首页 > 最新文献

Molecular Plant最新文献

英文 中文
CONSTANS alters the circadian clock in Arabidopsis thaliana. CONSTANS 改变了拟南芥的昼夜节律。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-05 Epub Date: 2024-06-17 DOI: 10.1016/j.molp.2024.06.006
Pedro de Los Reyes, Gloria Serrano-Bueno, Francisco J Romero-Campero, He Gao, Jose M Romero, Federico Valverde

Plants are sessile organisms that have acquired highly plastic developmental strategies to adapt to the environment. Among these processes, the floral transition is essential to ensure reproductive success and is finely regulated by several internal and external genetic networks. The photoperiodic pathway, which controls plant response to day length, is one of the most important pathways controlling flowering. In Arabidopsis photoperiodic flowering, CONSTANS (CO) is the central gene activating the expression of the florigen FLOWERING LOCUS T (FT) in the leaves at the end of a long day. The circadian clock strongly regulates CO expression. However, to date, no evidence has been reported regarding a feedback loop from the photoperiod pathway back to the circadian clock. Using transcriptional networks, we have identified relevant network motifs regulating the interplay between the circadian clock and the photoperiod pathway. Gene expression, chromatin immunoprecipitation experiments, and phenotypic analysis allowed us to elucidate the role of CO over the circadian clock. Plants with altered CO expression showed a different internal clock period, measured by daily leaf rhythmic movements. We showed that CO upregulates the expression of key genes related to the circadian clock, such as CCA1, LHY, PRR5, and GI, at the end of a long day by binding to specific sites on their promoters. Moreover, a high number of PRR5-repressed target genes are upregulated by CO, and this could explain the phase transition promoted by CO. The CO-PRR5 complex interacts with the bZIP transcription factor HY5 and helps to localize the complex in the promoters of clock genes. Taken together, our results indicate that there may be a feedback loop in which CO communicates back to the circadian clock, providing seasonal information to the circadian system.

植物是一种无柄生物,具有高度可塑性的发育策略,以适应环境。在这些过程中,花期转换对确保繁殖成功至关重要,并受到多个内部和外部遗传网络的精细调控。控制植物对昼长反应的光周期途径是控制开花的最重要途径之一。在拟南芥的光周期开花过程中,CONSTANS(CO)是一个核心基因,它能在长日照结束时激活叶片中花粉基因 FLOWERING LOCUS T(FT)的表达。昼夜节律强烈调节 CO 的表达。然而,迄今为止,还没有关于从光周期途径反馈回昼夜节律钟的证据。利用转录网络,我们确定了调控昼夜节律钟与光周期途径之间相互作用的相关网络模式。通过基因表达、染色质免疫沉淀实验和表型分析,我们阐明了 CO 对昼夜节律钟的作用。CO表达改变的植物表现出不同的内部时钟周期,这是由每日叶片节律性运动测量的。我们的研究表明,CO 可以通过与 CCA1、LHY、PRR5 和 GI 等昼夜节律相关的关键基因启动子上的特定位点结合,在漫长的一天结束时激活这些基因。此外,大量受 PRR5 抑制的靶基因被 CO 上调,这也可以解释 CO 促进相位转换的原因。CO-PRR5 复合物与 bZIP 转录因子 HY5 相互作用,有助于将复合物定位在时钟基因的启动子上。我们的研究结果表明,一氧化碳可能与昼夜节律钟之间存在反馈回路,为昼夜节律系统提供季节信息。
{"title":"CONSTANS alters the circadian clock in Arabidopsis thaliana.","authors":"Pedro de Los Reyes, Gloria Serrano-Bueno, Francisco J Romero-Campero, He Gao, Jose M Romero, Federico Valverde","doi":"10.1016/j.molp.2024.06.006","DOIUrl":"10.1016/j.molp.2024.06.006","url":null,"abstract":"<p><p>Plants are sessile organisms that have acquired highly plastic developmental strategies to adapt to the environment. Among these processes, the floral transition is essential to ensure reproductive success and is finely regulated by several internal and external genetic networks. The photoperiodic pathway, which controls plant response to day length, is one of the most important pathways controlling flowering. In Arabidopsis photoperiodic flowering, CONSTANS (CO) is the central gene activating the expression of the florigen FLOWERING LOCUS T (FT) in the leaves at the end of a long day. The circadian clock strongly regulates CO expression. However, to date, no evidence has been reported regarding a feedback loop from