Pub Date : 2024-07-30DOI: 10.1038/s41558-024-02078-z
Joseph L.-H. Tsui, Rosario Evans Pena, Monika Moir, Rhys P. D. Inward, Eduan Wilkinson, James Emmanuel San, Jenicca Poongavanan, Sumali Bajaj, Bernardo Gutierrez, Abhishek Dasgupta, Tulio de Oliveira, Moritz U. G. Kraemer, Houriiyah Tegally, Prathyush Sambaturu
Health consequences arising from climate change are threatening to offset advances made to reduce the damage of infectious diseases, which vary by region and the resilience of the local health system. Here we discuss how climate change-related migrations and infectious disease burden are linked through various processes, such as the expansion of pathogens into non-endemic areas, overcrowding in new informal settlements, and the increased proximity of disease vectors and susceptible human populations. Countries that are predicted to have the highest burden are those that have made the least contribution to climate change. Further studies are needed to generate robust evidence on the potential consequences of climate change-related human movements and migration, as well as identify effective and bespoke short- and long-term interventions. Both extreme weather events and long-term gradual changes drive human migration, which could aggravate the burden of infectious diseases. This Perspective examines the complex interplay between climate change, migration and infectious diseases then advocates for context-specific adaptations.
{"title":"Impacts of climate change-related human migration on infectious diseases","authors":"Joseph L.-H. Tsui, Rosario Evans Pena, Monika Moir, Rhys P. D. Inward, Eduan Wilkinson, James Emmanuel San, Jenicca Poongavanan, Sumali Bajaj, Bernardo Gutierrez, Abhishek Dasgupta, Tulio de Oliveira, Moritz U. G. Kraemer, Houriiyah Tegally, Prathyush Sambaturu","doi":"10.1038/s41558-024-02078-z","DOIUrl":"10.1038/s41558-024-02078-z","url":null,"abstract":"Health consequences arising from climate change are threatening to offset advances made to reduce the damage of infectious diseases, which vary by region and the resilience of the local health system. Here we discuss how climate change-related migrations and infectious disease burden are linked through various processes, such as the expansion of pathogens into non-endemic areas, overcrowding in new informal settlements, and the increased proximity of disease vectors and susceptible human populations. Countries that are predicted to have the highest burden are those that have made the least contribution to climate change. Further studies are needed to generate robust evidence on the potential consequences of climate change-related human movements and migration, as well as identify effective and bespoke short- and long-term interventions. Both extreme weather events and long-term gradual changes drive human migration, which could aggravate the burden of infectious diseases. This Perspective examines the complex interplay between climate change, migration and infectious diseases then advocates for context-specific adaptations.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"14 8","pages":"793-802"},"PeriodicalIF":29.6,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29DOI: 10.1038/s41558-024-02064-5
Michael M. Webster, Daniel E. Schindler
Reef-building corals are declining globally, putting important ecosystem services at risk. Here we discuss the potential risks and benefits of coral ecological replacement, in which new species are introduced to replace the functional roles of species that have declined or disappeared.
{"title":"Ecological replacement for reef-building corals","authors":"Michael M. Webster, Daniel E. Schindler","doi":"10.1038/s41558-024-02064-5","DOIUrl":"10.1038/s41558-024-02064-5","url":null,"abstract":"Reef-building corals are declining globally, putting important ecosystem services at risk. Here we discuss the potential risks and benefits of coral ecological replacement, in which new species are introduced to replace the functional roles of species that have declined or disappeared.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"14 8","pages":"776-778"},"PeriodicalIF":29.6,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29DOI: 10.1038/s41558-024-02063-6
Robert P. Streit, Tiffany H. Morrison, David R. Bellwood
Climate impacts are triggering a host of novel bio- and geoengineering interventions to save coral reefs. This Comment challenges heroic scientific assumptions and advocates for a more systemic, evidence-based approach to caring for coral reefs.
{"title":"Coral reefs deserve evidence-based management not heroic interference","authors":"Robert P. Streit, Tiffany H. Morrison, David R. Bellwood","doi":"10.1038/s41558-024-02063-6","DOIUrl":"10.1038/s41558-024-02063-6","url":null,"abstract":"Climate impacts are triggering a host of novel bio- and geoengineering interventions to save coral reefs. This Comment challenges heroic scientific assumptions and advocates for a more systemic, evidence-based approach to caring for coral reefs.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"14 8","pages":"773-775"},"PeriodicalIF":29.6,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29DOI: 10.1038/s41558-024-02079-y
Timothy Rice McClanahan
Coral reefs are at risk from ongoing climate change. We can best serve the reefs by invoking realistic scenarios, empiricism, artificial intelligence and falsification to self-correct the current scientific limits that hinder climate science predictions, communication and policies.
