong nonlinear optical responses is a long-standing goal of both fundamental and technological importance. Recently, substantial efforts have been focused on exploring excitons in solids to achieve nonlinearities even down to few-photon levels. However, a crucial tradeoff arises as strong light–matter interactions require large oscillator strength and short radiative lifetime of excitons, which limits their nonlinearity. Here we experimentally demonstrate strong nonlinear optical responses with large oscillator strength by exploiting the coupling between excitons and carriers in an atomically thin semiconductor. By controlling the electric field and electrostatic doping of trilayer WSe2, we observe the hybridization between intralayer and interlayer excitons and the formation of Fermi polarons. Substantial optical nonlinearity is observed under continuous-wave and pulsed laser excitation, where the Fermi polaron resonance blueshifts by as much as ~10 meV. Intriguingly, we observe a remarkable asymmetry in the optical nonlinearity between electron and hole doping, which is tunable by the applied electric field. We attribute these features to the optically induced valley polarization due to the interactions between excitons and free charges. Our results establish atomically thin heterostructures as a highly versatile platform for engineering nonlinear optical response with applications to classical and quantum optoelectronics. Exploiting the interactions between bright excitons and free carriers in an atomically thin semiconductor of trilayer tungsten diselenide WSe2 results in Fermi polarons that exhibit unusually large nonlinearity.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 8","pages":"816-822"},"PeriodicalIF":32.3,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140919698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-14DOI: 10.1038/s41566-024-01441-y
Jianwei Ying, Xie He, Dace Su, Lingbin Zheng, Tobias Kroh, Timm Rowher, Moein Fakhari, Günther H. Kassier, Jingui Ma, Peng Yuan, Nicholas H. Matlis, Franz X. Kärtner, Dongfang Zhang
Terahertz (THz)-based electron acceleration has potential as a technology for next-generation cost-efficient compact electron sources. Although proof-of-principle demonstrations have proved the feasibility of many THz-driven accelerator components, THz-driven photoguns with sufficient brightness, energy and control for use in demanding ultrafast applications have yet to be achieved. Here we present a novel millimetre-scale multicell waveguide-based THz-driven photogun that exploits field enhancement to boost the electron energy, a movable cathode to achieve precise control over the accelerating phase as well as multiple cells for exquisite beam control. The short driving wavelength enables a peak acceleration gradient as high as ~3 GV m−1. Using microjoule-level single-cycle THz pulses, we demonstrate electron beams with up to ~14 keV electron energy, 1% energy spread and ~0.015 mm mrad transverse emittance. With a highly integrated rebunching cell, the bunch is further compressed by about ten times to 167 fs with ~10 fC charge. High-quality diffraction patterns of single-crystal silicon and projection microscopy images of the copper mesh are achieved. We are able to reveal the transient radial electric field developed from the charged particles on a copper mesh after photoexcitation with high spatio-temporal resolution, providing a potential scheme for plasma-based beam manipulation. Overall, these results represent a new record in energy, field gradient, beam quality and control for a THz-driven electron gun, enabling real applications in electron projection microscopy and diffraction. This is therefore a critical step and milestone in the development of all-optical THz-driven electron devices, validating the maturity of the technology and its use in precision applications. A terahertz-driven photogun with field gradients of 3 GV m−1 is demonstrated by using a few microjoules of single-cycle terahertz radiation. The emitted electrons are accelerated up to 14 keV and can be focused down to 90 μm. The electron bunch is further compressed to 167 fs.
{"title":"High gradient terahertz-driven ultrafast photogun","authors":"Jianwei Ying, Xie He, Dace Su, Lingbin Zheng, Tobias Kroh, Timm Rowher, Moein Fakhari, Günther H. Kassier, Jingui Ma, Peng Yuan, Nicholas H. Matlis, Franz X. Kärtner, Dongfang Zhang","doi":"10.1038/s41566-024-01441-y","DOIUrl":"10.1038/s41566-024-01441-y","url":null,"abstract":"Terahertz (THz)-based electron acceleration has potential as a technology for next-generation cost-efficient compact electron sources. Although proof-of-principle demonstrations have proved the feasibility of many THz-driven accelerator components, THz-driven photoguns with sufficient brightness, energy and control for use in demanding ultrafast applications have yet to be achieved. Here we present a novel millimetre-scale multicell waveguide-based THz-driven photogun that exploits field enhancement to boost the electron energy, a movable cathode to achieve precise control over the accelerating phase as well as multiple cells for exquisite beam control. The short driving wavelength enables a peak acceleration gradient as high as ~3 GV m−1. Using microjoule-level single-cycle THz pulses, we demonstrate electron beams with up to ~14 keV electron energy, 1% energy spread and ~0.015 mm mrad transverse emittance. With a highly integrated rebunching cell, the bunch is further compressed by about ten times to 167 fs with ~10 fC charge. High-quality diffraction patterns of single-crystal silicon and projection microscopy images of the copper mesh are achieved. We are able to reveal the transient radial electric field developed from the charged particles on a copper mesh after photoexcitation with high spatio-temporal resolution, providing a potential scheme for plasma-based beam manipulation. Overall, these results represent a new record in energy, field gradient, beam quality and control for a THz-driven electron gun, enabling real applications in electron projection microscopy and diffraction. This is therefore a critical step and milestone in the development of all-optical THz-driven electron devices, validating the maturity of the technology and its use in precision applications. A terahertz-driven photogun with field gradients of 3 GV m−1 is demonstrated by using a few microjoules of single-cycle terahertz radiation. The emitted electrons are accelerated up to 14 keV and can be focused down to 90 μm. The electron bunch is further compressed to 167 fs.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 7","pages":"758-765"},"PeriodicalIF":32.3,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140919854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}