首页 > 最新文献

Nature Methods最新文献

英文 中文
The past and future of functional connectomics 功能连接组学的过去和未来。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-08 DOI: 10.1038/s41592-025-02971-1
R. Clay Reid
Functional connectomics is a new approach, involving calcium imaging of neuronal activity followed by correlated electron microscopy connectomics of the same neurons, that relates connections made by neurons to their in vivo function. I believe that this combined approach for studying structure and function will continue with ever-larger networks, including entire nervous systems.
功能连接组学是一种新的方法,涉及神经元活动的钙成像,然后是相同神经元的相关电子显微镜连接组学,将神经元建立的连接与其体内功能联系起来。我相信这种研究结构和功能的结合方法将在更大的网络上继续下去,包括整个神经系统。
{"title":"The past and future of functional connectomics","authors":"R. Clay Reid","doi":"10.1038/s41592-025-02971-1","DOIUrl":"10.1038/s41592-025-02971-1","url":null,"abstract":"Functional connectomics is a new approach, involving calcium imaging of neuronal activity followed by correlated electron microscopy connectomics of the same neurons, that relates connections made by neurons to their in vivo function. I believe that this combined approach for studying structure and function will continue with ever-larger networks, including entire nervous systems.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 12","pages":"2479-2480"},"PeriodicalIF":32.1,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145708771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inferring cell differentiation maps from lineage tracing data. 从谱系追踪数据推断细胞分化图。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-08 DOI: 10.1038/s41592-025-02903-z
Palash Sashittal, Richard Y Zhang, Benjamin K Law, Henri Schmidt, Alexander Strzalkowski, Adriano Bolondi, Michelle M Chan, Benjamin J Raphael

During development, cells differentiate through a hierarchy of increasingly restricted cell types, a process that is summarized by a cell differentiation map. Recent technologies profile lineages and cell types at scale, but existing methods to infer cell differentiation maps from these data rely on heuristic models with restrictive assumptions about the developmental process. Here we introduce a quantitative framework to evaluate cell differentiation maps and develop an algorithm, called Carta, that infers an optimal differentiation map from single-cell lineage tracing data. The key insight in Carta is to balance the tradeoff between the complexity of the map and the number of unobserved cell type transitions on the lineage tree. We show that, in models of mammalian trunk development and mouse hematopoiesis, Carta identifies important features of development that are not revealed by other methods, including convergent differentiation of cell types, progenitor differentiation dynamics and new intermediate progenitors.

在发育过程中,细胞通过越来越受限制的细胞类型分层分化,这一过程可以通过细胞分化图进行总结。最近的技术在规模上描绘谱系和细胞类型,但是现有的方法从这些数据推断细胞分化图依赖于启发式模型和对发育过程的限制性假设。在这里,我们引入了一个定量框架来评估细胞分化图,并开发了一种称为Carta的算法,该算法可以从单细胞谱系追踪数据中推断出最佳分化图。Carta的关键观点是在图谱的复杂性和谱系树上未观察到的细胞类型转换的数量之间进行权衡。我们发现,在哺乳动物躯干发育和小鼠造血模型中,Carta发现了其他方法未揭示的重要发育特征,包括细胞类型的趋同分化、祖细胞分化动力学和新的中间祖细胞。
{"title":"Inferring cell differentiation maps from lineage tracing data.","authors":"Palash Sashittal, Richard Y Zhang, Benjamin K Law, Henri Schmidt, Alexander Strzalkowski, Adriano Bolondi, Michelle M Chan, Benjamin J Raphael","doi":"10.1038/s41592-025-02903-z","DOIUrl":"10.1038/s41592-025-02903-z","url":null,"abstract":"<p><p>During development, cells differentiate through a hierarchy of increasingly restricted cell types, a process that is summarized by a cell differentiation map. Recent technologies profile lineages and cell types at scale, but existing methods to infer cell differentiation maps from these data rely on heuristic models with restrictive assumptions about the developmental process. Here we introduce a quantitative framework to evaluate cell differentiation maps and develop an algorithm, called Carta, that infers an optimal differentiation map from single-cell lineage tracing data. The key insight in Carta is to balance the tradeoff between the complexity of the map and the number of unobserved cell type transitions on the lineage tree. We show that, in models of mammalian trunk development and mouse hematopoiesis, Carta identifies important features of development that are not revealed by other methods, including convergent differentiation of cell types, progenitor differentiation dynamics and new intermediate progenitors.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":32.1,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145708637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Template-free antibody design 无模板抗体设计。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-08 DOI: 10.1038/s41592-025-02987-7
