Pub Date : 2024-11-27DOI: 10.1038/s41566-024-01573-1
Jingyang Zhou, Jia Su, Junyu Guan, Yichen Yang, Wentao Ji, Mengqi Wang, Fazhan Shi, Kangwei Xia, Ya Wang, Jiangfeng Du
In the era of digital information, realizing efficient and durable data storage solutions is paramount. Innovations in storage capacity, data throughput, device lifespan and energy consumption are pressing necessities for the continuous progression of practical digital data storage technologies. Here we present a diamond storage medium that exploits fluorescent vacancy centres as robust storage units and provides a high storage density of 14.8 Tbit cm−3, a short write time of 200 fs and an estimated ultralong maintenance-free lifespan on the scale of millions of years. High-speed readout through plane and volume imaging is demonstrated with a high fidelity exceeding 99%, showing that the approach addresses the practical demands of digital data storage and provides a promising solution for future storage requirements. A diamond storage medium that uses fluorescent vacancy centres as robust storage units provides a high storage density of 14.8 Tbit cm−3.
{"title":"Terabit-scale high-fidelity diamond data storage","authors":"Jingyang Zhou, Jia Su, Junyu Guan, Yichen Yang, Wentao Ji, Mengqi Wang, Fazhan Shi, Kangwei Xia, Ya Wang, Jiangfeng Du","doi":"10.1038/s41566-024-01573-1","DOIUrl":"10.1038/s41566-024-01573-1","url":null,"abstract":"In the era of digital information, realizing efficient and durable data storage solutions is paramount. Innovations in storage capacity, data throughput, device lifespan and energy consumption are pressing necessities for the continuous progression of practical digital data storage technologies. Here we present a diamond storage medium that exploits fluorescent vacancy centres as robust storage units and provides a high storage density of 14.8 Tbit cm−3, a short write time of 200 fs and an estimated ultralong maintenance-free lifespan on the scale of millions of years. High-speed readout through plane and volume imaging is demonstrated with a high fidelity exceeding 99%, showing that the approach addresses the practical demands of digital data storage and provides a promising solution for future storage requirements. A diamond storage medium that uses fluorescent vacancy centres as robust storage units provides a high storage density of 14.8 Tbit cm−3.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 12","pages":"1327-1334"},"PeriodicalIF":32.3,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142718257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1038/s41566-024-01565-1
Deric Session, Mahmoud Jalali Mehrabad, Nikil Paithankar, Tobias Grass, Christian J. Eckhardt, Bin Cao, Daniel Gustavo Suárez Forero, Kevin Li, Mohammad S. Alam, Kenji Watanabe, Takashi Taniguchi, Glenn S. Solomon, Nathan Schine, Jay Sau, Roman Sordan, Mohammad Hafezi
A fundamental requirement for quantum technologies is the ability to coherently control the interaction between electrons and photons. However, in many scenarios involving the interaction between light and matter, the exchange of linear or angular momentum between electrons and photons is not feasible, a condition known as the dipole approximation limit. An example of a case beyond this limit that has remained experimentally elusive is when the interplay between chiral electrons and vortex light is considered, where the orbital angular momentum of light can be transferred to electrons. Here we present a mechanism for such an orbital angular momentum transfer from optical vortex beams to electronic quantum Hall states. Specifically, we identify a robust contribution to the radial photocurrent, in an annular graphene sample within the quantum Hall regime, that depends on the vorticity of light. This phenomenon can be interpreted as an optical pumping scheme, where the angular momentum of photons is transferred to electrons, generating a radial current, and the current direction is determined by the vorticity of the light. Our findings offer fundamental insights into the optical probing and manipulation of quantum coherence, with wide-ranging implications for advancing quantum coherent optoelectronics. Orbital angular momentum transfer from optical vortex beams to electronic quantum Hall states is reported in a graphene sheet, showing a robust contribution to the radial photocurrent that depends on the vorticity of light.