{"title":"Reconsidering and rescaling climate change predictions for coral reefs","authors":"Timothy Rice McClanahan","doi":"10.1038/s41558-024-02079-y","DOIUrl":"10.1038/s41558-024-02079-y","url":null,"abstract":"Coral reefs are at risk from ongoing climate change. We can best serve the reefs by invoking realistic scenarios, empiricism, artificial intelligence and falsification to self-correct the current scientific limits that hinder climate science predictions, communication and policies.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"14 8","pages":"779-781"},"PeriodicalIF":29.6,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1038/s41558-024-02076-1
Analysis of high-resolution climate models reveals a substantial reduction in global oceanic kinetic energy under global warming. This reduction of oceanic kinetic energy is mainly due to weakened mesoscale eddies in the deep ocean.
{"title":"Deep-ocean currents weaken in a warming climate","authors":"","doi":"10.1038/s41558-024-02076-1","DOIUrl":"10.1038/s41558-024-02076-1","url":null,"abstract":"Analysis of high-resolution climate models reveals a substantial reduction in global oceanic kinetic energy under global warming. This reduction of oceanic kinetic energy is mainly due to weakened mesoscale eddies in the deep ocean.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"14 9","pages":"905-906"},"PeriodicalIF":29.6,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1038/s41558-024-02057-4
Craig R. See, Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Marguerite Mauritz, Christina Biasi, Stef Bokhorst, Julia Boike, M. Syndonia Bret-Harte, Gerardo Celis, Namyi Chae, Torben R. Christensen, Sara June Murner (Connon), Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Craig A. Emmerton, Eugénie S. Euskirchen, Mathias Göckede, Achim Grelle, Liam Heffernan, Manuel Helbig, David Holl, Elyn Humphreys, Hiroki Iwata, Järvi Järveoja, Hideki Kobayashi, John Kochendorfer, Pasi Kolari, Ayumi Kotani, Lars Kutzbach, Min Jung Kwon, Emma R. Lathrop, Efrén López-Blanco, Ivan Mammarella, Maija E. Marushchak, Mikhail Mastepanov, Yojiro Matsuura, Lutz Merbold, Gesa Meyer, Christina Minions, Mats B. Nilsson, Julia Nojeim, Steven F. Oberbauer, David Olefeldt, Sang-Jong Park, Frans-Jan W. Parmentier, Matthias Peichl, Darcy Peter, Roman Petrov, Rafael Poyatos, Anatoly S. Prokushkin, William Quinton, Heidi Rodenhizer, Torsten Sachs, Kathleen Savage, Christopher Schulze, Sofie Sjögersten, Oliver Sonnentag, Vincent L. St. Louis, Margaret S. Torn, Eeva-Stiina Tuittila, Masahito Ueyama, Andrej Varlagin, Carolina Voigt, Jennifer D. Watts, Donatella Zona, Viacheslav I. Zyryanov, Edward A. G. Schuur
Tundra and boreal ecosystems encompass the northern circumpolar permafrost region and are experiencing rapid environmental change with important implications for the global carbon (C) budget. We analysed multi-decadal time series containing 302 annual estimates of carbon dioxide (CO2) flux across 70 permafrost and non-permafrost ecosystems, and 672 estimates of summer CO2 flux across 181 ecosystems. We find an increase in the annual CO2 sink across non-permafrost ecosystems but not permafrost ecosystems, despite similar increases in summer uptake. Thus, recent non-growing-season CO2 losses have substantially impacted the CO2 balance of permafrost ecosystems. Furthermore, analysis of interannual variability reveals warmer summers amplify the C cycle (increase productivity and respiration) at putatively nitrogen-limited sites and at sites less reliant on summer precipitation for water use. Our findings suggest that water and nutrient availability will be important predictors of the C-cycle response of these ecosystems to future warming. The future of carbon dynamics in the northern high latitudes is uncertain yet represents an important potential feedback under climate change. This study uses a comprehensive observational dataset to show an increasing carbon sink in non-permafrost systems; in permafrost systems uptake was offset by loss.