the photoperiod pathway back to the circadian clock. Using transcriptional networks, we have identified relevant network motifs regulating the interplay between the circadian clock and the photoperiod pathway. Gene expression, chromatin immunoprecipitation experiments, and phenotypic analysis allowed us to elucidate the role of CO over the circadian clock. Plants with altered CO expression showed a different internal clock period, measured by daily leaf rhythmic movements. We showed that CO upregulates the expression of key genes related to the circadian clock, such as CCA1, LHY, PRR5, and GI, at the end of a long day by binding to specific sites on their promoters. Moreover, a high number of PRR5-repressed target genes are upregulated by CO, and this could explain the phase transition promoted by CO. The CO-PRR5 complex interacts with the bZIP transcription factor HY5 and helps to localize the complex in the promoters of clock genes. Taken together, our results indicate that there may be a feedback loop in which CO communicates back to the circadian clock, providing seasonal information to the circadian system.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141419953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic insights into adaptation of alfalfa. 对紫花苜蓿适应性的遗传学见解。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-05 Epub Date: 2024-06-28 DOI: 10.1016/j.molp.2024.06.015
Yafei Guo, Lipeng Kang, Fei Lu
{"title":"Genetic insights into adaptation of alfalfa.","authors":"Yafei Guo, Lipeng Kang, Fei Lu","doi":"10.1016/j.molp.2024.06.015","DOIUrl":"10.1016/j.molp.2024.06.015","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phytochrome B interacts with LIGULELESS1 to control plant architecture and density tolerance in maize. 植物色素 B 与 LIGULELESS1 相互作用,控制玉米的植株结构和耐密度。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-05 Epub Date: 2024-06-29 DOI: 10.1016/j.molp.2024.06.014
Qingbiao Shi, Ying Xia, Qibin Wang, Kaiwen Lv, Hengjia Yang, Lianzhe Cui, Yue Sun, Xiaofei Wang, Qing Tao, Xiehai Song, Di Xu, Wenchang Xu, Xingyun Wang, Xianglan Wang, Fanying Kong, Haisen Zhang, Bosheng Li, Pinghua Li, Haiyang Wang, Gang Li

Over the past few decades, significant improvements in maize yield have been largely attributed to increased plant density of upright hybrid varieties rather than increased yield per plant. However, dense planting triggers shade avoidance responses (SARs) that optimize light absorption but impair plant vigor and performance, limiting yield improvement through increasing plant density. In this study, we demonstrated that high-density-induced leaf angle narrowing and stem/stalk elongation are largely dependent on phytochrome B (phyB1/B2), the primary photoreceptor responsible for perceiving red (R) and far-red (FR) light in maize. We found that maize phyB physically interacts with the LIGULELESS1 (LG1), a classical key regulator of leaf angle, to coordinately regulate plant architecture and density tolerance. The abundance of LG1 is significantly increased by phyB under high R:FR light (low density) but rapidly decreases under low R:FR light (high density), correlating with variations in leaf angle and plant height under various densities. In addition, we identified the homeobox transcription factor HB53 as a target co-repressed by both phyB and LG1 but rapidly induced by canopy shade. Genetic and cellular analyses showed that HB53 regulates plant architecture by controlling the elongation and division of ligular adaxial and abaxial cells. Taken together, these findings uncover the phyB-LG1-HB53 regulatory module as a key molecular mechanism governing plant architecture and density tolerance, providing potential genetic targets for breeding maize hybrid varieties suitable for high-density planting.