{"title":"Optical pumping of electronic quantum Hall states with vortex light","authors":"Deric Session, Mahmoud Jalali Mehrabad, Nikil Paithankar, Tobias Grass, Christian J. Eckhardt, Bin Cao, Daniel Gustavo Suárez Forero, Kevin Li, Mohammad S. Alam, Kenji Watanabe, Takashi Taniguchi, Glenn S. Solomon, Nathan Schine, Jay Sau, Roman Sordan, Mohammad Hafezi","doi":"10.1038/s41566-024-01565-1","DOIUrl":"10.1038/s41566-024-01565-1","url":null,"abstract":"A fundamental requirement for quantum technologies is the ability to coherently control the interaction between electrons and photons. However, in many scenarios involving the interaction between light and matter, the exchange of linear or angular momentum between electrons and photons is not feasible, a condition known as the dipole approximation limit. An example of a case beyond this limit that has remained experimentally elusive is when the interplay between chiral electrons and vortex light is considered, where the orbital angular momentum of light can be transferred to electrons. Here we present a mechanism for such an orbital angular momentum transfer from optical vortex beams to electronic quantum Hall states. Specifically, we identify a robust contribution to the radial photocurrent, in an annular graphene sample within the quantum Hall regime, that depends on the vorticity of light. This phenomenon can be interpreted as an optical pumping scheme, where the angular momentum of photons is transferred to electrons, generating a radial current, and the current direction is determined by the vorticity of the light. Our findings offer fundamental insights into the optical probing and manipulation of quantum coherence, with wide-ranging implications for advancing quantum coherent optoelectronics. Orbital angular momentum transfer from optical vortex beams to electronic quantum Hall states is reported in a graphene sheet, showing a robust contribution to the radial photocurrent that depends on the vorticity of light.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 2","pages":"156-161"},"PeriodicalIF":32.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142712783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1038/s41566-024-01566-0
Jiawei Yan, Weilun Qin, Ye Chen, Winfried Decking, Philipp Dijkstal, Marc Guetg, Ichiro Inoue, Naresh Kujala, Shan Liu, Tianyun Long, Najmeh Mirian, Gianluca Geloni
Ångstrom and attosecond are the fundamental spatiotemporal scales for electron dynamics in various materials. Although attosecond pulses with wavelengths comparable to the atomic scales are expected to be a key tool in advancing attosecond science, producing high-power hard X-ray attosecond pulses at ångstrom wavelengths remains a formidable challenge. Here, we report the generation of terawatt-scale attosecond hard X-ray pulses using a free-electron laser in a special operation mode. We achieved 9 keV single-spike X-ray pulses with a mean pulse energy of around 180 μJ, exceeding previous reports by more than an order of magnitude, and an estimated average pulse duration of 200 as at full-width at half-maximum. Exploiting the unique capability of the European XFEL, which can deliver ten pulse trains per second with each containing hundreds of pulses at megahertz repetition rates, this study demonstrates the generation of attosecond X-ray pulses at a 2.25 MHz repetition rate. These intense high-repetition-rate attosecond X-ray pulses present transformative prospects for structural and electronic damage-free X-ray measurements and attosecond time-resolved X-ray methodologies, heralding a new era in ultrafast X-ray science. Using the European XFEL free-electron laser, researchers demonstrate terawatt-scale, attosecond hard X-ray pulses. Ten pulse trains per second, each containing hundreds of pulses at megahertz repetition rates, are achieved. Such short and intense pulses at high repetition rate enable unprecedented damage-free X-ray measurements with attosecond temporal resolution.