Madhura Mukhopadhyay
{"title":"Template-free antibody design","authors":"Madhura Mukhopadhyay","doi":"10.1038/s41592-025-02987-7","DOIUrl":"10.1038/s41592-025-02987-7","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 12","pages":"2499-2499"},"PeriodicalIF":32.1,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145708699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The tunicate Ciona 有囊动物乔娜。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-08 DOI: 10.1038/s41592-025-02936-4
Lionel Christiaen
The ascidian tunicate Ciona, one of the closest relatives of the vertebrates, inhabits shallow temperate waters in the worldwide ocean. A unique combination of simple stereotyped embryogenesis, regulative post-embryonic stages and ecologically relevant diversity makes Ciona a premier model for marine systems life sciences, from cells and molecules to populations and ecosystems.
海鞘被囊动物是脊椎动物的近亲之一,生活在全球海洋的温带浅水区。它独特地结合了简单的定型胚胎发生、可调节的胚胎后阶段和生态相关的多样性,使Ciona成为海洋系统生命科学的首要模型,从细胞和分子到种群和生态系统。
{"title":"The tunicate Ciona","authors":"Lionel Christiaen","doi":"10.1038/s41592-025-02936-4","DOIUrl":"10.1038/s41592-025-02936-4","url":null,"abstract":"The ascidian tunicate Ciona, one of the closest relatives of the vertebrates, inhabits shallow temperate waters in the worldwide ocean. A unique combination of simple stereotyped embryogenesis, regulative post-embryonic stages and ecologically relevant diversity makes Ciona a premier model for marine systems life sciences, from cells and molecules to populations and ecosystems.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 12","pages":"2467-2469"},"PeriodicalIF":32.1,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145708738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CellSAM: a foundation model for cell segmentation CellSAM:细胞分割的基础模型。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-08 DOI: 10.1038/s41592-025-02879-w
Markus Marks, Uriah Israel, Rohit Dilip, Qilin Li, Changhua Yu, Emily Laubscher, Ahamed Iqbal, Elora Pradhan, Ada Ates, Martin Abt, Caitlin Brown, Edward Pao, Shenyi Li, Alexander Pearson-Goulart, Pietro Perona, Georgia Gkioxari, Ross Barnowski, Yisong Yue, David Van Valen
Cells are a fundamental unit of biological organization, and identifying them in imaging data—cell segmentation—is a critical task for various cellular imaging experiments. Although deep learning methods have led to substantial progress on this problem, most models are specialist models that work well for specific domains but cannot be applied across domains or scale well with large amounts of data. Here we present CellSAM, a universal model for cell segmentation that generalizes across diverse cellular imaging data. CellSAM builds on top of the Segment Anything Model (SAM) by developing a prompt engineering approach for mask generation. We train an object detector, CellFinder, to automatically detect cells and prompt SAM to generate segmentations. We show that this approach allows a single model to achieve human-level performance for segmenting images of mammalian cells, yeast and bacteria collected across various imaging modalities. We show that CellSAM has strong zero-shot performance and can be improved with a few examples via few-shot learning. Additionally, we demonstrate how CellSAM can be applied across diverse bioimage analysis workflows. A deployed version of CellSAM is available at https://cellsam.deepcell.org/ . CellSAM uses an object detector, CellFinder, to detect cells and prompt the Segment Anything Model (SAM) to generate segmentations. This universal model achieves human-level performance across a range of bioimaging data encompassing mammalian cells, yeast and bacteria.
