Pub Date : 2024-11-13DOI: 10.1038/s41558-024-02178-w
Michael Berkebile-Weinberg, Runji Gao, Rachel Tang, Madalina Vlasceanu
A critical step in tackling climate change involves structural, system-level changes facilitating action. Despite their ubiquity, little is known about how internet search algorithms portray climate change, and how these portrayals impact concern and action. In a sample of 49 countries, we found that nationwide climate concern, but not nation-level climate impact, predicted the emotional arousal caused by climate change Google Image Search outputs, as rated by a naive sample (n = 383). In a follow-up experiment we randomly assigned another sample (n = 899) to receive the climate change image outputs resulting from searches conducted in countries high or low in pre-existing climate concern, and found that participants exposed to images from countries with high pre-existing concern (compared to low) became more concerned about climate change, supportive of climate policy and likely to act pro-environmentally, suggesting a cycle of climate sentiment propagation systemically facilitated by internet search algorithms. We discuss the implications of these findings for climate action interventions. The influence of internet search algorithms on users’ beliefs and behaviours remains understudied. This study finds that nationwide climate concern predicted the emotional content of Google Image Search outputs, which subsequently influenced users’ climate concern and support for climate policy.
{"title":"Internet image search outputs propagate climate change sentiment and impact policy support","authors":"Michael Berkebile-Weinberg, Runji Gao, Rachel Tang, Madalina Vlasceanu","doi":"10.1038/s41558-024-02178-w","DOIUrl":"10.1038/s41558-024-02178-w","url":null,"abstract":"A critical step in tackling climate change involves structural, system-level changes facilitating action. Despite their ubiquity, little is known about how internet search algorithms portray climate change, and how these portrayals impact concern and action. In a sample of 49 countries, we found that nationwide climate concern, but not nation-level climate impact, predicted the emotional arousal caused by climate change Google Image Search outputs, as rated by a naive sample (n = 383). In a follow-up experiment we randomly assigned another sample (n = 899) to receive the climate change image outputs resulting from searches conducted in countries high or low in pre-existing climate concern, and found that participants exposed to images from countries with high pre-existing concern (compared to low) became more concerned about climate change, supportive of climate policy and likely to act pro-environmentally, suggesting a cycle of climate sentiment propagation systemically facilitated by internet search algorithms. We discuss the implications of these findings for climate action interventions. The influence of internet search algorithms on users’ beliefs and behaviours remains understudied. This study finds that nationwide climate concern predicted the emotional content of Google Image Search outputs, which subsequently influenced users’ climate concern and support for climate policy.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"15 1","pages":"44-50"},"PeriodicalIF":29.6,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1038/s41558-024-02171-3
Soong-Ki Kim, Soon-Il An
Global warming is expected to be able to trigger abrupt transitions in various components of the climate system. Most studies focus on abrupt changes in the mean state of the system, while transitions in climate variability are less well understood. Here, we use multimodel simulations to show that sea-ice loss in the Arctic can trigger a critical transition in internal variability that leads to the emergence of a new climate oscillation in the Arctic Ocean. The intensified air–sea interaction due to sea-ice melt causes an oscillatory behaviour of surface temperatures on a multidecadal timescale. Our results suggest that a new mode of internal variability will emerge in the Arctic Ocean when sea ice declines below a critical threshold. Abrupt transitions in the climate system are discussed mostly in terms of mean state changes. Here, the authors use simulations to show that a decline in Arctic sea ice can lead to a new multidecadal mode of surface temperatures in the Arctic Ocean.
