Pub Date : 2025-11-04DOI: 10.1038/s41566-025-01794-y
Evaldas Svirplys, Harry Jones, Gregor Loisch, John Thomas, Maryam Huck, Oleg Kornilov, Matthew James Garland, Jonathan C. Wood, Marc J. J. Vrakking, Jens Osterhoff, Bernd Schütte
Broadband optical pulses with attosecond to femtosecond durations provide unique opportunities for studies of time-resolved electron dynamics. However, focusing these pulses—typically ranging from the vacuum ultraviolet to the soft-X-ray region—remains challenging. Conventional refractive lenses are not suitable owing to large dispersion and strong absorption, whereas reflective optics do not suffer from these issues but have high losses. Here we demonstrate a tunable hydrogen plasma lens to focus broadband extreme-ultraviolet attosecond pulses with energies of around 20 eV and 80 eV. Simulation results suggest that the stretching of attosecond pulses is negligible, and temporal compression is possible when atto-chirp is included. A key advantage of the plasma lens is its compatibility with nonlinear frequency conversion processes like high-harmonic generation. The different focusing properties of the fundamental and harmonic frequencies allow for an efficient separation of these components. Consequently, the transmission of high-harmonic generation beamlines can be increased to more than 80% and this approach can be suitable for applications requiring high photon flux.
{"title":"Plasma lens for focusing attosecond pulses","authors":"Evaldas Svirplys, Harry Jones, Gregor Loisch, John Thomas, Maryam Huck, Oleg Kornilov, Matthew James Garland, Jonathan C. Wood, Marc J. J. Vrakking, Jens Osterhoff, Bernd Schütte","doi":"10.1038/s41566-025-01794-y","DOIUrl":"https://doi.org/10.1038/s41566-025-01794-y","url":null,"abstract":"Broadband optical pulses with attosecond to femtosecond durations provide unique opportunities for studies of time-resolved electron dynamics. However, focusing these pulses—typically ranging from the vacuum ultraviolet to the soft-X-ray region—remains challenging. Conventional refractive lenses are not suitable owing to large dispersion and strong absorption, whereas reflective optics do not suffer from these issues but have high losses. Here we demonstrate a tunable hydrogen plasma lens to focus broadband extreme-ultraviolet attosecond pulses with energies of around 20 eV and 80 eV. Simulation results suggest that the stretching of attosecond pulses is negligible, and temporal compression is possible when atto-chirp is included. A key advantage of the plasma lens is its compatibility with nonlinear frequency conversion processes like high-harmonic generation. The different focusing properties of the fundamental and harmonic frequencies allow for an efficient separation of these components. Consequently, the transmission of high-harmonic generation beamlines can be increased to more than 80% and this approach can be suitable for applications requiring high photon flux.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"4 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145434503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-03DOI: 10.1038/s41566-025-01789-9
Sai Kanth Dacha, Yun Zhao, Karl J. McNulty, Gaurang R. Bhatt, Michal Lipson, Alexander L. Gaeta
Field-deployable integrated photonic devices co-packaged with electronics will enable important applications such as optical interconnects, quantum information processing, precision measurements, spectroscopy and microwave generation. Significant progress has been made over the past two decades on increasing the functional complexity of photonic chips. However, a critical challenge that remains is the lack of scalable techniques to overcome thermal perturbations arising from the environment and co-packaged electronics. Here we demonstrate a fully integrated scheme to monitor and stabilize the temperature of a high-Q microresonator on a Si-based chip, which can serve as a photonic frequency reference. Our approach relies on a thin-film metallic resistor placed directly above the microcavity, acting as an integrated resistance thermometer, enabling unique mapping of the cavity’s absolute resonance wavelength to the thermometer’s electrical resistance. Following a one-time calibration, the microresonator can be accurately and repeatably tuned to any desired absolute resonance wavelength using thermometry alone with a root-mean-squared wavelength error of <0.8 pm over a time span of days. We frequency-lock a distributed feedback laser to the microresonator and demonstrate a 48× reduction in its frequency drift, resulting in its centre wavelength staying within ±0.5 pm of the mean over a duration of 50 h in the presence of substantial ambient fluctuations, outperforming many commercial distributed feedback and wavelength-locker-based laser systems. Finally, we stabilize a soliton mode-locked Kerr comb without the need for photodetection, paving the way for Kerr-comb-based photonic devices that can potentially operate in the desired mode-locked state indefinitely. Integrating a thin-film resistance thermometer above a high-Q SiN microresonator enables local temperature monitoring and active stabilization of its resonance wavelength. The emission wavelength of a distributed feedback laser locked to the microresonator fluctuates within 0.5 pm over a period of 50 h.