过去几十年来,玉米产量的显著提高主要归功于直立型杂交品种植株密度的增加,而不是单株产量的提高。然而,密植会引发避阴反应(SAR),从而优化光吸收,但会损害植株活力和表现,从而限制通过增加植株密度来提高产量。在这项研究中,我们证明了高密度诱导的叶片角度变窄和茎秆/茎杆伸长在很大程度上依赖于phytochrome B(phyB1/B2),phyB1/B2是玉米中负责感知红光(R)和远红光(FR)的主要光感受器。玉米 phyB 与叶片角度的经典关键调控因子 LIGULELESS1(LG1)发生物理相互作用,从而协调调控植物结构和密度耐受性。在高R:FR光照(低密度)条件下,phyB会显著增加LG1的丰度,但在低R:FR光照(高密度)条件下,LG1的丰度会迅速降低,这与不同密度条件下叶片角度和植株高度的变化相关。此外,我们还发现同源转录因子 HB53 是被 phyB 和 LG1 共同抑制的靶标,但在冠层遮荫下会被迅速诱导,这表明它在对不同密度的响应中起着核心作用。值得注意的是,HB53 通过控制韧皮部正面和背面细胞的伸长和分裂来调节植物结构。这些发现揭示了phyB-LG1-HB53调控模块是调控植物结构和密度耐受性的关键分子机制,为培育优化高密度种植的玉米杂交品种提供了潜在的遗传目标。
{"title":"Phytochrome B interacts with LIGULELESS1 to control plant architecture and density tolerance in maize.","authors":"Qingbiao Shi, Ying Xia, Qibin Wang, Kaiwen Lv, Hengjia Yang, Lianzhe Cui, Yue Sun, Xiaofei Wang, Qing Tao, Xiehai Song, Di Xu, Wenchang Xu, Xingyun Wang, Xianglan Wang, Fanying Kong, Haisen Zhang, Bosheng Li, Pinghua Li, Haiyang Wang, Gang Li","doi":"10.1016/j.molp.2024.06.014","DOIUrl":"10.1016/j.molp.2024.06.014","url":null,"abstract":"<p><p>Over the past few decades, significant improvements in maize yield have been largely attributed to increased plant density of upright hybrid varieties rather than increased yield per plant. However, dense planting triggers shade avoidance responses (SARs) that optimize light absorption but impair plant vigor and performance, limiting yield improvement through increasing plant density. In this study, we demonstrated that high-density-induced leaf angle narrowing and stem/stalk elongation are largely dependent on phytochrome B (phyB1/B2), the primary photoreceptor responsible for perceiving red (R) and far-red (FR) light in maize. We found that maize phyB physically interacts with the LIGULELESS1 (LG1), a classical key regulator of leaf angle, to coordinately regulate plant architecture and density tolerance. The abundance of LG1 is significantly increased by phyB under high R:FR light (low density) but rapidly decreases under low R:FR light (high density), correlating with variations in leaf angle and plant height under various densities. In addition, we identified the homeobox transcription factor HB53 as a target co-repressed by both phyB and LG1 but rapidly induced by canopy shade. Genetic and cellular analyses showed that HB53 regulates plant architecture by controlling the elongation and division of ligular adaxial and abaxial cells. Taken together, these findings uncover the phyB-LG1-HB53 regulatory module as a key molecular mechanism governing plant architecture and density tolerance, providing potential genetic targets for breeding maize hybrid varieties suitable for high-density planting.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SnRK1a1, a new player in the sucrose-Opaque2 network during endosperm filling. SnRK1a1是胚乳填充过程中蔗糖-Opaque2网络中的一个新角色。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-05 Epub Date: 2024-07-06 DOI: 10.1016/j.molp.2024.07.003
Kelly Mayrink Balmant, Marcio F R Resende
{"title":"SnRK1a1, a new player in the sucrose-Opaque2 network during endosperm filling.","authors":"Kelly Mayrink Balmant, Marcio F R Resende","doi":"10.1016/j.molp.2024.07.003","DOIUrl":"10.1016/j.molp.2024.07.003","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural variations of a new fertility restorer gene, Rf20, underlie the restoration of wild abortive-type cytoplasmic male sterility in rice. 一种新的生育力恢复基因 Rf20 的结构变异是恢复水稻野生败育型细胞质雄性不育的基础。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-05 Epub Date: 2024-07-02 DOI: 10.1016/j.molp.2024.07.001
Shufeng Song, Yixing Li, Mudan Qiu, Na Xu, Bin Li, Longhui Zhang, Lei Li, Weijun Chen, Jinglei Li, Tiankang Wang, Yingxin Qiu, Mengmeng Gong, Dong Yu, Hao Dong, Siqi Xia, Yi Pan, Dingyang Yuan, Li Li

The discovery of a wild abortive-type (WA) cytoplasmic male sterile (CMS) line and breeding its restorer line have led to the commercialization of three-line hybrid rice, contributing considerably to global food security. However, the molecular mechanisms underlying fertility abortion and the restoration of CMS-WA lines remain largely elusive. In this study, we cloned a restorer gene, Rf20, following a genome-wide association study analysis of the core parent lines of three-line hybrid rice. We found that Rf20 was present in all core parental lines, but different haplotypes and structural variants of its gene resulted in differences in Rf20 expression levels between sterile and restored lines. Rf20 could restore pollen fertility in the CMS-WA line and was found to be responsible for fertility restoration in some CMS lines under high temperatures. In addition, we found that Rf20 encodes a pentatricopeptide repeat protein that competes with WA352 for binding with COX11. This interaction enhances COX11's function as a scavenger of reactive oxygen species, which in turn restores pollen fertility. Collectively, our study suggests a new action mode for pentatricopeptide repeat proteins in the fertility restoration of CMS lines, providing an essential theoretical basis for breeding robust restorer lines and for overcoming high temperature-induced fertility recovery of some CMS lines.