{"title":"Emergence of a climate oscillation in the Arctic Ocean due to global warming","authors":"Soong-Ki Kim, Soon-Il An","doi":"10.1038/s41558-024-02171-3","DOIUrl":"10.1038/s41558-024-02171-3","url":null,"abstract":"Global warming is expected to be able to trigger abrupt transitions in various components of the climate system. Most studies focus on abrupt changes in the mean state of the system, while transitions in climate variability are less well understood. Here, we use multimodel simulations to show that sea-ice loss in the Arctic can trigger a critical transition in internal variability that leads to the emergence of a new climate oscillation in the Arctic Ocean. The intensified air–sea interaction due to sea-ice melt causes an oscillatory behaviour of surface temperatures on a multidecadal timescale. Our results suggest that a new mode of internal variability will emerge in the Arctic Ocean when sea ice declines below a critical threshold. Abrupt transitions in the climate system are discussed mostly in terms of mean state changes. Here, the authors use simulations to show that a decline in Arctic sea ice can lead to a new multidecadal mode of surface temperatures in the Arctic Ocean.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"14 12","pages":"1268-1274"},"PeriodicalIF":29.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41558-024-02171-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1038/s41558-024-02179-9
Mengyang Zhou, Michael D. Tyka, David T. Ho, Elizabeth Yankovsky, Scott Bachman, Thomas Nicholas, Alicia R. Karspeck, Matthew C. Long
To limit global warming to below 2 °C by 2100, CO2 removal from the atmosphere will be necessary. One promising method for achieving CO2 removal at scale is ocean alkalinity enhancement (OAE), but there are challenges with incomplete air–sea CO2 equilibration, which reduces the efficiency of carbon removal. Here, we present global maps of OAE efficiency, and assess the seasonal variation in efficiency. We find that the equilibration kinetics have two characteristic timescales: rapid surface equilibration followed by a slower second phase, which represents the re-emergence of excess alkalinity that was initially subducted. These kinetics vary considerably with latitude and the season of alkalinity release, which are critical factors for determining the placement of potential OAE deployments. Additionally, we quantify the spatial and temporal scales of the induced CO2 uptake, which helps identify the requirements for modelling OAE in regional ocean models. Ocean alkalinity enhancement (OAE) is seen as a promising method for CO2 removal as it alters the surface carbon equilibrium, driving the transfer of CO2 into the ocean. Here the authors computationally map the spatiotemporal efficiency of OAE to identify locations and timing for optimal OAE deployment.
{"title":"Mapping the global variation in the efficiency of ocean alkalinity enhancement for carbon dioxide removal","authors":"Mengyang Zhou, Michael D. Tyka, David T. Ho, Elizabeth Yankovsky, Scott Bachman, Thomas Nicholas, Alicia R. Karspeck, Matthew C. Long","doi":"10.1038/s41558-024-02179-9","DOIUrl":"10.1038/s41558-024-02179-9","url":null,"abstract":"To limit global warming to below 2 °C by 2100, CO2 removal from the atmosphere will be necessary. One promising method for achieving CO2 removal at scale is ocean alkalinity enhancement (OAE), but there are challenges with incomplete air–sea CO2 equilibration, which reduces the efficiency of carbon removal. Here, we present global maps of OAE efficiency, and assess the seasonal variation in efficiency. We find that the equilibration kinetics have two characteristic timescales: rapid surface equilibration followed by a slower second phase, which represents the re-emergence of excess alkalinity that was initially subducted. These kinetics vary considerably with latitude and the season of alkalinity release, which are critical factors for determining the placement of potential OAE deployments. Additionally, we quantify the spatial and temporal scales of the induced CO2 uptake, which helps identify the requirements for modelling OAE in regional ocean models. Ocean alkalinity enhancement (OAE) is seen as a promising method for CO2 removal as it alters the surface carbon equilibrium, driving the transfer of CO2 into the ocean. Here the authors computationally map the spatiotemporal efficiency of OAE to identify locations and timing for optimal OAE deployment.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"15 1","pages":"59-65"},"PeriodicalIF":29.6,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1038/s41558-024-02182-0
Michael Dietze, Ethan P. White, Antoinette Abeyta, Carl Boettiger, Nievita Bueno Watts, Cayelan C. Carey, Rebecca Chaplin-Kramer, Ryan E. Emanuel, S. K. Morgan Ernest, Renato J. Figueiredo, Michael D. Gerst, Leah R. Johnson, Melissa A. Kenney, Jason S. McLachlan, Ioannis Ch. Paschalidis, Jody A. Peters, Christine R. Rollinson, Juniper Simonis, Kira Sullivan-Wiley, R. Quinn Thomas, Glenda M. Wardle, Alyssa M. Willson, Jacob Zwart
A substantial increase in predictive capacity is needed to anticipate and mitigate the widespread change in ecosystems and their services in the face of climate and biodiversity crises. In this era of accelerating change, we cannot rely on historical patterns or focus primarily on long-term projections that extend decades into the future. In this Perspective, we discuss the potential of near-term (daily to decadal) iterative ecological forecasting to improve decision-making on actionable time frames. We summarize the current status of ecological forecasting and focus on how to scale up, build on lessons from weather forecasting, and take advantage of recent technological advances. We also highlight the need to focus on equity, workforce development, and broad cross-disciplinary and non-academic partnerships. In this Perspective, the authors discuss the current status of ecological forecasting research, its role in helping to address the climate and biodiversity crises facing society and potential future directions, with a central focus on how to scale up ecological forecasting capabilities.