{"title":"Decadal increases in carbon uptake offset by respiratory losses across northern permafrost ecosystems","authors":"Craig R. See, Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Marguerite Mauritz, Christina Biasi, Stef Bokhorst, Julia Boike, M. Syndonia Bret-Harte, Gerardo Celis, Namyi Chae, Torben R. Christensen, Sara June Murner (Connon), Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Craig A. Emmerton, Eugénie S. Euskirchen, Mathias Göckede, Achim Grelle, Liam Heffernan, Manuel Helbig, David Holl, Elyn Humphreys, Hiroki Iwata, Järvi Järveoja, Hideki Kobayashi, John Kochendorfer, Pasi Kolari, Ayumi Kotani, Lars Kutzbach, Min Jung Kwon, Emma R. Lathrop, Efrén López-Blanco, Ivan Mammarella, Maija E. Marushchak, Mikhail Mastepanov, Yojiro Matsuura, Lutz Merbold, Gesa Meyer, Christina Minions, Mats B. Nilsson, Julia Nojeim, Steven F. Oberbauer, David Olefeldt, Sang-Jong Park, Frans-Jan W. Parmentier, Matthias Peichl, Darcy Peter, Roman Petrov, Rafael Poyatos, Anatoly S. Prokushkin, William Quinton, Heidi Rodenhizer, Torsten Sachs, Kathleen Savage, Christopher Schulze, Sofie Sjögersten, Oliver Sonnentag, Vincent L. St. Louis, Margaret S. Torn, Eeva-Stiina Tuittila, Masahito Ueyama, Andrej Varlagin, Carolina Voigt, Jennifer D. Watts, Donatella Zona, Viacheslav I. Zyryanov, Edward A. G. Schuur","doi":"10.1038/s41558-024-02057-4","DOIUrl":"10.1038/s41558-024-02057-4","url":null,"abstract":"Tundra and boreal ecosystems encompass the northern circumpolar permafrost region and are experiencing rapid environmental change with important implications for the global carbon (C) budget. We analysed multi-decadal time series containing 302 annual estimates of carbon dioxide (CO2) flux across 70 permafrost and non-permafrost ecosystems, and 672 estimates of summer CO2 flux across 181 ecosystems. We find an increase in the annual CO2 sink across non-permafrost ecosystems but not permafrost ecosystems, despite similar increases in summer uptake. Thus, recent non-growing-season CO2 losses have substantially impacted the CO2 balance of permafrost ecosystems. Furthermore, analysis of interannual variability reveals warmer summers amplify the C cycle (increase productivity and respiration) at putatively nitrogen-limited sites and at sites less reliant on summer precipitation for water use. Our findings suggest that water and nutrient availability will be important predictors of the C-cycle response of these ecosystems to future warming. The future of carbon dynamics in the northern high latitudes is uncertain yet represents an important potential feedback under climate change. This study uses a comprehensive observational dataset to show an increasing carbon sink in non-permafrost systems; in permafrost systems uptake was offset by loss.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"14 8","pages":"853-862"},"PeriodicalIF":29.6,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41558-024-02057-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1038/s41558-024-02075-2
Shengpeng Wang, Zhao Jing, Lixin Wu, Shantong Sun, Zhaohui Chen, Xiaohui Ma, Bolan Gan
The ocean is a magnificent reservoir of kinetic energy possessed by currents at diverse spatio-temporal scales. These currents transport heat and material, regulating the regional and global climate. It is generally thought that large-scale ocean circulations should become more energetic under global warming, especially in the ocean’s upper layer. However, using high-resolution global climate simulations, here we demonstrate that the total ocean kinetic energy is projected to be significantly reduced in a warming climate, despite overall acceleration of large-scale ocean circulations in the upper layer. This reduction is primarily attributed to weakened ocean mesoscale eddies in the deep ocean. Enhanced vertical stratification under global warming reduces the available potential energy stored in large-scale ocean circulations, diminishing its conversion into eddy kinetic energy. Our findings reveal a more quiescent deep ocean under global warming and suggest a crucial role of mesoscale eddies in determining the anthropogenic change of total ocean kinetic energy. Studies show climate change will alter the ocean, with increased surface layer kinetic energy. This work, using full ocean depth and high-resolution projections with a high-emission scenario, shows an overall ocean kinetic energy decrease due to a calmer deep ocean with weaker mesoscale eddies.