野生败育型细胞质雄性不育系的发现及其恢复系的培育促成了三系杂交水稻的商业化,为全球粮食安全做出了巨大贡献。然而,野生败育型细胞质雄性不育系的育性败育和恢复系的分子机理在很大程度上仍然是未知的。在本研究中,我们对三系杂交水稻的核心亲本品系进行了全基因组关联研究分析,克隆了一个恢复基因 Rf20。我们发现 Rf20 存在于所有核心亲本品系中,但其基因的单倍型和结构变异导致不育系和恢复系的 Rf20 表达水平不同。Rf20能恢复野生败育型细胞质雄性不育系的育性,并在高温条件下对一些细胞质雄性不育系的育性恢复起作用。此外,我们还发现 Rf20 编码的五三肽重复蛋白与 WA352 竞争性地与 COX11 结合。这种相互作用增强了 COX11 作为活性氧清除剂的功能,进而恢复了花粉的生育能力。本研究提出了一个参与细胞质雄性不育系育性恢复的五叉肽重复蛋白新模型,为培育强恢复系和克服某些三系不育系的高温育性恢复提供了重要的理论依据。
{"title":"Structural variations of a new fertility restorer gene, Rf20, underlie the restoration of wild abortive-type cytoplasmic male sterility in rice.","authors":"Shufeng Song, Yixing Li, Mudan Qiu, Na Xu, Bin Li, Longhui Zhang, Lei Li, Weijun Chen, Jinglei Li, Tiankang Wang, Yingxin Qiu, Mengmeng Gong, Dong Yu, Hao Dong, Siqi Xia, Yi Pan, Dingyang Yuan, Li Li","doi":"10.1016/j.molp.2024.07.001","DOIUrl":"10.1016/j.molp.2024.07.001","url":null,"abstract":"<p><p>The discovery of a wild abortive-type (WA) cytoplasmic male sterile (CMS) line and breeding its restorer line have led to the commercialization of three-line hybrid rice, contributing considerably to global food security. However, the molecular mechanisms underlying fertility abortion and the restoration of CMS-WA lines remain largely elusive. In this study, we cloned a restorer gene, Rf20, following a genome-wide association study analysis of the core parent lines of three-line hybrid rice. We found that Rf20 was present in all core parental lines, but different haplotypes and structural variants of its gene resulted in differences in Rf20 expression levels between sterile and restored lines. Rf20 could restore pollen fertility in the CMS-WA line and was found to be responsible for fertility restoration in some CMS lines under high temperatures. In addition, we found that Rf20 encodes a pentatricopeptide repeat protein that competes with WA352 for binding with COX11. This interaction enhances COX11's function as a scavenger of reactive oxygen species, which in turn restores pollen fertility. Collectively, our study suggests a new action mode for pentatricopeptide repeat proteins in the fertility restoration of CMS lines, providing an essential theoretical basis for breeding robust restorer lines and for overcoming high temperature-induced fertility recovery of some CMS lines.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The jasmonate pathway promotes nodule symbiosis and suppresses host plant defense in Medicago truncatula. 茉莉酸盐通路促进麦地那龙葵(Medicago truncatula)的结核共生并抑制宿主植物的防御。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-05 Epub Date: 2024-06-09 DOI: 10.1016/j.molp.2024.06.004
Da Guo, Jingrui Li, Peng Liu, Yuzhan Wang, Na Cao, Xiangling Fang, Tao Wang, Jiangli Dong

