Pub Date : 2024-06-03Epub Date: 2024-04-29DOI: 10.1016/j.molp.2024.04.012
Honglun Yuan, Yiding Jiangfang, Zhenhuan Liu, Rongxiu Su, Qiao Li, Chuanying Fang, Sishu Huang, Xianqing Liu, Alisdair R Fernie, Jie Luo
Volatilomics is essential for understanding the biological functions and fragrance contributions of plant volatiles. However, the annotation coverage achieved using current untargeted and widely targeted volatomics (WTV) methods has been limited by low sensitivity and/or low acquisition coverage. Here, we introduce WTV 2.0, which enabled the construction of a high-coverage library containing 2111 plant volatiles, and report the development of a comprehensive selective ion monitoring (cSIM) acquisition method, including the selection of characteristic qualitative ions with the minimal ion number for each compound and an optimized segmentation method, that can acquire the smallest but sufficient number of ions for most plant volatiles, as well as the automatic qualitative and semi-quantitative analysis of cSIM data. Importantly, the library and acquisition method we developed can be self-expanded by incorporating compounds not present in the library, utilizing the obtained cSIM data. We showed that WTV 2.0 increases the median signal-to-noise ratio by 7.6-fold compared with the untargeted method, doubled the annotation coverage compared with the untargeted and WTV 1.0 methods in tomato fruit, and led to the discovery of menthofuran as a novel flavor compound in passion fruit. WTV 2.0 is a Python library with a user-friendly interface and is applicable to profiling of volatiles and primary metabolites in any species.
{"title":"WTV2.0: A high-coverage plant volatilomics method with a comprehensive selective ion monitoring acquisition mode.","authors":"Honglun Yuan, Yiding Jiangfang, Zhenhuan Liu, Rongxiu Su, Qiao Li, Chuanying Fang, Sishu Huang, Xianqing Liu, Alisdair R Fernie, Jie Luo","doi":"10.1016/j.molp.2024.04.012","DOIUrl":"10.1016/j.molp.2024.04.012","url":null,"abstract":"<p><p>Volatilomics is essential for understanding the biological functions and fragrance contributions of plant volatiles. However, the annotation coverage achieved using current untargeted and widely targeted volatomics (WTV) methods has been limited by low sensitivity and/or low acquisition coverage. Here, we introduce WTV 2.0, which enabled the construction of a high-coverage library containing 2111 plant volatiles, and report the development of a comprehensive selective ion monitoring (cSIM) acquisition method, including the selection of characteristic qualitative ions with the minimal ion number for each compound and an optimized segmentation method, that can acquire the smallest but sufficient number of ions for most plant volatiles, as well as the automatic qualitative and semi-quantitative analysis of cSIM data. Importantly, the library and acquisition method we developed can be self-expanded by incorporating compounds not present in the library, utilizing the obtained cSIM data. We showed that WTV 2.0 increases the median signal-to-noise ratio by 7.6-fold compared with the untargeted method, doubled the annotation coverage compared with the untargeted and WTV 1.0 methods in tomato fruit, and led to the discovery of menthofuran as a novel flavor compound in passion fruit. WTV 2.0 is a Python library with a user-friendly interface and is applicable to profiling of volatiles and primary metabolites in any species.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"972-985"},"PeriodicalIF":27.5,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140859824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-06Epub Date: 2024-03-13DOI: 10.1016/j.molp.2024.03.009
Tingting Shi, Xinxin Zhang, Yukang Hou, Changfu Jia, Xuming Dan, Yulin Zhang, Yuanzhong Jiang, Qiang Lai, Jiajun Feng, Jianju Feng, Tao Ma, Jiali Wu, Shuyu Liu, Lei Zhang, Zhiqin Long, Liyang Chen, Nathaniel R Street, Pär K Ingvarsson, Jianquan Liu, Tongming Yin, Jing Wang
Understanding the underlying mechanisms and links between genome evolution and adaptive innovations stands as a key goal in evolutionary studies. Poplars, among the world's most widely distributed and cultivated trees, exhibit extensive phenotypic diversity and environmental adaptability. In this study, we present a genus-level super-pangenome comprising 19 Populus genomes, revealing the likely pivotal role of private genes in facilitating local environmental and climate adaptation. Through the integration of pangenomes with transcriptomes, methylomes, and chromatin accessibility mapping, we unveil that the evolutionary trajectories of pangenes and duplicated genes are closely linked to local genomic landscapes of regulatory and epigenetic architectures, notably CG methylation in gene-body regions. Further comparative genomic analyses have enabled the identification of 142 202 structural variants across species that intersect with a significant number of genes and contribute substantially to both phenotypic and adaptive divergence. We have experimentally validated a ∼180-bp presence/absence variant affecting the expression of the CUC2 gene, crucial for leaf serration formation. Finally, we developed a user-friendly web-based tool encompassing the multi-omics resources associated with the Populus super-pangenome (http://www.populus-superpangenome.com). Together, the present pioneering super-pangenome resource in forest trees not only aids in the advancement of breeding efforts of this globally important tree genus but also offers valuable insights into potential avenues for comprehending tree biology.
