首页 > 最新文献

Molecular Plant最新文献

英文 中文
WTV2.0: A high-coverage plant volatilomics method with a comprehensive selective ion monitoring acquisition mode. WTV2.0:具有综合选择性离子监测采集模式的高覆盖率植物挥发物组学方法。
IF 27.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-03 Epub Date: 2024-04-29 DOI: 10.1016/j.molp.2024.04.012
Honglun Yuan, Yiding Jiangfang, Zhenhuan Liu, Rongxiu Su, Qiao Li, Chuanying Fang, Sishu Huang, Xianqing Liu, Alisdair R Fernie, Jie Luo

Volatilomics is essential for understanding the biological functions and fragrance contributions of plant volatiles. However, the annotation coverage achieved using current untargeted and widely targeted volatomics (WTV) methods has been limited by low sensitivity and/or low acquisition coverage. Here, we introduce WTV 2.0, which enabled the construction of a high-coverage library containing 2111 plant volatiles, and report the development of a comprehensive selective ion monitoring (cSIM) acquisition method, including the selection of characteristic qualitative ions with the minimal ion number for each compound and an optimized segmentation method, that can acquire the smallest but sufficient number of ions for most plant volatiles, as well as the automatic qualitative and semi-quantitative analysis of cSIM data. Importantly, the library and acquisition method we developed can be self-expanded by incorporating compounds not present in the library, utilizing the obtained cSIM data. We showed that WTV 2.0 increases the median signal-to-noise ratio by 7.6-fold compared with the untargeted method, doubled the annotation coverage compared with the untargeted and WTV 1.0 methods in tomato fruit, and led to the discovery of menthofuran as a novel flavor compound in passion fruit. WTV 2.0 is a Python library with a user-friendly interface and is applicable to profiling of volatiles and primary metabolites in any species.

挥发性物质组学对于了解植物挥发性物质的生物功能和香味贡献至关重要。然而,由于灵敏度低和/或采集覆盖率低,目前非靶向和广泛靶向方法的注释覆盖范围受到了限制。在此,我们介绍 WTV 2.0。它可以构建一个包含 2111 种植物挥发物的高覆盖率库;开发一种综合选择离子监测(cSIM)采集方法,该方法包含了大多数植物挥发物所需的最少但足够的离子,包括为每种化合物选择离子数最少的特征定性离子,以及采集方法的优化分段;最后,对 cSIM 数据进行自动定性和半定量分析。此外,利用所获得的 cSIM 数据,还可以通过加入化合物库中不存在的化合物来自我扩展化合物库和采集方法。与无目标方法相比,WTV 2.0 将信噪比中值提高了 7.6 倍,与无目标方法和 WTV 1.0 方法相比,番茄果实中的注释覆盖率提高了一倍,并发现了百香果中的新型风味化合物薄荷呋喃。WTV 2.0 是一个 Python 库,具有友好的用户界面,适用于任何物种的挥发性物质和初级代谢物分析。
{"title":"WTV2.0: A high-coverage plant volatilomics method with a comprehensive selective ion monitoring acquisition mode.","authors":"Honglun Yuan, Yiding Jiangfang, Zhenhuan Liu, Rongxiu Su, Qiao Li, Chuanying Fang, Sishu Huang, Xianqing Liu, Alisdair R Fernie, Jie Luo","doi":"10.1016/j.molp.2024.04.012","DOIUrl":"10.1016/j.molp.2024.04.012","url":null,"abstract":"<p><p>Volatilomics is essential for understanding the biological functions and fragrance contributions of plant volatiles. However, the annotation coverage achieved using current untargeted and widely targeted volatomics (WTV) methods has been limited by low sensitivity and/or low acquisition coverage. Here, we introduce WTV 2.0, which enabled the construction of a high-coverage library containing 2111 plant volatiles, and report the development of a comprehensive selective ion monitoring (cSIM) acquisition method, including the selection of characteristic qualitative ions with the minimal ion number for each compound and an optimized segmentation method, that can acquire the smallest but sufficient number of ions for most plant volatiles, as well as the automatic qualitative and semi-quantitative analysis of cSIM data. Importantly, the library and acquisition method we developed can be self-expanded by incorporating compounds not present in the library, utilizing the obtained cSIM data. We showed that WTV 2.0 increases the median signal-to-noise ratio by 7.6-fold compared with the untargeted method, doubled the annotation coverage compared with the untargeted and WTV 1.0 methods in tomato fruit, and led to the discovery of menthofuran as a novel flavor compound in passion fruit. WTV 2.0 is a Python library with a user-friendly interface and is applicable to profiling of volatiles and primary metabolites in any species.