Root nodule symbiosis (RNS) between legumes and rhizobia is a major source of nitrogen in agricultural systems. Effective symbiosis requires precise regulation of plant defense responses. The role of the defense hormone jasmonic acid (JA) in the immune response has been extensively studied. Current research shows that JA can play either a positive or negative regulatory role in RNS depending on its concentration, but the molecular mechanisms remain to be elucidated. In this study, we found that inoculation with the rhizobia Sm1021 induces the JA pathway in Medicago truncatula, and blocking the JA pathway significantly reduces the number of infection threads. Mutations in the MtMYC2 gene, which encodes a JA signaling master transcription factor, significantly inhibited rhizobia infection, terminal differentiation, and symbiotic cell formation. Combining RNA sequencing and chromatin immunoprecipitation sequencing, we discovered that MtMYC2 regulates the expression of nodule-specific MtDNF2, MtNAD1, and MtSymCRK to suppress host defense, while it activates MtDNF1 expression to regulate the maturation of MtNCRs, which in turn promotes bacteroid formation. More importantly, MtMYC2 participates in symbiotic signal transduction by promoting the expression of MtIPD3. Notably, the MtMYC2-MtIPD3 transcriptional regulatory module is specifically present in legumes, and the Mtmyc2 mutants are susceptible to the infection by the pathogen Rhizoctonia solani. Collectively, these findings reveal the molecular mechanisms of how the JA pathway regulates RNS, broadening our understanding of the roles of JA in plant-microbe interactions.

豆科植物与根瘤菌之间的根瘤共生(RNS)是农业系统中氮的主要来源。有效的共生需要精确调节植物的防御反应。防御激素茉莉酸在免疫反应中的作用已被广泛研究。目前的研究表明,茉莉酸可根据浓度的不同在 RNS 中发挥积极或消极的调控作用,但其分子机制仍有待阐明。在此,我们发现接种根瘤菌 Sm1021 会诱导美智子(Medicago truncatula)的 JA 通路反应,阻断 JA 通路会显著减少感染丝的数量。JA信号转导主转录因子MtMYC2基因的突变明显抑制了根瘤菌的感染、末端分化和共生细胞的形成。结合RNA-seq和ChIP-seq,我们发现MtMYC2可调控结核特异性MtDNF2、MtNAD1和MtSymCRK的表达,从而抑制宿主防御。MtMYC2激活MtDNF1的表达,从而调节MtNCR的成熟,进而促进类菌体的形成。更重要的是,MtMYC2 能促进 MtIPD3 的表达,从而参与共生信号转导。值得注意的是,MtMYC2-MtIPD3 转录调控模块专门存在于豆科植物中。此外,Mtmyc2突变体对根瘤菌表现出易感表型。总之,我们的研究结果揭示了 JA 通路在 RNS 中的分子机制,进一步拓宽了人们对 JA 在植物与微生物相互作用网络中的认识。
{"title":"The jasmonate pathway promotes nodule symbiosis and suppresses host plant defense in Medicago truncatula.","authors":"Da Guo, Jingrui Li, Peng Liu, Yuzhan Wang, Na Cao, Xiangling Fang, Tao Wang, Jiangli Dong","doi":"10.1016/j.molp.2024.06.004","DOIUrl":"10.1016/j.molp.2024.06.004","url":null,"abstract":"<p><p>Root nodule symbiosis (RNS) between legumes and rhizobia is a major source of nitrogen in agricultural systems. Effective symbiosis requires precise regulation of plant defense responses. The role of the defense hormone jasmonic acid (JA) in the immune response has been extensively studied. Current research shows that JA can play either a positive or negative regulatory role in RNS depending on its concentration, but the molecular mechanisms remain to be elucidated. In this study, we found that inoculation with the rhizobia Sm1021 induces the JA pathway in Medicago truncatula, and blocking the JA pathway significantly reduces the number of infection threads. Mutations in the MtMYC2 gene, which encodes a JA signaling master transcription factor, significantly inhibited rhizobia infection, terminal differentiation, and