{"title":"Near-term ecological forecasting for climate change action","authors":"Michael Dietze, Ethan P. White, Antoinette Abeyta, Carl Boettiger, Nievita Bueno Watts, Cayelan C. Carey, Rebecca Chaplin-Kramer, Ryan E. Emanuel, S. K. Morgan Ernest, Renato J. Figueiredo, Michael D. Gerst, Leah R. Johnson, Melissa A. Kenney, Jason S. McLachlan, Ioannis Ch. Paschalidis, Jody A. Peters, Christine R. Rollinson, Juniper Simonis, Kira Sullivan-Wiley, R. Quinn Thomas, Glenda M. Wardle, Alyssa M. Willson, Jacob Zwart","doi":"10.1038/s41558-024-02182-0","DOIUrl":"10.1038/s41558-024-02182-0","url":null,"abstract":"A substantial increase in predictive capacity is needed to anticipate and mitigate the widespread change in ecosystems and their services in the face of climate and biodiversity crises. In this era of accelerating change, we cannot rely on historical patterns or focus primarily on long-term projections that extend decades into the future. In this Perspective, we discuss the potential of near-term (daily to decadal) iterative ecological forecasting to improve decision-making on actionable time frames. We summarize the current status of ecological forecasting and focus on how to scale up, build on lessons from weather forecasting, and take advantage of recent technological advances. We also highlight the need to focus on equity, workforce development, and broad cross-disciplinary and non-academic partnerships. In this Perspective, the authors discuss the current status of ecological forecasting research, its role in helping to address the climate and biodiversity crises facing society and potential future directions, with a central focus on how to scale up ecological forecasting capabilities.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"14 12","pages":"1236-1244"},"PeriodicalIF":29.6,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1038/s41558-024-02135-7
Darren Pilcher
Ocean alkalinity enhancement is a commonly touted method for marine carbon dioxide removal but many questions remain, including its capacity for large-scale carbon removal. Computer models have now been used to map the timescales and efficiency of carbon removal at global scale, revealing important regional differences.
{"title":"Mapping oceanic carbon potential","authors":"Darren Pilcher","doi":"10.1038/s41558-024-02135-7","DOIUrl":"10.1038/s41558-024-02135-7","url":null,"abstract":"Ocean alkalinity enhancement is a commonly touted method for marine carbon dioxide removal but many questions remain, including its capacity for large-scale carbon removal. Computer models have now been used to map the timescales and efficiency of carbon removal at global scale, revealing important regional differences.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"15 1","pages":"16-17"},"PeriodicalIF":29.6,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1038/s41558-024-02184-y
Aspirations for a just society can motivate individuals to engage in climate action; however, public awareness of climate justice remains low, and the extent of injustice within the climate crisis is often underestimated.
{"title":"Perceived climate justice","authors":"","doi":"10.1038/s41558-024-02184-y","DOIUrl":"10.1038/s41558-024-02184-y","url":null,"abstract":"Aspirations for a just society can motivate individuals to engage in climate action; however, public awareness of climate justice remains low, and the extent of injustice within the climate crisis is often underestimated.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"14 11","pages":"1107-1107"},"PeriodicalIF":29.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41558-024-02184-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1038/s41558-024-02189-7
As attribution studies evolve in complexity and become more present in public discourse, care is needed to ensure that the associated uncertainties and relevant contexts remain clear.
{"title":"Advances in attribution","authors":"","doi":"10.1038/s41558-024-02189-7","DOIUrl":"10.1038/s41558-024-02189-7","url":null,"abstract":"As attribution studies evolve in complexity and become more present in public discourse, care is needed to ensure that the associated uncertainties and relevant contexts remain clear.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"14 11","pages":"1108-1108"},"PeriodicalIF":29.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41558-024-02189-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1038/s41558-024-02186-w
Lingxiao Yan
{"title":"Public attention and the Amazon","authors":"Lingxiao Yan","doi":"10.1038/s41558-024-02186-w","DOIUrl":"10.1038/s41558-024-02186-w","url":null,"abstract":"","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"14 11","pages":"1116-1116"},"PeriodicalIF":29.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}