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"972-985"},"PeriodicalIF":27.5,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140859824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The super-pangenome of Populus unveils genomic facets for its adaptation and diversification in widespread forest trees. 杨树的超级泛基因组揭示了广泛分布的林木适应和多样化的基因组面貌。
IF 27.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-06 Epub Date: 2024-03-13 DOI: 10.1016/j.molp.2024.03.009
Tingting Shi, Xinxin Zhang, Yukang Hou, Changfu Jia, Xuming Dan, Yulin Zhang, Yuanzhong Jiang, Qiang Lai, Jiajun Feng, Jianju Feng, Tao Ma, Jiali Wu, Shuyu Liu, Lei Zhang, Zhiqin Long, Liyang Chen, Nathaniel R Street, Pär K Ingvarsson, Jianquan Liu, Tongming Yin, Jing Wang

Understanding the underlying mechanisms and links between genome evolution and adaptive innovations stands as a key goal in evolutionary studies. Poplars, among the world's most widely distributed and cultivated trees, exhibit extensive phenotypic diversity and environmental adaptability. In this study, we present a genus-level super-pangenome comprising 19 Populus genomes, revealing the likely pivotal role of private genes in facilitating local environmental and climate adaptation. Through the integration of pangenomes with transcriptomes, methylomes, and chromatin accessibility mapping, we unveil that the evolutionary trajectories of pangenes and duplicated genes are closely linked to local genomic landscapes of regulatory and epigenetic architectures, notably CG methylation in gene-body regions. Further comparative genomic analyses have enabled the identification of 142 202 structural variants across species that intersect with a significant number of genes and contribute substantially to both phenotypic and adaptive divergence. We have experimentally validated a ∼180-bp presence/absence variant affecting the expression of the CUC2 gene, crucial for leaf serration formation. Finally, we developed a user-friendly web-based tool encompassing the multi-omics resources associated with the Populus super-pangenome (http://www.populus-superpangenome.com). Together, the present pioneering super-pangenome resource in forest trees not only aids in the advancement of breeding efforts of this globally important tree genus but also offers valuable insights into potential avenues for comprehending tree biology.

了解基因组进化和适应性创新之间的内在机制和联系是进化研究的一个关键目标。杨树是世界上分布最广、栽培最多的树种之一,表现出广泛的表型多样性和环境适应性。在这项研究中,我们提出了一个由 19 个杨树基因组组成的属级超级泛基因组,揭示了私有基因在促进当地环境和气候适应方面可能发挥的关键作用。通过整合泛基因组与转录组、甲基组和染色质可及性图谱,我们揭示了泛基因和重复基因的进化轨迹与调控和表观遗传结构的局部基因组景观密切相关,特别是基因体区域的CG甲基化。通过进一步的比较基因组分析,我们发现了跨物种的 142,202 个结构变异(SVs),这些变异与大量基因相交,并对表型和适应性差异做出了重大贡献。我们通过实验验证了一个影响 CUC2 基因表达的 ∼180 bp 存在/不存在变异,该基因对叶片锯齿的形成至关重要。最后,我们开发了一个用户友好型网络工具,其中包含与杨树超级泛基因组相关的多组学资源 (http://www.populus-superpangenome.com/)。总之,目前开创性的林木超级泛基因组资源不仅有助于推进这一全球重要树属的育种工作,而且还为了解林木生物学的潜在途径提供了宝贵的见解。
{"title":"The super-pangenome of Populus unveils genomic facets for its adaptation and diversification in widespread forest trees.","authors":"Tingting Shi, Xinxin Zhang, Yukang Hou, Changfu Jia, Xuming Dan, Yulin Zhang, Yuanzhong Jiang, Qiang Lai, Jiajun Feng, Jianju Feng, Tao Ma, Jiali Wu, Shuyu Liu, Lei Zhang, Zhiqin Long, Liyang Chen, Nathaniel R Street, Pär K Ingvarsson, Jianquan Liu, Tongming Yin, Jing Wang","doi":"10.1016/j.molp.2024.03.009","DOIUrl":"10.1016/j.molp.2024.03.009","url":null,"abstract":"<p><p>Understanding the underlying mechanisms and links between genome evolution and adaptive