symbiotic cell formation. Combining RNA sequencing and chromatin immunoprecipitation sequencing, we discovered that MtMYC2 regulates the expression of nodule-specific MtDNF2, MtNAD1, and MtSymCRK to suppress host defense, while it activates MtDNF1 expression to regulate the maturation of MtNCRs, which in turn promotes bacteroid formation. More importantly, MtMYC2 participates in symbiotic signal transduction by promoting the expression of MtIPD3. Notably, the MtMYC2-MtIPD3 transcriptional regulatory module is specifically present in legumes, and the Mtmyc2 mutants are susceptible to the infection by the pathogen Rhizoctonia solani. Collectively, these findings reveal the molecular mechanisms of how the JA pathway regulates RNS, broadening our understanding of the roles of JA in plant-microbe interactions.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141301159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hordedane diterpenoid phytoalexins restrict Fusarium graminearum infection but enhance Bipolaris sorokiniana colonization of barley roots. Hordedane 二萜类植物毒素限制了禾谷镰刀菌的感染,但增强了大麦根部 Bipolaris sorkiniana 的定殖。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-05 Epub Date: 2024-07-30 DOI: 10.1016/j.molp.2024.07.006
Yaming Liu, Dario Esposto, Lisa K Mahdi, Andrea Porzel, Pauline Stark, Hidayat Hussain, Anja Scherr-Henning, Simon Isfort, Ulschan Bathe, Iván F Acosta, Alga Zuccaro, Gerd U Balcke, Alain Tissier

Plant immunity is a multilayered process that includes recognition of patterns or effectors from pathogens to elicit defense responses. These include the induction of a cocktail of defense metabolites that typically restrict pathogen virulence. Here, we investigate the interaction between barley roots and the fungal pathogens Bipolaris sorokiniana (Bs) and Fusarium graminearum (Fg) at the metabolite level. We identify hordedanes, a previously undescribed set of labdane-related diterpenoids with antimicrobial properties, as critical players in these interactions. Infection of barley roots by Bs and Fg elicits hordedane synthesis from a 600-kb gene cluster. Heterologous reconstruction of the biosynthesis pathway in yeast and Nicotiana benthamiana produced several hordedanes, including one of the most functionally decorated products 19-β-hydroxy-hordetrienoic acid (19-OH-HTA). Barley mutants in the diterpene synthase genes of this cluster are unable to produce hordedanes but, unexpectedly, show reduced Bs colonization. By contrast, colonization by Fusarium graminearum, another fungal pathogen of barley and wheat, is 4-fold higher in the mutants completely lacking hordedanes. Accordingly, 19-OH-HTA enhances both germination and growth of Bs, whereas it inhibits other pathogenic fungi, including Fg. Analysis of microscopy and transcriptomics data suggest that hordedanes delay the necrotrophic phase of Bs. Taken together, these results show that adapted pathogens such as Bs can subvert plant metabolic defenses to facilitate root colonization.