细胞是生物组织的基本单位,在成像数据中识别细胞分割是各种细胞成像实验的关键任务。尽管深度学习方法在这个问题上取得了实质性进展,但大多数模型都是专门的模型,它们在特定领域工作得很好,但不能跨领域应用,也不能很好地处理大量数据。在这里,我们提出CellSAM,一个通用的细胞分割模型,概括了不同的细胞成像数据。CellSAM建立在分段任何模型(SAM)之上,通过开发一个快速的工程方法来生成掩模。我们训练了一个对象检测器CellFinder来自动检测细胞并提示SAM生成分割。我们表明,这种方法允许一个单一的模型,以实现人类水平的性能分割图像的哺乳动物细胞,酵母和细菌收集在各种成像方式。我们证明了CellSAM具有很强的零射击性能,并且可以通过少量射击学习来改进。此外,我们展示了CellSAM如何应用于不同的生物图像分析工作流程。CellSAM的部署版本可在https://cellsam.deepcell.org/上获得。
{"title":"CellSAM: a foundation model for cell segmentation","authors":"Markus Marks,&nbsp;Uriah Israel,&nbsp;Rohit Dilip,&nbsp;Qilin Li,&nbsp;Changhua Yu,&nbsp;Emily Laubscher,&nbsp;Ahamed Iqbal,&nbsp;Elora Pradhan,&nbsp;Ada Ates,&nbsp;Martin Abt,&nbsp;Caitlin Brown,&nbsp;Edward Pao,&nbsp;Shenyi Li,&nbsp;Alexander Pearson-Goulart,&nbsp;Pietro Perona,&nbsp;Georgia Gkioxari,&nbsp;Ross Barnowski,&nbsp;Yisong Yue,&nbsp;David Van Valen","doi":"10.1038/s41592-025-02879-w","DOIUrl":"10.1038/s41592-025-02879-w","url":null,"abstract":"Cells are a fundamental unit of biological organization, and identifying them in imaging data—cell segmentation—is a critical task for various cellular imaging experiments. Although deep learning methods have led to substantial progress on this problem, most models are specialist models that work well for specific domains but cannot be applied across domains or scale well with large amounts of data. Here we present CellSAM, a universal model for cell segmentation that generalizes across diverse cellular imaging data. CellSAM builds on top of the Segment Anything Model (SAM) by developing a prompt engineering approach for mask generation. We train an object detector, CellFinder, to automatically detect cells and prompt SAM to generate segmentations. We show that this approach allows a single model to achieve human-level performance for segmenting images of mammalian cells, yeast and bacteria collected across various imaging modalities. We show that CellSAM has strong zero-shot performance and can be improved with a few examples via few-shot learning. Additionally, we demonstrate how CellSAM can be applied across diverse bioimage analysis workflows. A deployed version of CellSAM is available at https://cellsam.deepcell.org/ . CellSAM uses an object detector, CellFinder, to detect cells and prompt the Segment Anything Model (SAM) to generate segmentations. This universal model achieves human-level performance across a range of bioimaging data encompassing mammalian cells, yeast and bacteria.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 12","pages":"2585-2593"},"PeriodicalIF":32.1,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41592-025-02879-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145708578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A PRISM for spatial RNA imaging 用于空间RNA成像的棱镜。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-08 DOI: 10.1038/s41592-025-02985-9
Aparna Anantharaman
{"title":"A PRISM for spatial RNA imaging","authors":"Aparna Anantharaman","doi":"10.1038/s41592-025-02985-9","DOIUrl":"10.1038/s41592-025-02985-9","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 12","pages":"2498-2498"},"PeriodicalIF":32.1,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145708651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TIRTL-seq: heroes with T-SHELL TIRTL-seq:带T-SHELL的英雄。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-08 DOI: 10.1038/s41592-025-02984-w
Mary Melissa Roland, Alok V. Joglekar
TIRTL-seq is an innovative method that allows efficient and cost-effective identification of αβ TCR clones from millions of T cells with the aid of a pairing algorithm called T-SHELL, which provides high accuracy and throughput in sequencing paired TCR clones.