innovations stands as a key goal in evolutionary studies. Poplars, among the world's most widely distributed and cultivated trees, exhibit extensive phenotypic diversity and environmental adaptability. In this study, we present a genus-level super-pangenome comprising 19 Populus genomes, revealing the likely pivotal role of private genes in facilitating local environmental and climate adaptation. Through the integration of pangenomes with transcriptomes, methylomes, and chromatin accessibility mapping, we unveil that the evolutionary trajectories of pangenes and duplicated genes are closely linked to local genomic landscapes of regulatory and epigenetic architectures, notably CG methylation in gene-body regions. Further comparative genomic analyses have enabled the identification of 142 202 structural variants across species that intersect with a significant number of genes and contribute substantially to both phenotypic and adaptive divergence. We have experimentally validated a ∼180-bp presence/absence variant affecting the expression of the CUC2 gene, crucial for leaf serration formation. Finally, we developed a user-friendly web-based tool encompassing the multi-omics resources associated with the Populus super-pangenome (http://www.populus-superpangenome.com). Together, the present pioneering super-pangenome resource in forest trees not only aids in the advancement of breeding efforts of this globally important tree genus but also offers valuable insights into potential avenues for comprehending tree biology.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"725-746"},"PeriodicalIF":27.5,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140132080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chloroplast immunity: A cornerstone of plant defense. 叶绿体免疫:植物防御的基石。
IF 4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-06 Epub Date: 2024-03-19 DOI: 10.1016/j.molp.2024.03.012
Jie Liu, Pan Gong, Ruobin Lu, Rosa Lozano-Durán, Xueping Zhou, Fangfang Li
{"title":"Chloroplast immunity: A cornerstone of plant defense.","authors":"Jie Liu, Pan Gong, Ruobin Lu, Rosa Lozano-Durán, Xueping Zhou, Fangfang Li","doi":"10.1016/j.molp.2024.03.012","DOIUrl":"10.1016/j.molp.2024.03.012","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"686-688"},"PeriodicalIF":4.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140175605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient scar-free knock-ins of several kilobases in plants by engineered CRISPR-Cas endonucleases. 通过工程化的 CRISPR/Cas 内切酶,在植物中高效无痕地敲入几千个碱基。
IF 27.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-06 Epub Date: 2024-03-22 DOI: 10.1016/j.molp.2024.03.013
Tom Schreiber, Anja Prange, Petra Schäfer, Thomas Iwen, Ramona Grützner, Sylvestre Marillonnet, Aurélie Lepage, Marie Javelle, Wyatt Paul, Alain Tissier

In plants and mammals, non-homologous end-joining is the dominant pathway to repair DNA double-strand breaks, making it challenging to generate knock-in events. In this study, we identified two groups of exonucleases from the herpes virus and the bacteriophage T7 families that conferred an up to 38-fold increase in homology-directed repair frequencies when fused to Cas9/Cas12a in a tobacco mosaic virus-based transient assay in Nicotiana benthamiana. We achieved precise and scar-free insertion of several kilobases of DNA both in transient and stable transformation systems. In Arabidopsis thaliana, fusion of Cas9 to a herpes virus family exonuclease led to 10-fold higher frequencies of knock-ins in the first generation of transformants. In addition, we demonstrated stable and heritable knock-ins in wheat in 1% of the primary transformants. Taken together, our results open perspectives for the routine production of heritable knock-in and gene replacement events in plants.