植物免疫是一个多层次的过程,包括识别来自病原体的模式或效应物以引起防御反应。其中包括诱导通常会限制病原体毒力的鸡尾酒式防御代谢物。在这里,我们研究了大麦根与真菌病原体 Bipolaris sorokiniana(Bs)和 Fusarium graminearum(Fg)在代谢物水平上的相互作用。我们发现,hordedanes(一种以前未曾描述过的具有抗菌特性的唇形科相关二萜类化合物)在这些相互作用中起着关键作用。大麦根部受到 Bs 和 Fg 的感染后,一个 600 kb 的基因簇就会合成大麦二萜。在酵母和烟草中异源重建生物合成途径产生了几种大麦二萜,其中包括最具功能性的装饰产物之一 19-β-hydroxy- hordetrienoic acid(19-OH-HTA)。该基因簇二萜合成酶基因的大麦突变体无法产生大麦二萜,但却意外地减少了 Bs 的定殖。相比之下,大麦和小麦的另一种真菌病原体禾本科镰刀菌(Fusarium graminearum)在完全缺乏禾草素的突变体中的定殖率要高出四倍。因此,19-OH-HTA 能促进 Bs 的萌发和生长,同时抑制包括 Fg 在内的其他病原真菌。显微镜和转录组学表明,角叉菜胶能延缓 Bs 的坏死阶段。我们的数据表明,Bs 等适应性病原菌可以颠覆植物的新陈代谢防御系统,促进根部定殖。
{"title":"Hordedane diterpenoid phytoalexins restrict Fusarium graminearum infection but enhance Bipolaris sorokiniana colonization of barley roots.","authors":"Yaming Liu, Dario Esposto, Lisa K Mahdi, Andrea Porzel, Pauline Stark, Hidayat Hussain, Anja Scherr-Henning, Simon Isfort, Ulschan Bathe, Iván F Acosta, Alga Zuccaro, Gerd U Balcke, Alain Tissier","doi":"10.1016/j.molp.2024.07.006","DOIUrl":"10.1016/j.molp.2024.07.006","url":null,"abstract":"<p><p>Plant immunity is a multilayered process that includes recognition of patterns or effectors from pathogens to elicit defense responses. These include the induction of a cocktail of defense metabolites that typically restrict pathogen virulence. Here, we investigate the interaction between barley roots and the fungal pathogens Bipolaris sorokiniana (Bs) and Fusarium graminearum (Fg) at the metabolite level. We identify hordedanes, a previously undescribed set of labdane-related diterpenoids with antimicrobial properties, as critical players in these interactions. Infection of barley roots by Bs and Fg elicits hordedane synthesis from a 600-kb gene cluster. Heterologous reconstruction of the biosynthesis pathway in yeast and Nicotiana benthamiana produced several hordedanes, including one of the most functionally decorated products 19-β-hydroxy-hordetrienoic acid (19-OH-HTA). Barley mutants in the diterpene synthase genes of this cluster are unable to produce hordedanes but, unexpectedly, show reduced Bs colonization. By contrast, colonization by Fusarium graminearum, another fungal pathogen of barley and wheat, is 4-fold higher in the mutants completely lacking hordedanes. Accordingly, 19-OH-HTA enhances both germination and growth of Bs, whereas it inhibits other pathogenic fungi, including Fg. Analysis of microscopy and transcriptomics data suggest that hordedanes delay the necrotrophic phase of Bs. Taken together, these results show that adapted pathogens such as Bs can subvert plant metabolic defenses to facilitate root colonization.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141600789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arabidopsis WRKY1 promotes monocarpic senescence by integrative regulation of flowering, leaf senescence, and nitrogen remobilization. 拟南芥 WRKY1 通过综合调控开花、叶片衰老和氮素再动员促进单果衰老。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-05 Epub Date: 2024-07-14 DOI: 10.1016/j.molp.2024.07.005
Wei Zhang, Shufei Tang, Xuying Li, Yuanyuan Chen, Jiajia Li, Yuyang Wang, Ruichao Bian, Ying Jin, Xiaoxian Zhu, Kewei Zhang

Monocarpic senescence, characterized by whole-plant senescence following a single flowering phase, is widespread in seed plants, particularly in crops, determining seed harvest time and quality. However, how external and internal signals are systemically integrated into monocarpic senescence remains largely unknown. Here, we report that the Arabidopsis thaliana transcription factor WRKY1 plays essential roles in multiple key steps of monocarpic senescence. WRKY1 expression is induced by age, salicylic acid (SA), and nitrogen (N) deficiency. Flowering and leaf senescence are accelerated in the WRKY1 overexpression lines but are delayed in the wrky1 mutants. The combined DNA affinity purification sequencing and RNA sequencing analyses uncover the direct target genes of WRKY1. Further studies show that WRKY1 coordinately regulates three processes in monocarpic senescence: (1) suppressing FLOWERING LOCUS C gene expression to initiate flowering, (2) inducing SA biosynthesis genes to promote leaf senescence, and (3) activating the N assimilation and transport genes to trigger N remobilization. In summary, our study reveals how one stress-responsive transcription factor, WRKY1, integrates flowering, leaf senescence, and N remobilization processes into monocarpic senescence, providing important insights into plant lifetime regulation.

