Pub Date : 2024-08-05DOI: 10.1038/s41566-024-01489-w
Marinko V. Sarunic, Cynthia A. Toth
Joseph Izatt’s work advanced the science of imaging in biophotonics and brought optical coherence tomography imaging to the eye care of infants and children and, as live feedback for the surgeon, to ophthalmic microsurgery.
{"title":"Joseph A. Izatt (1962–2024)","authors":"Marinko V. Sarunic, Cynthia A. Toth","doi":"10.1038/s41566-024-01489-w","DOIUrl":"10.1038/s41566-024-01489-w","url":null,"abstract":"Joseph Izatt’s work advanced the science of imaging in biophotonics and brought optical coherence tomography imaging to the eye care of infants and children and, as live feedback for the surgeon, to ophthalmic microsurgery.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 8","pages":"767-768"},"PeriodicalIF":32.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-024-01489-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1038/s41566-024-01488-x
Xi Wang
Precise control over doping levels and displacement fields enables the observation of a notable blueshift in the Fermi polaron resonance in trilayer tungsten diselenide. This result highlights the promise of two-dimensional materials for advanced nonlinear optical applications with high tunability.
{"title":"Extreme nonlinear excitonic interactions","authors":"Xi Wang","doi":"10.1038/s41566-024-01488-x","DOIUrl":"10.1038/s41566-024-01488-x","url":null,"abstract":"Precise control over doping levels and displacement fields enables the observation of a notable blueshift in the Fermi polaron resonance in trilayer tungsten diselenide. This result highlights the promise of two-dimensional materials for advanced nonlinear optical applications with high tunability.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 8","pages":"769-770"},"PeriodicalIF":32.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1038/s41566-024-01497-w
Rachel Won
Although three-dimensional laser nanofabrication has become an established and widespread technology, research towards achieving higher resolutions, higher speeds, lower costs, mass production, more material availability and more functionality for this technology continues.
{"title":"Nanoprinting under macro lens","authors":"Rachel Won","doi":"10.1038/s41566-024-01497-w","DOIUrl":"10.1038/s41566-024-01497-w","url":null,"abstract":"Although three-dimensional laser nanofabrication has become an established and widespread technology, research towards achieving higher resolutions, higher speeds, lower costs, mass production, more material availability and more functionality for this technology continues.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 8","pages":"777-779"},"PeriodicalIF":32.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1038/s41566-024-01485-0
Fatih Ömer Ilday
By exploiting nonlinear feedback arising from the interaction of ultrafast laser pulses, self-organized nanolines that appear to defy the limits of diffraction are shown to cut, dice, and structure optical materials, fabricating true zero-order sapphire waveplates and crystalline micro-prisms.
{"title":"Driven by feedback, unlimited by diffraction","authors":"Fatih Ömer Ilday","doi":"10.1038/s41566-024-01485-0","DOIUrl":"10.1038/s41566-024-01485-0","url":null,"abstract":"By exploiting nonlinear feedback arising from the interaction of ultrafast laser pulses, self-organized nanolines that appear to defy the limits of diffraction are shown to cut, dice, and structure optical materials, fabricating true zero-order sapphire waveplates and crystalline micro-prisms.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 8","pages":"771-772"},"PeriodicalIF":32.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1038/s41566-024-01487-y
Su-Hyun Gong, Je-Hyung Kim
A plasmonic platform and a dual gate are integrated in a single-photon emitter made of two-dimensional materials. The combination enables engineered radiative and nonradiative decays, leading to a device quantum efficiency of up to 90%.
{"title":"A leap to highly efficient 2D quantum emitters","authors":"Su-Hyun Gong, Je-Hyung Kim","doi":"10.1038/s41566-024-01487-y","DOIUrl":"10.1038/s41566-024-01487-y","url":null,"abstract":"A plasmonic platform and a dual gate are integrated in a single-photon emitter made of two-dimensional materials. The combination enables engineered radiative and nonradiative decays, leading to a device quantum efficiency of up to 90%.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 8","pages":"773-774"},"PeriodicalIF":32.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Photodetection over a broad spectral range is necessary for multispectral sensing and imaging. Despite the fact that broadband single-element detectors with high performance have been demonstrated with various low-dimensional materials, broadband focal plane array imagers have been rarely reported. Here we propose a stacked lead sulfide/mercury telluride colloidal quantum dot photodetector configuration with optimized graded energy gaps. This architecture allows for ultrabroadband spectral response from 0.4 to 5.0 µm, with responsivity values of 0.23, 0.31, 0.83 and 0.71 A W−1 at 0.4, 0.7, 2.2 and 4.2 µm, respectively. We also fabricate a focal plane array imager with a resolution of 640 × 512, a low photoresponse non-uniformity down to 6% and a noise equivalent temperature difference as low as 34 mK. We demonstrate broadband imaging by simultaneously capturing both short-wave infrared and mid-wave infrared information, as well as multispectral imaging in the red, green, blue, short-wave infrared and mid-wave infrared channels, using a set of optical filters. Graded-energy-gap lead sulfide/mercury telluride stacked quantum dots enable photodetection and imaging in a focal plane array configuration from the visible (0.4 µm) to the mid-wave infrared (about 5 µm) region.