在植物和哺乳动物中,非同源末端连接是修复 DNA 双股断裂的主要途径,因此产生基因敲入事件具有挑战性。我们从疱疹病毒和噬菌体 T7 家族中发现了两组外切核酸酶,当它们与 Cas9/Cas12a 融合后,在烟草花叶病毒为基础的本根烟草中进行瞬时实验时,HDR 频率最多可增加 38 倍。我们在瞬时转化和稳定转化系统中都实现了几千碱基 DNA 的精确无痕插入。在拟南芥中,将 Cas9 与疱疹病毒家族的外切酶融合可使第一代转化子中的基因敲入频率提高 10 倍。此外,我们还证明了小麦中 1%的初代转化子具有稳定的遗传性基因敲入。我们的研究结果为植物中遗传性基因敲入和基因替换事件的常规生产开辟了前景。
{"title":"Efficient scar-free knock-ins of several kilobases in plants by engineered CRISPR-Cas endonucleases.","authors":"Tom Schreiber, Anja Prange, Petra Schäfer, Thomas Iwen, Ramona Grützner, Sylvestre Marillonnet, Aurélie Lepage, Marie Javelle, Wyatt Paul, Alain Tissier","doi":"10.1016/j.molp.2024.03.013","DOIUrl":"10.1016/j.molp.2024.03.013","url":null,"abstract":"<p><p>In plants and mammals, non-homologous end-joining is the dominant pathway to repair DNA double-strand breaks, making it challenging to generate knock-in events. In this study, we identified two groups of exonucleases from the herpes virus and the bacteriophage T7 families that conferred an up to 38-fold increase in homology-directed repair frequencies when fused to Cas9/Cas12a in a tobacco mosaic virus-based transient assay in Nicotiana benthamiana. We achieved precise and scar-free insertion of several kilobases of DNA both in transient and stable transformation systems. In Arabidopsis thaliana, fusion of Cas9 to a herpes virus family exonuclease led to 10-fold higher frequencies of knock-ins in the first generation of transformants. In addition, we demonstrated stable and heritable knock-ins in wheat in 1% of the primary transformants. Taken together, our results open perspectives for the routine production of heritable knock-in and gene replacement events in plants.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"824-837"},"PeriodicalIF":27.5,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140194232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BambooBase: A comprehensive database of bamboo omics and systematics. BambooBase:竹子奥米特和系统学综合数据库。
IF 4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-06 Epub Date: 2024-02-27 DOI: 10.1016/j.molp.2024.02.017
Yun-Long Liu, Shu-Yang Gao, Guihua Jin, Meng-Yuan Zhou, Qijuan Gao, Cen Guo, Yi-Zhou Yang, Liang-Zhong Niu, Enhua Xia, Zhen-Hua Guo, Peng-Fei Ma, De-Zhu Li
{"title":"BambooBase: A comprehensive database of bamboo omics and systematics.","authors":"Yun-Long Liu, Shu-Yang Gao, Guihua Jin, Meng-Yuan Zhou, Qijuan Gao, Cen Guo, Yi-Zhou Yang, Liang-Zhong Niu, Enhua Xia, Zhen-Hua Guo, Peng-Fei Ma, De-Zhu Li","doi":"10.1016/j.molp.2024.02.017","DOIUrl":"10.1016/j.molp.2024.02.017","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"682-685"},"PeriodicalIF":4.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smart Breeding Platform: A web-based tool for high-throughput population genetics, phenomics, and genomic selection. 智能育种平台:基于网络的高通量群体遗传学、表型组学和基因组选择工具。
IF 4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-06 Epub Date: 2024-03-06 DOI: 10.1016/j.molp.2024.03.002
Huihui Li, Xin Li, Peng Zhang, Yingwei Feng, Junri Mi, Shang Gao, Lele Sheng, Mohsin Ali, Zikun Yang, Liang Li, Wei Fang, Wensheng Wang, Qian Qian, Fei Gu, Wenbin Zhou
{"title":"Smart Breeding Platform: A web-based tool for high-throughput population genetics, phenomics, and genomic selection.","authors":"Huihui Li, Xin Li, Peng Zhang, Yingwei Feng, Junri Mi, Shang Gao, Lele Sheng, Mohsin Ali, Zikun Yang, Liang Li, Wei Fang, Wensheng Wang, Qian Qian, Fei Gu, Wenbin Zhou","doi":"10.1016/j.molp.2024.03.002","DOIUrl":"10.1016/j.molp.2024.03.002","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"677-681"},"PeriodicalIF":4.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140049972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphorus lights up the trade-off between growth and immunity. 磷能在生长和免疫之间做出权衡。