单子叶衰老的特点是在一个开花期之后整个植株衰老,它广泛存在于种子植物,尤其是农作物中,决定着种子的收获时间和质量。然而,外部和内部信号如何系统地整合到单子叶衰老中,在很大程度上仍是未知数。在这里,我们发现拟南芥转录因子 WRKY1 在单果型衰老的多个关键步骤中发挥着重要作用。WRKY1的表达受年龄、SA和氮(N)缺乏的诱导。在 WRKY1 过表达株系中,开花和叶片衰老得到促进,但在 wrky1 突变体中,开花和叶片衰老被延迟。DAP-Seq 和 RNA-Seq 联合分析发现了 WRKY1 的直接靶基因。进一步的研究表明,WRKY1 在单果型衰老中协调调控三个过程:1)抑制开花定位点 C 基因的表达以启动开花;2)诱导 SA 生物合成基因以促进叶片衰老;3)激活氮同化和转运基因以触发氮的再动员。总之,我们揭示了一个胁迫响应转录因子 WRKY1 如何协同作用,将开花和叶片衰老整合为单果型衰老,为植物寿命调控提供了重要见解。
{"title":"Arabidopsis WRKY1 promotes monocarpic senescence by integrative regulation of flowering, leaf senescence, and nitrogen remobilization.","authors":"Wei Zhang, Shufei Tang, Xuying Li, Yuanyuan Chen, Jiajia Li, Yuyang Wang, Ruichao Bian, Ying Jin, Xiaoxian Zhu, Kewei Zhang","doi":"10.1016/j.molp.2024.07.005","DOIUrl":"10.1016/j.molp.2024.07.005","url":null,"abstract":"<p><p>Monocarpic senescence, characterized by whole-plant senescence following a single flowering phase, is widespread in seed plants, particularly in crops, determining seed harvest time and quality. However, how external and internal signals are systemically integrated into monocarpic senescence remains largely unknown. Here, we report that the Arabidopsis thaliana transcription factor WRKY1 plays essential roles in multiple key steps of monocarpic senescence. WRKY1 expression is induced by age, salicylic acid (SA), and nitrogen (N) deficiency. Flowering and leaf senescence are accelerated in the WRKY1 overexpression lines but are delayed in the wrky1 mutants. The combined DNA affinity purification sequencing and RNA sequencing analyses uncover the direct target genes of WRKY1. Further studies show that WRKY1 coordinately regulates three processes in monocarpic senescence: (1) suppressing FLOWERING LOCUS C gene expression to initiate flowering, (2) inducing SA biosynthesis genes to promote leaf senescence, and (3) activating the N assimilation and transport genes to trigger N remobilization. In summary, our study reveals how one stress-responsive transcription factor, WRKY1, integrates flowering, leaf senescence, and N remobilization processes into monocarpic senescence, providing important insights into plant lifetime regulation.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recurrent evolution of seaweed body plan complexity among photosynthetic eukaryotes. 光合真核生物中海藻体表复杂性的反复进化。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-01 Epub Date: 2024-06-04 DOI: 10.1016/j.molp.2024.06.001
Elisa S Goldbecker, Iker Irisarri, Jan de Vries
{"title":"Recurrent evolution of seaweed body plan complexity among photosynthetic eukaryotes.","authors":"Elisa S Goldbecker, Iker Irisarri, Jan de Vries","doi":"10.1016/j.molp.2024.06.001","DOIUrl":"10.1016/j.molp.2024.06.001","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141248123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plastid engineering with an efficient RNAi delivery system based on bacteriophage MS2 virus-like particles enhances plant resistance to cotton bollworm. 基于噬菌体 MS2 病毒样颗粒的高效 RNAi 传递系统的质体工程可增强植物对棉铃虫的抗性。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-01 Epub Date: 2024-06-04 DOI: 10.1016/j.molp.2024.05.013
Chunmei Jiang, Jinqiu Fu, Fujun Li, Kai Xia, Shengchun Li, Ling Chang, Ralph Bock, Jiang Zhang
{"title":"Plastid engineering with an efficient RNAi delivery system based on bacteriophage MS2 virus-like particles enhances plant resistance to cotton bollworm.","authors":"Chunmei Jiang, Jinqiu Fu, Fujun Li, Kai Xia, Shengchun Li, Ling Chang, Ralph Bock, Jiang Zhang","doi":"10.1016/j.molp.2024.05.013","DOIUrl":"10.1016/j.molp.2024.05.013","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141248111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Plant
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1