{"title":"A more quiescent deep ocean under global warming","authors":"Shengpeng Wang, Zhao Jing, Lixin Wu, Shantong Sun, Zhaohui Chen, Xiaohui Ma, Bolan Gan","doi":"10.1038/s41558-024-02075-2","DOIUrl":"10.1038/s41558-024-02075-2","url":null,"abstract":"The ocean is a magnificent reservoir of kinetic energy possessed by currents at diverse spatio-temporal scales. These currents transport heat and material, regulating the regional and global climate. It is generally thought that large-scale ocean circulations should become more energetic under global warming, especially in the ocean’s upper layer. However, using high-resolution global climate simulations, here we demonstrate that the total ocean kinetic energy is projected to be significantly reduced in a warming climate, despite overall acceleration of large-scale ocean circulations in the upper layer. This reduction is primarily attributed to weakened ocean mesoscale eddies in the deep ocean. Enhanced vertical stratification under global warming reduces the available potential energy stored in large-scale ocean circulations, diminishing its conversion into eddy kinetic energy. Our findings reveal a more quiescent deep ocean under global warming and suggest a crucial role of mesoscale eddies in determining the anthropogenic change of total ocean kinetic energy. Studies show climate change will alter the ocean, with increased surface layer kinetic energy. This work, using full ocean depth and high-resolution projections with a high-emission scenario, shows an overall ocean kinetic energy decrease due to a calmer deep ocean with weaker mesoscale eddies.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"14 9","pages":"961-967"},"PeriodicalIF":29.6,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41558-024-02075-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1038/s41558-024-02059-2
John Pedlar
Climate change threatens the role of forests as long-term carbon sinks. Tree planting programmes that incorporate assisted migration of tree species and seed sources can help to mitigate this impact.
{"title":"Tree movements promote carbon sink","authors":"John Pedlar","doi":"10.1038/s41558-024-02059-2","DOIUrl":"10.1038/s41558-024-02059-2","url":null,"abstract":"Climate change threatens the role of forests as long-term carbon sinks. Tree planting programmes that incorporate assisted migration of tree species and seed sources can help to mitigate this impact.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"14 8","pages":"785-786"},"PeriodicalIF":29.6,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1038/s41558-024-02080-5
Debojyoti Chakraborty, Albert Ciceu, Dalibor Ballian, Marta Benito Garzón, Andreas Bolte, Gregor Bozic, Rafael Buchacher, Jaroslav Čepl, Eva Cremer, Alexis Ducousso, Julian Gaviria, Jan Peter George, André Hardtke, Mladen Ivankovic, Marcin Klisz, Jan Kowalczyk, Antoine Kremer, Milan Lstibůrek, Roman Longauer, Georgeta Mihai, László Nagy, Krasimira Petkova, Emil Popov, Randolf Schirmer, Tore Skrøppa, Thomas Mørtvedt Solvin, Arne Steffenrem, Jan Stejskal, Srdjan Stojnic, Katharina Volmer, Silvio Schueler
Climate change threatens the role of European forests as a long-term carbon sink. Assisted migration aims to increase the resilience of forest tree populations to climate change, using species-specific climatic limits and local adaptations through transferring seed provenances. We modelled assisted migration scenarios for seven main European tree species and analysed the effects of species and seed provenance selection, accounting for environmental and genetic variations, on the annual above-ground carbon sink of regrowing juvenile forests. To increase forest resilience, coniferous trees need to be replaced by deciduous species over large parts of their distribution. If local seed provenances are used, this would result in a decrease of the current carbon sink (40 TgC yr−1) by 34–41% by 2061–2080. However, if seed provenances adapted to future climates are used, current sinks could be maintained or even increased to 48–60 TgC yr−1. Assisted migration is the artificial movement of species and populations to increase forest resilience. Here the authors model how targeted assisted migration can preserve or enhance the European forest carbon sink under future climate scenarios.