IF 4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-06 Epub Date: 2024-03-29 DOI: 10.1016/j.molp.2024.03.014
Wenyuan Ruan, Meina Guo, Keke Yi
{"title":"Phosphorus lights up the trade-off between growth and immunity.","authors":"Wenyuan Ruan, Meina Guo, Keke Yi","doi":"10.1016/j.molp.2024.03.014","DOIUrl":"10.1016/j.molp.2024.03.014","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"689-690"},"PeriodicalIF":4.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140330025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant RNA-binding proteins: Phase separation dynamics and functional mechanisms underlying plant development and stress responses. 植物 RNA 结合蛋白:植物发育和胁迫响应的相分离动力学和功能机制。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-04-01 Epub Date: 2024-02-27 DOI: 10.1016/j.molp.2024.02.016
Sheng Fan, Yu Zhang, Shaobo Zhu, Lisha Shen

RNA-binding proteins (RBPs) accompany RNA from synthesis to decay, mediating every aspect of RNA metabolism and impacting diverse cellular and developmental processes in eukaryotes. Many RBPs undergo phase separation along with their bound RNA to form and function in dynamic membraneless biomolecular condensates for spatiotemporal coordination or regulation of RNA metabolism. Increasing evidence suggests that phase-separating RBPs with RNA-binding domains and intrinsically disordered regions play important roles in plant development and stress adaptation. Here, we summarize the current knowledge about how dynamic partitioning of RBPs into condensates controls plant development and enables sensing of experimental changes to confer growth plasticity under stress conditions, with a focus on the dynamics and functional mechanisms of RBP-rich nuclear condensates and cytoplasmic granules in mediating RNA metabolism. We also discuss roles of multiple factors, such as environmental signals, protein modifications, and N6-methyladenosine RNA methylation, in modulating the phase separation behaviors of RBPs, and highlight the prospects and challenges for future research on phase-separating RBPs in crops.

RNA 结合蛋白(RBPs)伴随着 RNA 从合成到衰变的全过程,介导着 RNA 代谢的各个方面,影响着真核生物的各种细胞和发育过程。许多 RBPs 与其结合的 RNA 会发生相分离,形成动态的无膜生物分子凝聚体,并在 RNA 代谢调控的时空协调中发挥作用。越来越多的证据表明,具有 RNA 结合域和内在无序区的相分离 RBPs 在植物发育和胁迫适应中发挥着重要作用。在本文中,我们总结了目前的知识,这些知识表明 RBPs 动态分化成凝聚体控制植物发育,并感知实验变化,从而在胁迫条件下赋予植物生长可塑性,重点是富含 RBP 的核凝聚体和胞质颗粒在介导 RNA 代谢中的动态和功能机制。我们还讨论了环境信号、蛋白质修饰和 N6-甲基腺苷 RNA 甲基化等多种因素在调节 RBPs 相分离行为中的作用,随后重点介绍了作物中相分离 RBPs 未来研究的前景和挑战。
{"title":"Plant RNA-binding proteins: Phase separation dynamics and functional mechanisms underlying plant development and stress responses.","authors":"Sheng Fan, Yu Zhang, Shaobo Zhu, Lisha Shen","doi":"10.1016/j.molp.2024.02.016","DOIUrl":"10.1016/j.molp.2024.02.016","url":null,"abstract":"<p><p>RNA-binding proteins (RBPs) accompany RNA from synthesis to decay, mediating every aspect of RNA metabolism and impacting diverse cellular and developmental processes in eukaryotes. Many RBPs undergo phase separation along with their bound RNA to form and function in dynamic membraneless biomolecular condensates for spatiotemporal coordination or regulation of RNA metabolism. Increasing evidence suggests that phase-separating RBPs with RNA-binding domains and intrinsically disordered regions play important roles in plant development and stress adaptation. Here, we summarize the current knowledge about how dynamic partitioning of RBPs into condensates controls plant development and enables sensing of experimental changes to confer growth plasticity under stress conditions, with a focus on the dynamics and functional mechanisms of RBP-rich nuclear condensates and cytoplasmic granules in mediating RNA metabolism. We also discuss roles of multiple factors, such as environmental signals, protein modifications, and N<sup>6</sup>-methyladenosine RNA methylation, in modulating the phase separation behaviors of RBPs, and highlight the prospects and challenges for future research on phase-separating RBPs in crops.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"531-551"},"PeriodicalIF":17.1,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global wild rice germplasm resources conservation alliance: World Wild-Rice Wiring. 全球野生稻种质资源保护联盟:世界野生稻线路。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-04-01 Epub Date: 2024-03-05 DOI: 10.1016/j.molp.2024.03.001