埃秒和阿秒是各种材料中电子动力学的基本时空尺度。尽管波长与原子尺度相当的阿秒脉冲有望成为推动阿秒科学发展的关键工具,但在埃秒波长上产生大功率硬 X 射线阿秒脉冲仍然是一项艰巨的挑战。在此,我们报告了使用自由电子激光器在特殊运行模式下产生太瓦级阿秒硬 X 射线脉冲的情况。我们获得了 9 keV 的单尖峰 X 射线脉冲,其平均脉冲能量约为 180 μJ,比之前的报道高出一个数量级以上,估计平均脉冲持续时间为 200 秒(全宽半最大值)。欧洲 XFEL 每秒可产生十个脉冲串,每个脉冲串包含数百个百万赫兹重复率的脉冲,本研究利用这一独特能力,展示了以 2.25 MHz 重复率产生的阿秒 X 射线脉冲。这些强烈的高重复率阿秒 X 射线脉冲为结构和电子无损伤 X 射线测量以及阿秒时间分辨 X 射线方法带来了变革性的前景,预示着超快 X 射线科学进入了一个新时代。
{"title":"Terawatt-attosecond hard X-ray free-electron laser at high repetition rate","authors":"Jiawei Yan, Weilun Qin, Ye Chen, Winfried Decking, Philipp Dijkstal, Marc Guetg, Ichiro Inoue, Naresh Kujala, Shan Liu, Tianyun Long, Najmeh Mirian, Gianluca Geloni","doi":"10.1038/s41566-024-01566-0","DOIUrl":"10.1038/s41566-024-01566-0","url":null,"abstract":"Ångstrom and attosecond are the fundamental spatiotemporal scales for electron dynamics in various materials. Although attosecond pulses with wavelengths comparable to the atomic scales are expected to be a key tool in advancing attosecond science, producing high-power hard X-ray attosecond pulses at ångstrom wavelengths remains a formidable challenge. Here, we report the generation of terawatt-scale attosecond hard X-ray pulses using a free-electron laser in a special operation mode. We achieved 9 keV single-spike X-ray pulses with a mean pulse energy of around 180 μJ, exceeding previous reports by more than an order of magnitude, and an estimated average pulse duration of 200 as at full-width at half-maximum. Exploiting the unique capability of the European XFEL, which can deliver ten pulse trains per second with each containing hundreds of pulses at megahertz repetition rates, this study demonstrates the generation of attosecond X-ray pulses at a 2.25 MHz repetition rate. These intense high-repetition-rate attosecond X-ray pulses present transformative prospects for structural and electronic damage-free X-ray measurements and attosecond time-resolved X-ray methodologies, heralding a new era in ultrafast X-ray science. Using the European XFEL free-electron laser, researchers demonstrate terawatt-scale, attosecond hard X-ray pulses. Ten pulse trains per second, each containing hundreds of pulses at megahertz repetition rates, are achieved. Such short and intense pulses at high repetition rate enable unprecedented damage-free X-ray measurements with attosecond temporal resolution.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 12","pages":"1293-1298"},"PeriodicalIF":32.3,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-024-01566-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142697110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vortex phenomena are ubiquitous in nature. In optics, despite the availability of numerous techniques for vortex generation and detection, topological protection of vortex transport with desired orbital angular momentum (OAM) remains a challenge. Here, by use of topological disclination, we demonstrate a scheme to confine and guide vortices featuring arbitrary high-order charges. Such a scheme relies on twofold topological protection: a non-trivial winding in momentum space due to chiral symmetry, and a non-trivial winding in real space due to the complex coupling of OAM modes across the disclination structure. We unveil a vorticity-coordinated rotational symmetry, which sets up a universal relation between the vortex topological charge and the rotational symmetry order of the system. As an example, we construct photonic disclination lattices with a single core but different Cn symmetries and achieve robust transport of an optical vortex with preserved OAM solely corresponding to one selected zero-energy vortex mode at the mid-gap. Furthermore, we show that such topological structures can be used for vortex filtering to extract a chosen OAM mode from mixed excitations. Our results illustrate the fundamental interplay of vorticity, disclination and higher-order topology, which may open a new pathway for the development of OAM-based photonic devices such as vortex guides, fibres and lasers. Topological protection in disclination lattices that relies on non-trivial winding in momentum space and real space is used to confine and guide vortices that feature arbitrary high-order charges. This approach could help in the development of orbital angular momentum-based photonic devices.