{"title":"Frequency-stable nanophotonic microcavities via integrated thermometry","authors":"Sai Kanth Dacha, Yun Zhao, Karl J. McNulty, Gaurang R. Bhatt, Michal Lipson, Alexander L. Gaeta","doi":"10.1038/s41566-025-01789-9","DOIUrl":"10.1038/s41566-025-01789-9","url":null,"abstract":"Field-deployable integrated photonic devices co-packaged with electronics will enable important applications such as optical interconnects, quantum information processing, precision measurements, spectroscopy and microwave generation. Significant progress has been made over the past two decades on increasing the functional complexity of photonic chips. However, a critical challenge that remains is the lack of scalable techniques to overcome thermal perturbations arising from the environment and co-packaged electronics. Here we demonstrate a fully integrated scheme to monitor and stabilize the temperature of a high-Q microresonator on a Si-based chip, which can serve as a photonic frequency reference. Our approach relies on a thin-film metallic resistor placed directly above the microcavity, acting as an integrated resistance thermometer, enabling unique mapping of the cavity’s absolute resonance wavelength to the thermometer’s electrical resistance. Following a one-time calibration, the microresonator can be accurately and repeatably tuned to any desired absolute resonance wavelength using thermometry alone with a root-mean-squared wavelength error of <0.8 pm over a time span of days. We frequency-lock a distributed feedback laser to the microresonator and demonstrate a 48× reduction in its frequency drift, resulting in its centre wavelength staying within ±0.5 pm of the mean over a duration of 50 h in the presence of substantial ambient fluctuations, outperforming many commercial distributed feedback and wavelength-locker-based laser systems. Finally, we stabilize a soliton mode-locked Kerr comb without the need for photodetection, paving the way for Kerr-comb-based photonic devices that can potentially operate in the desired mode-locked state indefinitely. Integrating a thin-film resistance thermometer above a high-Q SiN microresonator enables local temperature monitoring and active stabilization of its resonance wavelength. The emission wavelength of a distributed feedback laser locked to the microresonator fluctuates within 0.5 pm over a period of 50 h.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"20 1","pages":"71-78"},"PeriodicalIF":32.9,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41566-025-01789-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145427670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-03DOI: 10.1038/s41566-025-01777-z
Eran Lustig, Melissa A. Guidry, Daniil M. Lukin, Shanhui Fan, Jelena Vučković
The study of coupled networks with parametric amplification of vacuum fluctuations has garnered increasing interest due to its intricate physics and potential applications. In these systems, parametric interactions lead to beam-splitter coupling and two-mode squeezing, creating quadrature-dependent dynamics. These systems can be modelled as bosonic networks, arrays or lattices, exhibiting exotic effects such as unidirectional amplification and non-Hermitian chiral transport that influence multimode squeezing. However, exploring and controlling these network dynamics experimentally in all-optical systems remains challenging. Recent advances in integrated nonlinear microresonators, known as Kerr microcombs, have enabled the generation and control of broadband high-repetition pulses on microchips. Kerr microcombs exhibit intriguing nonlinear dynamics where coherent photons occupy discrete spectral lines, leading to multimode squeezed vacuum states. Here we explore the lattice dynamics of vacuum fluctuations driven by dissipative Kerr microcombs. We design a photonic chip on which a spontaneously emergent pair of pulses creates extended multimode states of parametrically amplified vacuum fluctuations. These states exhibit oscillatory dynamics, with implications for squeezing and secondary comb formation. By employing integrated micro-heaters, we tune the vacuum fluctuations to eliminate the oscillations, establishing a fundamental connection between non-Hermitian lattice symmetries and Kerr combs, and paving the way for exotic quadrature-dependent optical networks with broad implications for quantum and classical photonic technologies. The quantum noise of Kerr combs is found to exhibit oscillatory lattice dynamics through state transitions, with implications for squeezing and comb formation.