{"title":"Visible to mid-wave infrared PbS/HgTe colloidal quantum dot imagers","authors":"Ge Mu, Yimei Tan, Cheng Bi, Yanfei Liu, Qun Hao, Xin Tang","doi":"10.1038/s41566-024-01492-1","DOIUrl":"10.1038/s41566-024-01492-1","url":null,"abstract":"Photodetection over a broad spectral range is necessary for multispectral sensing and imaging. Despite the fact that broadband single-element detectors with high performance have been demonstrated with various low-dimensional materials, broadband focal plane array imagers have been rarely reported. Here we propose a stacked lead sulfide/mercury telluride colloidal quantum dot photodetector configuration with optimized graded energy gaps. This architecture allows for ultrabroadband spectral response from 0.4 to 5.0 µm, with responsivity values of 0.23, 0.31, 0.83 and 0.71 A W−1 at 0.4, 0.7, 2.2 and 4.2 µm, respectively. We also fabricate a focal plane array imager with a resolution of 640 × 512, a low photoresponse non-uniformity down to 6% and a noise equivalent temperature difference as low as 34 mK. We demonstrate broadband imaging by simultaneously capturing both short-wave infrared and mid-wave infrared information, as well as multispectral imaging in the red, green, blue, short-wave infrared and mid-wave infrared channels, using a set of optical filters. Graded-energy-gap lead sulfide/mercury telluride stacked quantum dots enable photodetection and imaging in a focal plane array configuration from the visible (0.4 µm) to the mid-wave infrared (about 5 µm) region.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 11","pages":"1147-1154"},"PeriodicalIF":32.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1038/s41566-024-01481-4
Niels Radmacher, Oleksii Nevskyi, José Ignacio Gallea, Jan Christoph Thiele, Ingo Gregor, Silvio O. Rizzoli, Jörg Enderlein
In this study, we integrate a single-photon detector array into a confocal laser scanning microscope, enabling the combination of fluorescence-lifetime single-molecule localization microscopy with image scanning microscopy. This unique combination delivers a twofold improvement in lateral localization accuracy for single-molecule localization microscopy (SMLM) and maintains its simplicity. Moreover, the addition of lifetime information from our confocal laser scanning microscope eliminates chromatic aberration, particularly crucial for achieving few-nanometre resolution in SMLM. Our approach, named fluorescence-lifetime image scanning microscopy SMLM, is demonstrated through direct stochastic optical reconstruction microscopy and DNA point accumulation for imaging in nanoscale topography experiments on fluorescently labelled cells, showcasing both resolution enhancement and fluorescence-lifetime multiplexing capabilities. The integration of a single-photon detector array and imaging scanning microscopy in a confocal scanning microscope enables doubling the resolution of single-molecule localization microscopy.
在这项研究中,我们将单光子探测器阵列集成到共聚焦激光扫描显微镜中,实现了荧光-寿命单分子定位显微镜与图像扫描显微镜的结合。这种独特的组合使单分子定位显微镜(SMLM)的横向定位精度提高了两倍,并保持了其简便性。此外,共焦激光扫描显微镜提供的寿命信息消除了色差,这对实现单分子定位显微镜的几纳米分辨率尤为重要。我们的方法被命名为荧光-寿命图像扫描显微镜 SMLM,它通过直接随机光学重建显微镜和 DNA 点积累技术在荧光标记细胞的纳米级形貌实验中进行成像,展示了分辨率增强和荧光-寿命多路复用能力。
{"title":"Doubling the resolution of fluorescence-lifetime single-molecule localization microscopy with image scanning microscopy","authors":"Niels Radmacher, Oleksii Nevskyi, José Ignacio Gallea, Jan Christoph Thiele, Ingo Gregor, Silvio O. Rizzoli, Jörg Enderlein","doi":"10.1038/s41566-024-01481-4","DOIUrl":"10.1038/s41566-024-01481-4","url":null,"abstract":"In this study, we integrate a single-photon detector array into a confocal laser scanning microscope, enabling the combination of fluorescence-lifetime single-molecule localization microscopy with image scanning microscopy. This unique combination delivers a twofold improvement in lateral localization accuracy for single-molecule localization microscopy (SMLM) and maintains its simplicity. Moreover, the addition of lifetime information from our confocal laser scanning microscope eliminates chromatic aberration, particularly crucial for achieving few-nanometre resolution in SMLM. Our approach, named fluorescence-lifetime image scanning microscopy SMLM, is demonstrated through direct stochastic optical reconstruction microscopy and DNA point accumulation for imaging in nanoscale topography experiments on fluorescently labelled cells, showcasing both resolution enhancement and fluorescence-lifetime multiplexing capabilities. The integration of a single-photon detector array and imaging scanning microscopy in a confocal scanning microscope enables doubling the resolution of single-molecule localization microscopy.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 10","pages":"1059-1066"},"PeriodicalIF":32.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1038/s41566-024-01483-2