{"title":"Topological orbital angular momentum extraction and twofold protection of vortex transport","authors":"Zhichan Hu, Domenico Bongiovanni, Ziteng Wang, Xiangdong Wang, Daohong Song, Jingjun Xu, Roberto Morandotti, Hrvoje Buljan, Zhigang Chen","doi":"10.1038/s41566-024-01564-2","DOIUrl":"10.1038/s41566-024-01564-2","url":null,"abstract":"Vortex phenomena are ubiquitous in nature. In optics, despite the availability of numerous techniques for vortex generation and detection, topological protection of vortex transport with desired orbital angular momentum (OAM) remains a challenge. Here, by use of topological disclination, we demonstrate a scheme to confine and guide vortices featuring arbitrary high-order charges. Such a scheme relies on twofold topological protection: a non-trivial winding in momentum space due to chiral symmetry, and a non-trivial winding in real space due to the complex coupling of OAM modes across the disclination structure. We unveil a vorticity-coordinated rotational symmetry, which sets up a universal relation between the vortex topological charge and the rotational symmetry order of the system. As an example, we construct photonic disclination lattices with a single core but different Cn symmetries and achieve robust transport of an optical vortex with preserved OAM solely corresponding to one selected zero-energy vortex mode at the mid-gap. Furthermore, we show that such topological structures can be used for vortex filtering to extract a chosen OAM mode from mixed excitations. Our results illustrate the fundamental interplay of vorticity, disclination and higher-order topology, which may open a new pathway for the development of OAM-based photonic devices such as vortex guides, fibres and lasers. Topological protection in disclination lattices that relies on non-trivial winding in momentum space and real space is used to confine and guide vortices that feature arbitrary high-order charges. This approach could help in the development of orbital angular momentum-based photonic devices.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 2","pages":"162-169"},"PeriodicalIF":32.3,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-024-01564-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1038/s41566-024-01563-3
X. Wang, P. Garg, M. S. Mirmoosa, A. G. Lamprianidis, C. Rockstuhl, V. S. Asadchy
The realization of photonic time crystals is a major opportunity but also comes with considerable challenges. The most pressing one, potentially, is the requirement for a substantial modulation strength in the material properties to create a noticeable momentum bandgap. Reaching that noticeable bandgap in optics is highly demanding with current, and possibly also future materials platforms because their modulation strength is small by tendency. Here we demonstrate that by introducing temporal variations in a resonant material, the momentum bandgap can be drastically expanded with modulation strengths in reach with known low-loss materials and realistic laser pump powers. The resonance can emerge from an intrinsic material resonance or a suitably spatially structured material supporting a structural resonance. Our concept is validated for resonant bulk media and optical metasurfaces and paves the way towards the first experimental realizations of photonic time crystals. Optical realization of photonic time crystals can be achieved by using temporal variations in a resonant material to expand the momentum bandgap, even at low modulation strengths, with known low-loss materials and realistic laser pump powers.