Xiaoming Zheng, Disna Ratnasekera, Jiayu Fan, Robert J Henry, Beng-Kah Song, Kenneth M Olsen, Bal Krishna Joshi, Maria Celeste N Banaticla-Hilario, Tonapha Pusadee, Adane Getachew Melaku, Yêyinou Laura Estelle Loko, Koukham Vilayheuang, Gavers K Oppong, Samuel Aduse Poku, Peterson W Wambugu, Song Ge, Aldo Merotto Junior, Ohn Mar Aung, Ramaiah Venuprasad, Ajay Kohli, Wenbin Zhou, Qian Qian
{"title":"Global wild rice germplasm resources conservation alliance: World Wild-Rice Wiring.","authors":"Xiaoming Zheng, Disna Ratnasekera, Jiayu Fan, Robert J Henry, Beng-Kah Song, Kenneth M Olsen, Bal Krishna Joshi, Maria Celeste N Banaticla-Hilario, Tonapha Pusadee, Adane Getachew Melaku, Yêyinou Laura Estelle Loko, Koukham Vilayheuang, Gavers K Oppong, Samuel Aduse Poku, Peterson W Wambugu, Song Ge, Aldo Merotto Junior, Ohn Mar Aung, Ramaiah Venuprasad, Ajay Kohli, Wenbin Zhou, Qian Qian","doi":"10.1016/j.molp.2024.03.001","DOIUrl":"10.1016/j.molp.2024.03.001","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"516-518"},"PeriodicalIF":17.1,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140039828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic selection in plant breeding: Key factors shaping two decades of progress. 植物育种中的基因组选择:影响二十年进展的关键因素。
IF 4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-04-01 Epub Date: 2024-03-12 DOI: 10.1016/j.molp.2024.03.007
Admas Alemu, Johanna Åstrand, Osval A Montesinos-López, Julio Isidro Y Sánchez, Javier Fernández-Gónzalez, Wuletaw Tadesse, Ramesh R Vetukuri, Anders S Carlsson, Alf Ceplitis, José Crossa, Rodomiro Ortiz, Aakash Chawade

Genomic selection, the application of genomic prediction (GP) models to select candidate individuals, has significantly advanced in the past two decades, effectively accelerating genetic gains in plant breeding. This article provides a holistic overview of key factors that have influenced GP in plant breeding during this period. We delved into the pivotal roles of training population size and genetic diversity, and their relationship with the breeding population, in determining GP accuracy. Special emphasis was placed on optimizing training population size. We explored its benefits and the associated diminishing returns beyond an optimum size. This was done while considering the balance between resource allocation and maximizing prediction accuracy through current optimization algorithms. The density and distribution of single-nucleotide polymorphisms, level of linkage disequilibrium, genetic complexity, trait heritability, statistical machine-learning methods, and non-additive effects are the other vital factors. Using wheat, maize, and potato as examples, we summarize the effect of these factors on the accuracy of GP for various traits. The search for high accuracy in GP-theoretically reaching one when using the Pearson's correlation as a metric-is an active research area as yet far from optimal for various traits. We hypothesize that with ultra-high sizes of genotypic and phenotypic datasets, effective training population optimization methods and support from other omics approaches (transcriptomics, metabolomics and proteomics) coupled with deep-learning algorithms could overcome the boundaries of current limitations to achieve the highest possible prediction accuracy, making genomic selection an effective tool in plant breeding.

