首页 > 最新文献

Nature Methods最新文献

英文 中文
Multiplexing cortical brain organoids for the longitudinal dissection of developmental traits at single-cell resolution 多路脑皮质类器官在单细胞分辨率纵向解剖发育特征。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-09 DOI: 10.1038/s41592-024-02555-5
Nicolò Caporale, Davide Castaldi, Marco Tullio Rigoli, Cristina Cheroni, Alessia Valenti, Sarah Stucchi, Manuel Lessi, Davide Bulgheresi, Sebastiano Trattaro, Martina Pezzali, Alessandro Vitriolo, Alejandro Lopez-Tobon, Matteo Bonfanti, Dario Ricca, Katharina T. Schmid, Matthias Heinig, Fabian J. Theis, Carlo Emanuele Villa, Giuseppe Testa
Dissecting human neurobiology at high resolution and with mechanistic precision requires a major leap in scalability, given the need for experimental designs that include multiple individuals and, prospectively, population cohorts. To lay the foundation for this, we have developed and benchmarked complementary strategies to multiplex brain organoids by pooling cells from different pluripotent stem cell (PSC) lines either during organoid generation (mosaic models) or before single-cell RNA sequencing (scRNA-seq) library preparation (downstream multiplexing). We have also developed a new computational method, SCanSNP, and a consensus call to deconvolve cell identities, overcoming current criticalities in doublets and low-quality cell identification. We validated both multiplexing methods for charting neurodevelopmental trajectories at high resolution, thus linking specific individuals’ trajectories to genetic variation. Finally, we modeled their scalability across different multiplexing combinations and showed that mosaic organoids represent an enabling method for high-throughput settings. Together, this multiplexing suite of experimental and computational methods provides a highly scalable resource for brain disease and neurodiversity modeling. This paper develops two approaches for multiplexing cortical organoids and SCanSNP, a method for deconvolving cell identities, to trace neurodevelopmental trajectories at scale.
考虑到实验设计需要包括多个个体和潜在的人群群体,以高分辨率和机械精度解剖人类神经生物学需要可扩展性的重大飞跃。为了奠定这一基础,我们通过在类器官生成(马赛克模型)或单细胞RNA测序(scRNA-seq)文库制备(下游多路复用)期间汇集来自不同多能干细胞(PSC)系的细胞,开发并对多种脑类器官的互补策略进行基准测试。我们还开发了一种新的计算方法,SCanSNP,并一致呼吁反卷积细胞身份,克服目前在双重和低质量细胞鉴定中的临界。我们验证了这两种多路复用方法以高分辨率绘制神经发育轨迹,从而将特定个体的轨迹与遗传变异联系起来。最后,我们模拟了它们在不同多路复用组合中的可扩展性,并表明马赛克类器官代表了高通量设置的使能方法。总之,这套实验和计算方法的多路复用套件为脑部疾病和神经多样性建模提供了高度可扩展的资源。
{"title":"Multiplexing cortical brain organoids for the longitudinal dissection of developmental traits at single-cell resolution","authors":"Nicolò Caporale, Davide Castaldi, Marco Tullio Rigoli, Cristina Cheroni, Alessia Valenti, Sarah Stucchi, Manuel Lessi, Davide Bulgheresi, Sebastiano Trattaro, Martina Pezzali, Alessandro Vitriolo, Alejandro Lopez-Tobon, Matteo Bonfanti, Dario Ricca, Katharina T. Schmid, Matthias Heinig, Fabian J. Theis, Carlo Emanuele Villa, Giuseppe Testa","doi":"10.1038/s41592-024-02555-5","DOIUrl":"10.1038/s41592-024-02555-5","url":null,"abstract":"Dissecting human neurobiology at high resolution and with mechanistic precision requires a major leap in scalability, given the need for experimental designs that include multiple individuals and, prospectively, population cohorts. To lay the foundation for this, we have developed and benchmarked complementary strategies to multiplex brain organoids by pooling cells from different pluripotent stem cell (PSC) lines either during organoid generation (mosaic models) or before single-cell RNA sequencing (scRNA-seq) library preparation (downstream multiplexing). We have also developed a new computational method, SCanSNP, and a consensus call to deconvolve cell identities, overcoming current criticalities in doublets and low-quality cell identification. We validated both multiplexing methods for charting neurodevelopmental trajectories at high resolution, thus linking specific individuals’ trajectories to genetic variation. Finally, we modeled their scalability across different multiplexing combinations and showed that mosaic organoids represent an enabling method for high-throughput settings. Together, this multiplexing suite of experimental and computational methods provides a highly scalable resource for brain disease and neurodiversity modeling. This paper develops two approaches for multiplexing cortical organoids and SCanSNP, a method for deconvolving cell identities, to trace neurodevelopmental trajectories at scale.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 2","pages":"358-370"},"PeriodicalIF":36.1,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41592-024-02555-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular motion in situ 分子原位运动
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-06 DOI: 10.1038/s41592-024-02551-9
Arunima Singh
Algorithms help to capture macromolecular motion and structural heterogeneity in native cellular environments.