Hui Li, Fei Chen, Haoyuan Jia, Ziyu Ye, Hang Zhou, Song Luo, Junheng Shi, Zhenrong Sun, Huailiang Xu, Hongxing Xu, Tim Byrnes, Zhanghai Chen, Jian Wu
Exciton polaritons—quasi-particle excitations consisting of strongly coupled photons and excitons—present fascinating possibilities for photonic circuits, owing to their strong nonlinearity, ultrafast reaction times and their ability to form macroscopic quantum states at room temperature via non-equilibrium condensation. Past implementations of transistors and logic gates with exciton polaritons have been mostly realized using the spatial propagation of polariton fluids, which place high demands on the fabrication of the microcavities and typically require complex manipulations. In this work we have implemented the full set of logical gate functionalities (that is, temporal AND, OR and NOT gates) in localized exciton polaritons at room temperature, on the basis of precisely controlling the interplay between polariton condensate and exciton reservoir dynamics, using a two-pulse excitation scheme. The dynamics intrinsically covers the cascadability required by the logical operations, enabling efficient information processing without the need for spatial flow. The temporal polariton logic gates demonstrate advantages in ultrafast switching, universality and simplified compatibility with other dimensional controls, showing great potential for building polariton logic networks in strongly coupled light–matter systems. Researchers have achieved AND, OR and NOT gates, using localized exciton polaritons at room temperature. The logic is based on temporal gates, rather than relying on the usual spatial propagation approaches.
激子极化子--由强耦合光子和激子组成的准粒子激发--由于其强烈的非线性、超快的反应时间以及在室温下通过非平衡凝聚形成宏观量子态的能力,为光子电路带来了迷人的可能性。以往利用激子极化子实现晶体管和逻辑门的方法大多是利用极化子流体的空间传播,这对微腔的制造提出了很高的要求,通常需要复杂的操作。在这项工作中,我们利用双脉冲激发方案,在精确控制极化子凝聚态和激子储库动态之间相互作用的基础上,在室温下实现了局部激子极化子的全套逻辑门功能(即时序 AND、OR 和 NOT 门)。该动力学本质上涵盖了逻辑运算所需的级联性,无需空间流即可实现高效的信息处理。时态极化子逻辑门在超快开关、通用性和与其他维度控制的简化兼容性方面表现出优势,显示出在强耦合光物质系统中构建极化子逻辑网络的巨大潜力。
{"title":"All-optical temporal logic gates in localized exciton polaritons","authors":"Hui Li, Fei Chen, Haoyuan Jia, Ziyu Ye, Hang Zhou, Song Luo, Junheng Shi, Zhenrong Sun, Huailiang Xu, Hongxing Xu, Tim Byrnes, Zhanghai Chen, Jian Wu","doi":"10.1038/s41566-024-01483-2","DOIUrl":"10.1038/s41566-024-01483-2","url":null,"abstract":"Exciton polaritons—quasi-particle excitations consisting of strongly coupled photons and excitons—present fascinating possibilities for photonic circuits, owing to their strong nonlinearity, ultrafast reaction times and their ability to form macroscopic quantum states at room temperature via non-equilibrium condensation. Past implementations of transistors and logic gates with exciton polaritons have been mostly realized using the spatial propagation of polariton fluids, which place high demands on the fabrication of the microcavities and typically require complex manipulations. In this work we have implemented the full set of logical gate functionalities (that is, temporal AND, OR and NOT gates) in localized exciton polaritons at room temperature, on the basis of precisely controlling the interplay between polariton condensate and exciton reservoir dynamics, using a two-pulse excitation scheme. The dynamics intrinsically covers the cascadability required by the logical operations, enabling efficient information processing without the need for spatial flow. The temporal polariton logic gates demonstrate advantages in ultrafast switching, universality and simplified compatibility with other dimensional controls, showing great potential for building polariton logic networks in strongly coupled light–matter systems. Researchers have achieved AND, OR and NOT gates, using localized exciton polaritons at room temperature. The logic is based on temporal gates, rather than relying on the usual spatial propagation approaches.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 8","pages":"864-869"},"PeriodicalIF":32.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-024-01483-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}