{"title":"Quadrature-dependent lattice dynamics of dissipative microcombs","authors":"Eran Lustig, Melissa A. Guidry, Daniil M. Lukin, Shanhui Fan, Jelena Vučković","doi":"10.1038/s41566-025-01777-z","DOIUrl":"10.1038/s41566-025-01777-z","url":null,"abstract":"The study of coupled networks with parametric amplification of vacuum fluctuations has garnered increasing interest due to its intricate physics and potential applications. In these systems, parametric interactions lead to beam-splitter coupling and two-mode squeezing, creating quadrature-dependent dynamics. These systems can be modelled as bosonic networks, arrays or lattices, exhibiting exotic effects such as unidirectional amplification and non-Hermitian chiral transport that influence multimode squeezing. However, exploring and controlling these network dynamics experimentally in all-optical systems remains challenging. Recent advances in integrated nonlinear microresonators, known as Kerr microcombs, have enabled the generation and control of broadband high-repetition pulses on microchips. Kerr microcombs exhibit intriguing nonlinear dynamics where coherent photons occupy discrete spectral lines, leading to multimode squeezed vacuum states. Here we explore the lattice dynamics of vacuum fluctuations driven by dissipative Kerr microcombs. We design a photonic chip on which a spontaneously emergent pair of pulses creates extended multimode states of parametrically amplified vacuum fluctuations. These states exhibit oscillatory dynamics, with implications for squeezing and secondary comb formation. By employing integrated micro-heaters, we tune the vacuum fluctuations to eliminate the oscillations, establishing a fundamental connection between non-Hermitian lattice symmetries and Kerr combs, and paving the way for exotic quadrature-dependent optical networks with broad implications for quantum and classical photonic technologies. The quantum noise of Kerr combs is found to exhibit oscillatory lattice dynamics through state transitions, with implications for squeezing and comb formation.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 11","pages":"1247-1254"},"PeriodicalIF":32.9,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145427668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-03DOI: 10.1038/s41566-025-01759-1
Vincenzo Pecunia, Thomas D. Anthopoulos, Ardalan Armin, Benjamin Bouthinon, Mario Caironi, Andres Castellanos-Gomez, Yongsheng Chen, Kilwon Cho, Charlotte Clegg, Xiaosheng Fang, Peter Fendel, Boyd Fowler, Gerwin Gelinck, Heinrich Gottlob, Philippe Guyot-Sionnest, Rob Hannebauer, Gerardo Hernandez-Sosa, Mark C. Hersam, Lionel Hirsch, Johnny C. Ho, Furkan H. Isikgor, Jérôme Joimel, Hyun Jae Kim, Gerasimos Konstantatos, John Labram, Max C. Lemme, Karl Leo, Emmanuel Lhuillier, Elefterios Lidorikis, Maria A. Loi, Pawel E. Malinowski, Patrick Merken, Thomas Mueller, Bahareh Nasrollahi, Dario Natali, Tse Nga Ng, Thuc-Quyen Nguyen, Sung Kyu Park, Lian-Mao Peng, Paolo Samorì, Edward H. Sargent, Liang Shen, Sanshiro Shishido, Ivan Shorubalko, Prashant Sonar, Samuel D. Stranks, Sandro F. Tedde, Koen Vandewal, Marc Verhaegen, Sumeet Walia, Feng Yan, Tomoyuki Yokota, Fujun Zhang
Photodetector technologies based on emerging semiconductors—for example, organic semiconductors, halide perovskites, quantum dots, low-dimensional semiconductors and metal oxides—hold considerable promise for next-generation optoelectronics. However, the breadth and multidisciplinarity of this field, alongside its diverse range of applications, have resulted in inconsistent performance characterization and reporting practices, hindering the effective benchmarking of these technologies. Here we present a consensus among researchers from academia and industry on accurately capturing the key performance metrics of photodetectors based on emerging semiconductors and utilizing the photoelectric effect. We analyse their underlying assumptions, discuss common misunderstandings, and provide guidelines for accurate characterization and reporting. Additionally, we discuss the benchmarking of these photodetector technologies with respect to diverse applications. We expect that these comprehensive guidelines for characterization, reporting and benchmarking will accelerate and streamline further advancements in the field, propelling emerging photodetector technologies towards their full potential. This Consensus Statement discusses common misunderstandings about photodetector performance characterization and reporting, and offers recommendations for standardized practices.