算法有助于在原生细胞环境中捕获大分子运动和结构异质性。
{"title":"Molecular motion in situ","authors":"Arunima Singh","doi":"10.1038/s41592-024-02551-9","DOIUrl":"10.1038/s41592-024-02551-9","url":null,"abstract":"Algorithms help to capture macromolecular motion and structural heterogeneity in native cellular environments.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"21 12","pages":"2229-2230"},"PeriodicalIF":36.1,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
More dimensions of the 3D genome 三维基因组的更多维度
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-06 DOI: 10.1038/s41592-024-02550-w
Lei Tang
Advances aim to capture comprehensive, dynamic genome structures in living cells.
研究进展旨在捕捉活细胞中全面、动态的基因组结构。
{"title":"More dimensions of the 3D genome","authors":"Lei Tang","doi":"10.1038/s41592-024-02550-w","DOIUrl":"10.1038/s41592-024-02550-w","url":null,"abstract":"Advances aim to capture comprehensive, dynamic genome structures in living cells.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"21 12","pages":"2229-2229"},"PeriodicalIF":36.1,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomechanical modeling of whole bodies 整个身体的生物力学建模
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-06 DOI: 10.1038/s41592-024-02548-4
Nina Vogt
Detailed biomechanical models of animal bodies can help to tackle questions about how the brain controls movement and bodily interactions with the environment.
动物身体的详细生物力学模型可以帮助解决大脑如何控制运动以及身体与环境相互作用的问题。
{"title":"Biomechanical modeling of whole bodies","authors":"Nina Vogt","doi":"10.1038/s41592-024-02548-4","DOIUrl":"10.1038/s41592-024-02548-4","url":null,"abstract":"Detailed biomechanical models of animal bodies can help to tackle questions about how the brain controls movement and bodily interactions with the environment.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"21 12","pages":"2228-2228"},"PeriodicalIF":36.1,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplexed image analysis: what have we achieved and where are we headed? 多路图像分析:我们取得了什么成就,我们将走向何方?
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-06 DOI: 10.1038/s41592-024-02539-5
Yuval Bussi, Leeat Keren
Multiplexed tissue imaging has transformed tissue biology by revealing cellular diversity and interactions, but the analysis of its massive datasets remains a bottleneck. Here, we provide an overview of computational advancements, discuss current challenges and envision an AI-driven future in which integrated tools streamline analysis and visualization, unlocking the full potential of multiplexed imaging for breakthroughs in spatial biology.
多路复用组织成像通过揭示细胞多样性和相互作用改变了组织生物学,但对其大量数据集的分析仍然是一个瓶颈。在这里,我们概述了计算的进步,讨论了当前的挑战,并设想了一个人工智能驱动的未来,在这个未来中,集成工具简化了分析和可视化,释放了多路成像的全部潜力,以实现空间生物学的突破。
{"title":"Multiplexed image analysis: what have we achieved and where are we headed?","authors":"Yuval Bussi, Leeat Keren","doi":"10.1038/s41592-024-02539-5","DOIUrl":"10.1038/s41592-024-02539-5","url":null,"abstract":"Multiplexed tissue imaging has transformed tissue biology by revealing cellular diversity and interactions, but the analysis of its massive datasets remains a bottleneck. Here, we provide an overview of computational advancements, discuss current challenges and envision an AI-driven future in which integrated tools streamline analysis and visualization, unlocking the full potential of multiplexed imaging for breakthroughs in spatial biology.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"21 12","pages":"2212-2215"},"PeriodicalIF":36.1,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptable CRISPR screening 适应性CRISPR筛选
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-06 DOI: 10.1038/s41592-024-02544-8
Lei Tang
CRISPR screens are untangling molecular mechanisms that drive biological processes with greater precision and detail.