TIRTL-seq是一种创新的方法,可以在T- shell配对算法的帮助下,从数百万个T细胞中高效和经济地鉴定αβ TCR克隆,该算法提供了对配对TCR克隆测序的高精度和高通量。
{"title":"TIRTL-seq: heroes with T-SHELL","authors":"Mary Melissa Roland,&nbsp;Alok V. Joglekar","doi":"10.1038/s41592-025-02984-w","DOIUrl":"10.1038/s41592-025-02984-w","url":null,"abstract":"TIRTL-seq is an innovative method that allows efficient and cost-effective identification of αβ TCR clones from millions of T cells with the aid of a pairing algorithm called T-SHELL, which provides high accuracy and throughput in sequencing paired TCR clones.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"23 1","pages":"16-17"},"PeriodicalIF":32.1,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145708717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Connectomics beyond electron microscopy 电子显微镜之外的连接组学。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-08 DOI: 10.1038/s41592-025-02943-5
Ramin Khajeh, Wei-Chung Allen Lee
Connectomics, the comprehensive mapping of neural circuits at nanoscale resolution, has historically relied on electron microscopy (EM), both transmission (TEM) and scanning (SEM). However, as connectomics scales towards larger brain volumes and whole mammalian brains, substantial technical challenges emerge. Here, we highlight key challenges and advancing approaches that hold promise, particularly those that integrate three-dimensional, multi-resolution and time-resolved imaging to capture both long-range and local wiring, down to supramolecular resolution.
连接组学是纳米级分辨率下神经回路的综合映射,历史上依赖于电子显微镜(EM),包括透射(TEM)和扫描(SEM)。然而,随着连接组学扩展到更大的脑容量和整个哺乳动物的大脑,大量的技术挑战出现了。在这里,我们强调了关键的挑战,并提出了有希望的方法,特别是那些集成三维,多分辨率和时间分辨率成像的方法,以捕获远程和局部布线,直至超分子分辨率。
{"title":"Connectomics beyond electron microscopy","authors":"Ramin Khajeh,&nbsp;Wei-Chung Allen Lee","doi":"10.1038/s41592-025-02943-5","DOIUrl":"10.1038/s41592-025-02943-5","url":null,"abstract":"Connectomics, the comprehensive mapping of neural circuits at nanoscale resolution, has historically relied on electron microscopy (EM), both transmission (TEM) and scanning (SEM). However, as connectomics scales towards larger brain volumes and whole mammalian brains, substantial technical challenges emerge. Here, we highlight key challenges and advancing approaches that hold promise, particularly those that integrate three-dimensional, multi-resolution and time-resolved imaging to capture both long-range and local wiring, down to supramolecular resolution.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 12","pages":"2487-2489"},"PeriodicalIF":32.1,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145708615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein editing 蛋白质编辑。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-08 DOI: 10.1038/s41592-025-02957-z
Lei Tang
Protein editors complement genome editing tools by enabling direct modifications to protein molecules.
蛋白质编辑器通过直接修改蛋白质分子来补充基因组编辑工具。
{"title":"Protein editing","authors":"Lei Tang","doi":"10.1038/s41592-025-02957-z","DOIUrl":"10.1038/s41592-025-02957-z","url":null,"abstract":"Protein editors complement genome editing tools by enabling direct modifications to protein molecules.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 12","pages":"2496-2496"},"PeriodicalIF":32.1,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145708694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The virtual cell 虚拟单元。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-08 DOI: 10.1038/s41592-025-02951-5
Lin Tang
Virtual cells based on artificial intelligence models are on the horizon
基于人工智能模型的虚拟细胞即将出现
{"title":"The virtual cell","authors":"Lin Tang","doi":"10.1038/s41592-025-02951-5","DOIUrl":"10.1038/s41592-025-02951-5","url":null,"abstract":"Virtual cells based on artificial intelligence models are on the horizon","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 12","pages":"2493-2493"},"PeriodicalIF":32.1,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145708763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Methods
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1