基因组选择,即应用基因组预测(GP)模型选择候选个体,在过去二十年中取得了长足进步,有效加快了植物育种的遗传收益。本文全面概述了这一时期影响植物育种中基因组预测的关键因素。我们深入研究了训练群体大小和遗传多样性的关键作用,以及它们与育种群体的关系,这些因素决定了基因组预测的准确性。我们特别强调了训练群体规模的优化。我们探讨了训练群体规模的益处以及超过最佳规模后的相关收益递减问题。同时,我们还考虑了资源分配与通过当前优化算法最大限度提高预测准确性之间的平衡。单核苷酸多态性(SNP)的密度和分布、连锁不平衡程度、遗传复杂性、性状遗传率、统计机器学习方法和非加成效应是其他重要因素。我们以小麦、玉米和马铃薯为例,总结了这些因素对不同性状 GP 精确度的影响。在 GP 中寻求高准确度(使用皮尔逊相关性作为衡量标准时,理论上可达到 1)是一个活跃的研究领域,但对于各种性状而言,这还远未达到最佳状态。我们假设,如果有超大规模的基因型和表型数据集、有效的训练群体优化方法以及其他全息方法(转录组学、代谢组学和蛋白质组学)的支持,再加上深度学习算法,就能突破目前的限制,实现尽可能高的预测准确率,使基因组学成为植物育种的有效工具。
{"title":"Genomic selection in plant breeding: Key factors shaping two decades of progress.","authors":"Admas Alemu, Johanna Åstrand, Osval A Montesinos-López, Julio Isidro Y Sánchez, Javier Fernández-Gónzalez, Wuletaw Tadesse, Ramesh R Vetukuri, Anders S Carlsson, Alf Ceplitis, José Crossa, Rodomiro Ortiz, Aakash Chawade","doi":"10.1016/j.molp.2024.03.007","DOIUrl":"10.1016/j.molp.2024.03.007","url":null,"abstract":"<p><p>Genomic selection, the application of genomic prediction (GP) models to select candidate individuals, has significantly advanced in the past two decades, effectively accelerating genetic gains in plant breeding. This article provides a holistic overview of key factors that have influenced GP in plant breeding during this period. We delved into the pivotal roles of training population size and genetic diversity, and their relationship with the breeding population, in determining GP accuracy. Special emphasis was placed on optimizing training population size. We explored its benefits and the associated diminishing returns beyond an optimum size. This was done while considering the balance between resource allocation and maximizing prediction accuracy through current optimization algorithms. The density and distribution of single-nucleotide polymorphisms, level of linkage disequilibrium, genetic complexity, trait heritability, statistical machine-learning methods, and non-additive effects are the other vital factors. Using wheat, maize, and potato as examples, we summarize the effect of these factors on the accuracy of GP for various traits. The search for high accuracy in GP-theoretically reaching one when using the Pearson's correlation as a metric-is an active research area as yet far from optimal for various traits. We hypothesize that with ultra-high sizes of genotypic and phenotypic datasets, effective training population optimization methods and support from other omics approaches (transcriptomics, metabolomics and proteomics) coupled with deep-learning algorithms could overcome the boundaries of current limitations to achieve the highest possible prediction accuracy, making genomic selection an effective tool in plant breeding.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"552-578"},"PeriodicalIF":4.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140110790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Plant
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1