{"title":"Expanding momentum bandgaps in photonic time crystals through resonances","authors":"X. Wang, P. Garg, M. S. Mirmoosa, A. G. Lamprianidis, C. Rockstuhl, V. S. Asadchy","doi":"10.1038/s41566-024-01563-3","DOIUrl":"10.1038/s41566-024-01563-3","url":null,"abstract":"The realization of photonic time crystals is a major opportunity but also comes with considerable challenges. The most pressing one, potentially, is the requirement for a substantial modulation strength in the material properties to create a noticeable momentum bandgap. Reaching that noticeable bandgap in optics is highly demanding with current, and possibly also future materials platforms because their modulation strength is small by tendency. Here we demonstrate that by introducing temporal variations in a resonant material, the momentum bandgap can be drastically expanded with modulation strengths in reach with known low-loss materials and realistic laser pump powers. The resonance can emerge from an intrinsic material resonance or a suitably spatially structured material supporting a structural resonance. Our concept is validated for resonant bulk media and optical metasurfaces and paves the way towards the first experimental realizations of photonic time crystals. Optical realization of photonic time crystals can be achieved by using temporal variations in a resonant material to expand the momentum bandgap, even at low modulation strengths, with known low-loss materials and realistic laser pump powers.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 2","pages":"149-155"},"PeriodicalIF":32.3,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-024-01563-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1038/s41566-024-01561-5
Chenxia Kan, Pengjie Hang, Shibo Wang, Biao Li, Xuegong Yu, Xinbo Yang, Yuxin Yao, Wei Shi, Stefaan De Wolf, Jun Yin, Daoyong Zhang, Degong Ding, Cao Yu, Shaofei Yang, Jiteng Zhang, Jia Yao, Xiaohong Zhang, Deren Yang
Monolithic perovskite/silicon tandem solar cells have achieved promising performance. However, hole transport layers that are commonly used for the perovskite top cell suffer from defects, non-conformal deposition or de-wetting of the overlying perovskite on the textured silicon bottom cells. These issues detrimentally affect device reproducibility and scalability, and thus commercialization. Here we address these challenges through the co-deposition of copper(I) thiocyanate and perovskite, where effective perovskite grain boundary passivation and efficient hole collection are simultaneously achieved by the embedded copper(I) thiocyanate, which creates local hole-collecting contacts. Fabricated monolithic perovskite/silicon tandem devices achieve a certified power conversion efficiency of 31.46% for 1 cm2 area devices. Aside from good reproducibility and scalability, our tandem cells exhibit excellent stability, maintaining 93.8% of their initial power conversion efficiency after about 1,200 h of maximum power point tracking at 45 °C, and 90.2% after over 1,000 h of damp-heat testing at 85 °C and 85% relative humidity. Co-deposition of copper thiocyanate with perovskite on textured silicon enables an efficient perovskite-silicon tandem solar cell with a certified power conversion efficiency of 31.46% for 1 cm2 area devices.
{"title":"Efficient and stable perovskite-silicon tandem solar cells with copper thiocyanate-embedded perovskite on textured silicon","authors":"Chenxia Kan, Pengjie Hang, Shibo Wang, Biao Li, Xuegong Yu, Xinbo Yang, Yuxin Yao, Wei Shi, Stefaan De Wolf, Jun Yin, Daoyong Zhang, Degong Ding, Cao Yu, Shaofei Yang, Jiteng Zhang, Jia Yao, Xiaohong Zhang, Deren Yang","doi":"10.1038/s41566-024-01561-5","DOIUrl":"10.1038/s41566-024-01561-5","url":null,"abstract":"Monolithic perovskite/silicon tandem solar cells have achieved promising performance. However, hole transport layers that are commonly used for the perovskite top cell suffer from defects, non-conformal deposition or de-wetting of the overlying perovskite on the textured silicon bottom cells. These issues detrimentally affect device reproducibility and scalability, and thus commercialization. Here we address these challenges through the co-deposition of copper(I) thiocyanate and perovskite, where effective perovskite grain boundary passivation and efficient hole collection are simultaneously achieved by the embedded copper(I) thiocyanate, which creates local hole-collecting contacts. Fabricated monolithic perovskite/silicon tandem devices achieve a certified power conversion efficiency of 31.46% for 1 cm2 area devices. Aside from good reproducibility and scalability, our tandem cells exhibit excellent stability, maintaining 93.8% of their initial power conversion efficiency after about 1,200 h of maximum power point tracking at 45 °C, and 90.2% after over 1,000 h of damp-heat testing at 85 °C and 85% relative humidity. Co-deposition of copper thiocyanate with perovskite on textured silicon enables an efficient perovskite-silicon tandem solar cell with a certified power conversion efficiency of 31.46% for 1 cm2 area devices.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 1","pages":"63-70"},"PeriodicalIF":32.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1038/s41566-024-01555-3
Y. A. Yang, W.-T. Luo, J.-L. Zhang, S.-Z. Wang, Chang-Ling Zou, T. Xia, Z.-T. Lu
Quantum metrology with non-classical states offers a promising route to improved precision in physical measurements. The quantum effects of Schrödinger-cat superpositions or entanglements enable measurement uncertainties to reach below the standard quantum limit. However, the challenge of maintaining a long coherence time for such non-classical states often prevents full exploitation of the quantum advantage in metrology. Here we demonstrate a long-lived Schrödinger-cat state of optically trapped 173Yb (I = 5/2) atoms. The cat state, a superposition of two oppositely directed and furthest-apart spin states, is generated by a nonlinear spin rotation. Protected in a decoherence-free subspace against inhomogeneous light shifts of an optical lattice, the cat state persists for a coherence time of 1.4(1) × 103 s. A magnetic field is measured using Ramsey interferometry, demonstrating a scheme of Heisenberg-limited metrology for atomic magnetometry, quantum information processing and searching for new physics beyond the Standard Model. Using spin-5/2 nuclei of 173Yb atoms trapped in an optical lattice, a Schrödinger-cat state persists for a coherence time of 1.4 × 103 s. In measuring external magnetic fields, the cat state exhibits a sensitivity approaching the Heisenberg limit.