{"title":"The super-pangenome of Populus unveils genomic facets for its adaptation and diversification in widespread forest trees.","authors":"Tingting Shi, Xinxin Zhang, Yukang Hou, Changfu Jia, Xuming Dan, Yulin Zhang, Yuanzhong Jiang, Qiang Lai, Jiajun Feng, Jianju Feng, Tao Ma, Jiali Wu, Shuyu Liu, Lei Zhang, Zhiqin Long, Liyang Chen, Nathaniel R Street, Pär K Ingvarsson, Jianquan Liu, Tongming Yin, Jing Wang","doi":"10.1016/j.molp.2024.03.009","DOIUrl":"10.1016/j.molp.2024.03.009","url":null,"abstract":"<p><p>Understanding the underlying mechanisms and links between genome evolution and adaptive innovations stands as a key goal in evolutionary studies. Poplars, among the world's most widely distributed and cultivated trees, exhibit extensive phenotypic diversity and environmental adaptability. In this study, we present a genus-level super-pangenome comprising 19 Populus genomes, revealing the likely pivotal role of private genes in facilitating local environmental and climate adaptation. Through the integration of pangenomes with transcriptomes, methylomes, and chromatin accessibility mapping, we unveil that the evolutionary trajectories of pangenes and duplicated genes are closely linked to local genomic landscapes of regulatory and epigenetic architectures, notably CG methylation in gene-body regions. Further comparative genomic analyses have enabled the identification of 142 202 structural variants across species that intersect with a significant number of genes and contribute substantially to both phenotypic and adaptive divergence. We have experimentally validated a ∼180-bp presence/absence variant affecting the expression of the CUC2 gene, crucial for leaf serration formation. Finally, we developed a user-friendly web-based tool encompassing the multi-omics resources associated with the Populus super-pangenome (http://www.populus-superpangenome.com). Together, the present pioneering super-pangenome resource in forest trees not only aids in the advancement of breeding efforts of this globally important tree genus but also offers valuable insights into potential avenues for comprehending tree biology.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"725-746"},"PeriodicalIF":27.5,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140132080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-06Epub Date: 2024-03-22DOI: 10.1016/j.molp.2024.03.013
Tom Schreiber, Anja Prange, Petra Schäfer, Thomas Iwen, Ramona Grützner, Sylvestre Marillonnet, Aurélie Lepage, Marie Javelle, Wyatt Paul, Alain Tissier
In plants and mammals, non-homologous end-joining is the dominant pathway to repair DNA double-strand breaks, making it challenging to generate knock-in events. In this study, we identified two groups of exonucleases from the herpes virus and the bacteriophage T7 families that conferred an up to 38-fold increase in homology-directed repair frequencies when fused to Cas9/Cas12a in a tobacco mosaic virus-based transient assay in Nicotiana benthamiana. We achieved precise and scar-free insertion of several kilobases of DNA both in transient and stable transformation systems. In Arabidopsis thaliana, fusion of Cas9 to a herpes virus family exonuclease led to 10-fold higher frequencies of knock-ins in the first generation of transformants. In addition, we demonstrated stable and heritable knock-ins in wheat in 1% of the primary transformants. Taken together, our results open perspectives for the routine production of heritable knock-in and gene replacement events in plants.