{"title":"Guidelines for accurate evaluation of photodetectors based on emerging semiconductor technologies","authors":"Vincenzo Pecunia, Thomas D. Anthopoulos, Ardalan Armin, Benjamin Bouthinon, Mario Caironi, Andres Castellanos-Gomez, Yongsheng Chen, Kilwon Cho, Charlotte Clegg, Xiaosheng Fang, Peter Fendel, Boyd Fowler, Gerwin Gelinck, Heinrich Gottlob, Philippe Guyot-Sionnest, Rob Hannebauer, Gerardo Hernandez-Sosa, Mark C. Hersam, Lionel Hirsch, Johnny C. Ho, Furkan H. Isikgor, Jérôme Joimel, Hyun Jae Kim, Gerasimos Konstantatos, John Labram, Max C. Lemme, Karl Leo, Emmanuel Lhuillier, Elefterios Lidorikis, Maria A. Loi, Pawel E. Malinowski, Patrick Merken, Thomas Mueller, Bahareh Nasrollahi, Dario Natali, Tse Nga Ng, Thuc-Quyen Nguyen, Sung Kyu Park, Lian-Mao Peng, Paolo Samorì, Edward H. Sargent, Liang Shen, Sanshiro Shishido, Ivan Shorubalko, Prashant Sonar, Samuel D. Stranks, Sandro F. Tedde, Koen Vandewal, Marc Verhaegen, Sumeet Walia, Feng Yan, Tomoyuki Yokota, Fujun Zhang","doi":"10.1038/s41566-025-01759-1","DOIUrl":"10.1038/s41566-025-01759-1","url":null,"abstract":"Photodetector technologies based on emerging semiconductors—for example, organic semiconductors, halide perovskites, quantum dots, low-dimensional semiconductors and metal oxides—hold considerable promise for next-generation optoelectronics. However, the breadth and multidisciplinarity of this field, alongside its diverse range of applications, have resulted in inconsistent performance characterization and reporting practices, hindering the effective benchmarking of these technologies. Here we present a consensus among researchers from academia and industry on accurately capturing the key performance metrics of photodetectors based on emerging semiconductors and utilizing the photoelectric effect. We analyse their underlying assumptions, discuss common misunderstandings, and provide guidelines for accurate characterization and reporting. Additionally, we discuss the benchmarking of these photodetector technologies with respect to diverse applications. We expect that these comprehensive guidelines for characterization, reporting and benchmarking will accelerate and streamline further advancements in the field, propelling emerging photodetector technologies towards their full potential. This Consensus Statement discusses common misunderstandings about photodetector performance characterization and reporting, and offers recommendations for standardized practices.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 11","pages":"1178-1188"},"PeriodicalIF":32.9,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41566-025-01759-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145434506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-03DOI: 10.1038/s41566-025-01796-w
Characterizing and reporting photodetector performance demands common standards to ensure rigorous, reproducible and comparable practices.
描述和报告光电探测器的性能需要共同的标准,以确保严格、可重复和可比较的做法。
{"title":"Setting the standard for photodetectors","authors":"","doi":"10.1038/s41566-025-01796-w","DOIUrl":"10.1038/s41566-025-01796-w","url":null,"abstract":"Characterizing and reporting photodetector performance demands common standards to ensure rigorous, reproducible and comparable practices.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 11","pages":"1157-1157"},"PeriodicalIF":32.9,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41566-025-01796-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145434508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-03DOI: 10.1038/s41566-025-01771-5
Marin Soljačić, Shanhui Fan, Michelle L. Povinelli
John ‘JJ’ Joannopoulos, a pioneering condensed-matter theorist who contributed to the launch of modern nanophotonics and mentored a plethora of scientists and engineers, passed away on 17 August 2025, aged 78. In his five decades at MIT, JJ combined first-principles insights with a gift for nurturing people, shaping fields from ab initio materials theory to photonic crystals and their applications.
{"title":"John Joannopoulos (1947–2025)","authors":"Marin Soljačić, Shanhui Fan, Michelle L. Povinelli","doi":"10.1038/s41566-025-01771-5","DOIUrl":"10.1038/s41566-025-01771-5","url":null,"abstract":"John ‘JJ’ Joannopoulos, a pioneering condensed-matter theorist who contributed to the launch of modern nanophotonics and mentored a plethora of scientists and engineers, passed away on 17 August 2025, aged 78. In his five decades at MIT, JJ combined first-principles insights with a gift for nurturing people, shaping fields from ab initio materials theory to photonic crystals and their applications.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 11","pages":"1158-1159"},"PeriodicalIF":32.9,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145434509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-03DOI: 10.1038/s41566-025-01774-2
Md Selim Habib, Rodrigo Amezcua Correa
A hollow-core optical fibre which surpasses silica fibre’s long-standing limits and provides an attenuation below 0.1 dB/km across a record-wide bandwidth, could yield more energy-efficient communications with lower latency and higher data capacity.