使用非经典状态的量子计量学为提高物理测量精度提供了一条前景广阔的途径。薛定谔猫叠加或纠缠的量子效应使测量的不确定性达到标准量子极限以下。然而,要使这种非经典状态保持较长的相干时间,往往会阻碍在计量学中充分发挥量子优势。在这里,我们展示了光学捕获的 173Yb (I = 5/2) 原子的长寿命薛定谔猫态。猫态是两个方向相反、相距最远的自旋态的叠加,由非线性自旋旋转产生。猫态在无退相干子空间中受到光晶格不均匀光偏移的保护,其相干时间为 1.4(1) × 103 秒。利用拉姆齐干涉测量法测量磁场,为原子磁力测量、量子信息处理和寻找标准模型之外的新物理学展示了一种海森堡限制计量方案。
{"title":"Minute-scale Schrödinger-cat state of spin-5/2 atoms","authors":"Y. A. Yang, W.-T. Luo, J.-L. Zhang, S.-Z. Wang, Chang-Ling Zou, T. Xia, Z.-T. Lu","doi":"10.1038/s41566-024-01555-3","DOIUrl":"10.1038/s41566-024-01555-3","url":null,"abstract":"Quantum metrology with non-classical states offers a promising route to improved precision in physical measurements. The quantum effects of Schrödinger-cat superpositions or entanglements enable measurement uncertainties to reach below the standard quantum limit. However, the challenge of maintaining a long coherence time for such non-classical states often prevents full exploitation of the quantum advantage in metrology. Here we demonstrate a long-lived Schrödinger-cat state of optically trapped 173Yb (I = 5/2) atoms. The cat state, a superposition of two oppositely directed and furthest-apart spin states, is generated by a nonlinear spin rotation. Protected in a decoherence-free subspace against inhomogeneous light shifts of an optical lattice, the cat state persists for a coherence time of 1.4(1) × 103 s. A magnetic field is measured using Ramsey interferometry, demonstrating a scheme of Heisenberg-limited metrology for atomic magnetometry, quantum information processing and searching for new physics beyond the Standard Model. Using spin-5/2 nuclei of 173Yb atoms trapped in an optical lattice, a Schrödinger-cat state persists for a coherence time of 1.4 × 103 s. In measuring external magnetic fields, the cat state exhibits a sensitivity approaching the Heisenberg limit.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 1","pages":"89-94"},"PeriodicalIF":32.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1038/s41566-024-01556-2
Omer Kneller, Chen Mor, Nikolai D. Klimkin, Noa Yaffe, Michael Krüger, Doron Azoury, Ayelet J. Uzan-Narovlansky, Yotam Federman, Debobrata Rajak, Barry D. Bruner, Olga Smirnova, Serguei Patchkovskii, Yann Mairesse, Misha Ivanov, Nirit Dudovich
Attosecond transient absorption resolves the instantaneous response of a quantum system as it interacts with a laser field, by mapping its sub-cycle dynamics onto the absorption spectrum of attosecond pulses. However, the quantum dynamics are imprinted in the amplitude, phase and polarization state of the attosecond pulses. Here we introduce attosecond transient interferometry and measure the transient phase, as we follow its evolution within the optical cycle. We demonstrate how such phase information enables us to decouple the multiple quantum paths induced in a light-driven system, isolating their coherent contribution and retrieving their temporal evolution. Applying attosecond transient interferometry reveals the Stark shift dynamics in helium and retrieves long-term electronic coherences in neon. Finally, we present a vectorial generalization of our scheme, theoretically demonstrating the ability to isolate the underlying anomalous current in light-driven topological materials. Our scheme provides a direct insight into the interplay of light-induced dynamics and topology. Attosecond transient interferometry holds the potential to considerably extend the scope of attosecond metrology, revealing the underlying coherences in light-driven complex systems. Sub-cycle phase-resolved attosecond interferometry is developed. The obtained phase information enables us to decouple the multiple quantum paths induced in a light-driven system, isolating their coherent contribution and retrieving their temporal evolution.