在植物和哺乳动物中,非同源末端连接是修复 DNA 双股断裂的主要途径,因此产生基因敲入事件具有挑战性。我们从疱疹病毒和噬菌体 T7 家族中发现了两组外切核酸酶,当它们与 Cas9/Cas12a 融合后,在烟草花叶病毒为基础的本根烟草中进行瞬时实验时,HDR 频率最多可增加 38 倍。我们在瞬时转化和稳定转化系统中都实现了几千碱基 DNA 的精确无痕插入。在拟南芥中,将 Cas9 与疱疹病毒家族的外切酶融合可使第一代转化子中的基因敲入频率提高 10 倍。此外,我们还证明了小麦中 1%的初代转化子具有稳定的遗传性基因敲入。我们的研究结果为植物中遗传性基因敲入和基因替换事件的常规生产开辟了前景。
{"title":"Efficient scar-free knock-ins of several kilobases in plants by engineered CRISPR-Cas endonucleases.","authors":"Tom Schreiber, Anja Prange, Petra Schäfer, Thomas Iwen, Ramona Grützner, Sylvestre Marillonnet, Aurélie Lepage, Marie Javelle, Wyatt Paul, Alain Tissier","doi":"10.1016/j.molp.2024.03.013","DOIUrl":"10.1016/j.molp.2024.03.013","url":null,"abstract":"<p><p>In plants and mammals, non-homologous end-joining is the dominant pathway to repair DNA double-strand breaks, making it challenging to generate knock-in events. In this study, we identified two groups of exonucleases from the herpes virus and the bacteriophage T7 families that conferred an up to 38-fold increase in homology-directed repair frequencies when fused to Cas9/Cas12a in a tobacco mosaic virus-based transient assay in Nicotiana benthamiana. We achieved precise and scar-free insertion of several kilobases of DNA both in transient and stable transformation systems. In Arabidopsis thaliana, fusion of Cas9 to a herpes virus family exonuclease led to 10-fold higher frequencies of knock-ins in the first generation of transformants. In addition, we demonstrated stable and heritable knock-ins in wheat in 1% of the primary transformants. Taken together, our results open perspectives for the routine production of heritable knock-in and gene replacement events in plants.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"824-837"},"PeriodicalIF":27.5,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140194232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-06Epub Date: 2024-03-29DOI: 10.1016/j.molp.2024.03.014
Wenyuan Ruan, Meina Guo, Keke Yi
{"title":"Phosphorus lights up the trade-off between growth and immunity.","authors":"Wenyuan Ruan, Meina Guo, Keke Yi","doi":"10.1016/j.molp.2024.03.014","DOIUrl":"10.1016/j.molp.2024.03.014","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"689-690"},"PeriodicalIF":4.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140330025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-02-27DOI: 10.1016/j.molp.2024.02.016
Sheng Fan, Yu Zhang, Shaobo Zhu, Lisha Shen
RNA-binding proteins (RBPs) accompany RNA from synthesis to decay, mediating every aspect of RNA metabolism and impacting diverse cellular and developmental processes in eukaryotes. Many RBPs undergo phase separation along with their bound RNA to form and function in dynamic membraneless biomolecular condensates for spatiotemporal coordination or regulation of RNA metabolism. Increasing evidence suggests that phase-separating RBPs with RNA-binding domains and intrinsically disordered regions play important roles in plant development and stress adaptation. Here, we summarize the current knowledge about how dynamic partitioning of RBPs into condensates controls plant development and enables sensing of experimental changes to confer growth plasticity under stress conditions, with a focus on the dynamics and functional mechanisms of RBP-rich nuclear condensates and cytoplasmic granules in mediating RNA metabolism. We also discuss roles of multiple factors, such as environmental signals, protein modifications, and N6-methyladenosine RNA methylation, in modulating the phase separation behaviors of RBPs, and highlight the prospects and challenges for future research on phase-separating RBPs in crops.
{"title":"Plant RNA-binding proteins: Phase separation dynamics and functional mechanisms underlying plant development and stress responses.","authors":"Sheng Fan, Yu Zhang, Shaobo Zhu, Lisha Shen","doi":"10.1016/j.molp.2024.02.016","DOIUrl":"10.1016/j.molp.2024.02.016","url":null,"abstract":"<p><p>RNA-binding proteins (RBPs) accompany RNA from synthesis to decay, mediating every aspect of RNA metabolism and impacting diverse cellular and developmental processes in eukaryotes. Many RBPs undergo phase separation along with their bound RNA to form and function in dynamic membraneless biomolecular condensates for spatiotemporal coordination or regulation of RNA metabolism. Increasing evidence suggests that phase-separating RBPs with RNA-binding domains and intrinsically disordered regions play important roles in plant development and stress adaptation. Here, we summarize the current knowledge about how dynamic partitioning of RBPs into condensates controls plant development and enables sensing of experimental changes to confer growth plasticity under stress conditions, with a focus on the dynamics and functional mechanisms of RBP-rich nuclear condensates and cytoplasmic granules in mediating RNA metabolism. We also discuss roles of multiple factors, such as environmental signals, protein modifications, and N<sup>6</sup>-methyladenosine RNA methylation, in modulating the phase separation behaviors of RBPs, and highlight the prospects and challenges for future research on phase-separating RBPs in crops.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"531-551"},"PeriodicalIF":17.1,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-03-12DOI: 10.1016/j.molp.2024.03.007
Admas Alemu, Johanna Åstrand, Osval A Montesinos-López, Julio Isidro Y Sánchez, Javier Fernández-Gónzalez, Wuletaw Tadesse, Ramesh R Vetukuri, Anders S Carlsson, Alf Ceplitis, José Crossa, Rodomiro Ortiz, Aakash Chawade
Genomic selection, the application of genomic prediction (GP) models to select candidate individuals, has significantly advanced in the past two decades, effectively accelerating genetic gains in plant breeding. This article provides a holistic overview of key factors that have influenced GP in plant breeding during this period. We delved into the pivotal roles of training population size and genetic diversity, and their relationship with the breeding population, in determining GP accuracy. Special emphasis was placed on optimizing training population size. We explored its benefits and the associated diminishing returns beyond an optimum size. This was done while considering the balance between resource allocation and maximizing prediction accuracy through current optimization algorithms. The density and distribution of single-nucleotide polymorphisms, level of linkage disequilibrium, genetic complexity, trait heritability, statistical machine-learning methods, and non-additive effects are the other vital factors. Using wheat, maize, and potato as examples, we summarize the effect of these factors on the accuracy of GP for various traits. The search for high accuracy in GP-theoretically reaching one when using the Pearson's correlation as a metric-is an active research area as yet far from optimal for various traits. We hypothesize that with ultra-high sizes of genotypic and phenotypic datasets, effective training population optimization methods and support from other omics approaches (transcriptomics, metabolomics and proteomics) coupled with deep-learning algorithms could overcome the boundaries of current limitations to achieve the highest possible prediction accuracy, making genomic selection an effective tool in plant breeding.