{"title":"Assisted tree migration can preserve the European forest carbon sink under climate change","authors":"Debojyoti Chakraborty, Albert Ciceu, Dalibor Ballian, Marta Benito Garzón, Andreas Bolte, Gregor Bozic, Rafael Buchacher, Jaroslav Čepl, Eva Cremer, Alexis Ducousso, Julian Gaviria, Jan Peter George, André Hardtke, Mladen Ivankovic, Marcin Klisz, Jan Kowalczyk, Antoine Kremer, Milan Lstibůrek, Roman Longauer, Georgeta Mihai, László Nagy, Krasimira Petkova, Emil Popov, Randolf Schirmer, Tore Skrøppa, Thomas Mørtvedt Solvin, Arne Steffenrem, Jan Stejskal, Srdjan Stojnic, Katharina Volmer, Silvio Schueler","doi":"10.1038/s41558-024-02080-5","DOIUrl":"10.1038/s41558-024-02080-5","url":null,"abstract":"Climate change threatens the role of European forests as a long-term carbon sink. Assisted migration aims to increase the resilience of forest tree populations to climate change, using species-specific climatic limits and local adaptations through transferring seed provenances. We modelled assisted migration scenarios for seven main European tree species and analysed the effects of species and seed provenance selection, accounting for environmental and genetic variations, on the annual above-ground carbon sink of regrowing juvenile forests. To increase forest resilience, coniferous trees need to be replaced by deciduous species over large parts of their distribution. If local seed provenances are used, this would result in a decrease of the current carbon sink (40 TgC yr−1) by 34–41% by 2061–2080. However, if seed provenances adapted to future climates are used, current sinks could be maintained or even increased to 48–60 TgC yr−1. Assisted migration is the artificial movement of species and populations to increase forest resilience. Here the authors model how targeted assisted migration can preserve or enhance the European forest carbon sink under future climate scenarios.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"14 8","pages":"845-852"},"PeriodicalIF":29.6,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41558-024-02080-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1038/s41558-024-02068-1
Jonah Busch, Jacob J. Bukoski, Susan C. Cook-Patton, Bronson Griscom, David Kaczan, Matthew D. Potts, Yuanyuan Yi, Jeffrey R. Vincent
Mitigating climate change cost-effectively requires identifying least-cost-per-ton GHG abatement methods. Here, we estimate and map GHG abatement cost (US$ per tCO2) for two common reforestation methods: natural regeneration and plantations. We do so by producing and integrating new maps of implementation costs and opportunity costs of reforestation, likely plantation genus and carbon accumulation by means of natural regeneration and plantations, accounting for storage in harvested wood products. We find natural regeneration (46%) and plantations (54%) would each have lower abatement cost across about half the area considered suitable for reforestation of 138 low- and middle-income countries. Using the more cost-effective method at each location, the 30 year, time-discounted abatement potential of reforestation below US$50 per tCO2 is 31.4 GtCO2 (24.2–34.3 GtCO2 below US$20–100 per tCO2)—44% more than natural regeneration alone or 39% more than plantations alone. We find that reforestation offers 10.3 (2.8) times more abatement below US$20 per tCO2 (US$50 per tCO2) than the most recent IPCC estimate. It is important to understand the cost-effectiveness of natural regeneration and plantations, which are common reforestation methods for mitigation. The authors estimate and map abatement costs for the two approaches across low- and mid-income countries, helping to guide reforestation initiatives.
{"title":"Cost-effectiveness of natural forest regeneration and plantations for climate mitigation","authors":"Jonah Busch, Jacob J. Bukoski, Susan C. Cook-Patton, Bronson Griscom, David Kaczan, Matthew D. Potts, Yuanyuan Yi, Jeffrey R. Vincent","doi":"10.1038/s41558-024-02068-1","DOIUrl":"10.1038/s41558-024-02068-1","url":null,"abstract":"Mitigating climate change cost-effectively requires identifying least-cost-per-ton GHG abatement methods. Here, we estimate and map GHG abatement cost (US$ per tCO2) for two common reforestation methods: natural regeneration and plantations. We do so by producing and integrating new maps of implementation costs and opportunity costs of reforestation, likely plantation genus and carbon accumulation by means of natural regeneration and plantations, accounting for storage in harvested wood products. We find natural regeneration (46%) and plantations (54%) would each have lower abatement cost across about half the area considered suitable for reforestation of 138 low- and middle-income countries. Using the more cost-effective method at each location, the 30 year, time-discounted abatement potential of reforestation below US$50 per tCO2 is 31.4 GtCO2 (24.2–34.3 GtCO2 below US$20–100 per tCO2)—44% more than natural regeneration alone or 39% more than plantations alone. We find that reforestation offers 10.3 (2.8) times more abatement below US$20 per tCO2 (US$50 per tCO2) than the most recent IPCC estimate. It is important to understand the cost-effectiveness of natural regeneration and plantations, which are common reforestation methods for mitigation. The authors estimate and map abatement costs for the two approaches across low- and mid-income countries, helping to guide reforestation initiatives.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"14 9","pages":"996-1002"},"PeriodicalIF":29.6,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41558-024-02068-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}