{"title":"Hollow-core breakthrough","authors":"Md Selim Habib, Rodrigo Amezcua Correa","doi":"10.1038/s41566-025-01774-2","DOIUrl":"10.1038/s41566-025-01774-2","url":null,"abstract":"A hollow-core optical fibre which surpasses silica fibre’s long-standing limits and provides an attenuation below 0.1 dB/km across a record-wide bandwidth, could yield more energy-efficient communications with lower latency and higher data capacity.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 11","pages":"1160-1161"},"PeriodicalIF":32.9,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145434505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miniaturization of light-emitting diodes below the diffraction limit of the emission wavelength can enable super-resolution imaging and on-chip light sources for ultrabroadband chiplet communication. Organic light-emitting diodes, although suitable for miniaturization due to their emission from localized excitons, suffer from the limited compatibility of organic materials with traditional photolithographic patterning. Here we develop a method for the scalable fabrication of nanoscale organic light-emitting diodes with pixel densities up to 100,000 pixels per inch, periodicity of 250 nm and the smallest pixel size in the order of 100 nm. We realize the direct nanoscale patterning of organic semiconductors by self-aligned nanostencil etching and lithography. The process is resist-free and involves etching and evaporation through nanoapertures in a free-standing film adhering to the substrate. A nanoscale organic light-emitting diode surface with over 1 megapixel exhibits an average external quantum efficiency of 13.1%. We also demonstrate electroluminescent metasurfaces with subwavelength-scale meta-atoms that can electrically modulate the emitted light. The diffractive coupling between nanopixels enables control over the far-field emission properties of light, including directionality and polarization. These results pave the way for hybrid integrated photonics technologies, including visible-light communication, lasing and high-resolution displays. Nanostencil etching and lithography enable the fabrication of green-emitting nanoscale organic light-emitting diode pixels with size as small as 100 nm, densities as high as 100,000 pixels per inch and average external quantum efficiency of 13.1% for green emission.
{"title":"Scalable nanopatterning of organic light-emitting diodes beyond the diffraction limit","authors":"Tommaso Marcato, Jiwoo Oh, Zhan-Hong Lin, Tian Tian, Abhijit Gogoi, Sunil B. Shivarudraiah, Sudhir Kumar, Ananth Govind Rajan, Shuangshuang Zeng, Chih-Jen Shih","doi":"10.1038/s41566-025-01785-z","DOIUrl":"10.1038/s41566-025-01785-z","url":null,"abstract":"Miniaturization of light-emitting diodes below the diffraction limit of the emission wavelength can enable super-resolution imaging and on-chip light sources for ultrabroadband chiplet communication. Organic light-emitting diodes, although suitable for miniaturization due to their emission from localized excitons, suffer from the limited compatibility of organic materials with traditional photolithographic patterning. Here we develop a method for the scalable fabrication of nanoscale organic light-emitting diodes with pixel densities up to 100,000 pixels per inch, periodicity of 250 nm and the smallest pixel size in the order of 100 nm. We realize the direct nanoscale patterning of organic semiconductors by self-aligned nanostencil etching and lithography. The process is resist-free and involves etching and evaporation through nanoapertures in a free-standing film adhering to the substrate. A nanoscale organic light-emitting diode surface with over 1 megapixel exhibits an average external quantum efficiency of 13.1%. We also demonstrate electroluminescent metasurfaces with subwavelength-scale meta-atoms that can electrically modulate the emitted light. The diffractive coupling between nanopixels enables control over the far-field emission properties of light, including directionality and polarization. These results pave the way for hybrid integrated photonics technologies, including visible-light communication, lasing and high-resolution displays. Nanostencil etching and lithography enable the fabrication of green-emitting nanoscale organic light-emitting diode pixels with size as small as 100 nm, densities as high as 100,000 pixels per inch and average external quantum efficiency of 13.1% for green emission.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"20 1","pages":"31-39"},"PeriodicalIF":32.9,"publicationDate":"2025-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41566-025-01785-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145404754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}