基因组选择,即应用基因组预测(GP)模型选择候选个体,在过去二十年中取得了长足进步,有效加快了植物育种的遗传收益。本文全面概述了这一时期影响植物育种中基因组预测的关键因素。我们深入研究了训练群体大小和遗传多样性的关键作用,以及它们与育种群体的关系,这些因素决定了基因组预测的准确性。我们特别强调了训练群体规模的优化。我们探讨了训练群体规模的益处以及超过最佳规模后的相关收益递减问题。同时,我们还考虑了资源分配与通过当前优化算法最大限度提高预测准确性之间的平衡。单核苷酸多态性(SNP)的密度和分布、连锁不平衡程度、遗传复杂性、性状遗传率、统计机器学习方法和非加成效应是其他重要因素。我们以小麦、玉米和马铃薯为例,总结了这些因素对不同性状 GP 精确度的影响。在 GP 中寻求高准确度(使用皮尔逊相关性作为衡量标准时,理论上可达到 1)是一个活跃的研究领域,但对于各种性状而言,这还远未达到最佳状态。我们假设,如果有超大规模的基因型和表型数据集、有效的训练群体优化方法以及其他全息方法(转录组学、代谢组学和蛋白质组学)的支持,再加上深度学习算法,就能突破目前的限制,实现尽可能高的预测准确率,使基因组学成为植物育种的有效工具。
{"title":"Genomic selection in plant breeding: Key factors shaping two decades of progress.","authors":"Admas Alemu, Johanna Åstrand, Osval A Montesinos-López, Julio Isidro Y Sánchez, Javier Fernández-Gónzalez, Wuletaw Tadesse, Ramesh R Vetukuri, Anders S Carlsson, Alf Ceplitis, José Crossa, Rodomiro Ortiz, Aakash Chawade","doi":"10.1016/j.molp.2024.03.007","DOIUrl":"10.1016/j.molp.2024.03.007","url":null,"abstract":"<p><p>Genomic selection, the application of genomic prediction (GP) models to select candidate individuals, has significantly advanced in the past two decades, effectively accelerating genetic gains in plant breeding. This article provides a holistic overview of key factors that have influenced GP in plant breeding during this period. We delved into the pivotal roles of training population size and genetic diversity, and their relationship with the breeding population, in determining GP accuracy. Special emphasis was placed on optimizing training population size. We explored its benefits and the associated diminishing returns beyond an optimum size. This was done while considering the balance between resource allocation and maximizing prediction accuracy through current optimization algorithms. The density and distribution of single-nucleotide polymorphisms, level of linkage disequilibrium, genetic complexity, trait heritability, statistical machine-learning methods, and non-additive effects are the other vital factors. Using wheat, maize, and potato as examples, we summarize the effect of these factors on the accuracy of GP for various traits. The search for high accuracy in GP-theoretically reaching one when using the Pearson's correlation as a metric-is an active research area as yet far from optimal for various traits. We hypothesize that with ultra-high sizes of genotypic and phenotypic datasets, effective training population optimization methods and support from other omics approaches (transcriptomics, metabolomics and proteomics) coupled with deep-learning algorithms could overcome the boundaries of current limitations to achieve the highest possible prediction accuracy, making genomic selection an effective tool in plant breeding.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"552-578"},"PeriodicalIF":4.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140110790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}