CRISPR屏幕正在以更高的精度和细节解开驱动生物过程的分子机制。
{"title":"Adaptable CRISPR screening","authors":"Lei Tang","doi":"10.1038/s41592-024-02544-8","DOIUrl":"10.1038/s41592-024-02544-8","url":null,"abstract":"CRISPR screens are untangling molecular mechanisms that drive biological processes with greater precision and detail.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"21 12","pages":"2226-2226"},"PeriodicalIF":36.1,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding protein interaction dynamics 了解蛋白质相互作用动力学
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-06 DOI: 10.1038/s41592-024-02545-7
Arunima Singh
Experimental and computational studies are paving way for a deeper understanding of the dynamic nature of protein–protein interactions.
实验和计算研究为更深入地理解蛋白质-蛋白质相互作用的动态本质铺平了道路。
{"title":"Understanding protein interaction dynamics","authors":"Arunima Singh","doi":"10.1038/s41592-024-02545-7","DOIUrl":"10.1038/s41592-024-02545-7","url":null,"abstract":"Experimental and computational studies are paving way for a deeper understanding of the dynamic nature of protein–protein interactions.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"21 12","pages":"2226-2227"},"PeriodicalIF":36.1,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Method of the Year 2024: spatial proteomics 2024年度最佳方法:空间蛋白质组学
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-06 DOI: 10.1038/s41592-024-02565-3
Approaches for profiling the spatial proteome in tissues are the basis of atlas-scale projects that are delivering on their promise for understanding biological complexity in health and disease.
分析组织中空间蛋白质组的方法是atlas规模项目的基础,这些项目正在兑现其理解健康和疾病中的生物复杂性的承诺。
{"title":"Method of the Year 2024: spatial proteomics","authors":"","doi":"10.1038/s41592-024-02565-3","DOIUrl":"10.1038/s41592-024-02565-3","url":null,"abstract":"Approaches for profiling the spatial proteome in tissues are the basis of atlas-scale projects that are delivering on their promise for understanding biological complexity in health and disease.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"21 12","pages":"2195-2196"},"PeriodicalIF":36.1,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41592-024-02565-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atlases galore: where to next? 丰富的地图集:下一步该去哪里?
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-06 DOI: 10.1038/s41592-024-02536-8
Vivien Marx
Hundreds of researchers collaborate on maps of the human body and the subcellular realm. As they scout out their next mapping expeditions, they take stock of atlas-making.
数百名研究人员合作绘制人体和亚细胞领域的图谱。当他们为下一次测绘探险做准备时,他们对地图集的制作进行了评估。
{"title":"Atlases galore: where to next?","authors":"Vivien Marx","doi":"10.1038/s41592-024-02536-8","DOIUrl":"10.1038/s41592-024-02536-8","url":null,"abstract":"Hundreds of researchers collaborate on maps of the human body and the subcellular realm. As they scout out their next mapping expeditions, they take stock of atlas-making.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"21 12","pages":"2203-2208"},"PeriodicalIF":36.1,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revolutionizing cancer research with spatial proteomics and visual intelligence 利用空间蛋白质组学和视觉智能革新癌症研究
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-06 DOI: 10.1038/s41592-024-02542-w
Daniela F. Quail, Logan A. Walsh
Spatial proteomics has transformed cancer research by providing unparalleled insights into the microenvironmental landscape of tumors. Here we discuss how these technologies have significantly advanced our understanding of cell–cell interactions, tissue organization and spatially coordinated mechanisms underlying antitumor immune responses, and will pave the way for emerging breakthroughs in cancer research.
空间蛋白质组学通过提供对肿瘤微环境景观的无与伦比的见解,改变了癌症研究。在这里,我们讨论了这些技术如何显著提高我们对细胞-细胞相互作用、组织组织和抗肿瘤免疫反应的空间协调机制的理解,并将为癌症研究的新突破铺平道路。
{"title":"Revolutionizing cancer research with spatial proteomics and visual intelligence","authors":"Daniela F. Quail, Logan A. Walsh","doi":"10.1038/s41592-024-02542-w","DOIUrl":"10.1038/s41592-024-02542-w","url":null,"abstract":"Spatial proteomics has transformed cancer research by providing unparalleled insights into the microenvironmental landscape of tumors. Here we discuss how these technologies have significantly advanced our understanding of cell–cell interactions, tissue organization and spatially coordinated mechanisms underlying antitumor immune responses, and will pave the way for emerging breakthroughs in cancer research.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"21 12","pages":"2216-2219"},"PeriodicalIF":36.1,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Methods
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1