{"title":"Attosecond transient interferometry","authors":"Omer Kneller, Chen Mor, Nikolai D. Klimkin, Noa Yaffe, Michael Krüger, Doron Azoury, Ayelet J. Uzan-Narovlansky, Yotam Federman, Debobrata Rajak, Barry D. Bruner, Olga Smirnova, Serguei Patchkovskii, Yann Mairesse, Misha Ivanov, Nirit Dudovich","doi":"10.1038/s41566-024-01556-2","DOIUrl":"10.1038/s41566-024-01556-2","url":null,"abstract":"Attosecond transient absorption resolves the instantaneous response of a quantum system as it interacts with a laser field, by mapping its sub-cycle dynamics onto the absorption spectrum of attosecond pulses. However, the quantum dynamics are imprinted in the amplitude, phase and polarization state of the attosecond pulses. Here we introduce attosecond transient interferometry and measure the transient phase, as we follow its evolution within the optical cycle. We demonstrate how such phase information enables us to decouple the multiple quantum paths induced in a light-driven system, isolating their coherent contribution and retrieving their temporal evolution. Applying attosecond transient interferometry reveals the Stark shift dynamics in helium and retrieves long-term electronic coherences in neon. Finally, we present a vectorial generalization of our scheme, theoretically demonstrating the ability to isolate the underlying anomalous current in light-driven topological materials. Our scheme provides a direct insight into the interplay of light-induced dynamics and topology. Attosecond transient interferometry holds the potential to considerably extend the scope of attosecond metrology, revealing the underlying coherences in light-driven complex systems. Sub-cycle phase-resolved attosecond interferometry is developed. The obtained phase information enables us to decouple the multiple quantum paths induced in a light-driven system, isolating their coherent contribution and retrieving their temporal evolution.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 2","pages":"134-141"},"PeriodicalIF":32.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-024-01556-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1038/s41566-024-01552-6
Gordon Robb
Imaging in the water window has traditionally relied on large synchrotron radiation sources. Now, a tabletop tunable X-ray source which generates water-window X-ray photons from a low energy electron beam interacting with a van der Waals crystal has been demonstrated.
水窗成像历来依赖于大型同步辐射源。现在,一种台式可调 X 射线源已经问世,它能通过低能量电子束与范德华晶体的相互作用产生水窗 X 射线光子。
{"title":"Small tunable X-ray sources may have large impact","authors":"Gordon Robb","doi":"10.1038/s41566-024-01552-6","DOIUrl":"10.1038/s41566-024-01552-6","url":null,"abstract":"Imaging in the water window has traditionally relied on large synchrotron radiation sources. Now, a tabletop tunable X-ray source which generates water-window X-ray photons from a low energy electron beam interacting with a van der Waals crystal has been demonstrated.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 11","pages":"1129-1130"},"PeriodicalIF":32.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}