首页 > 最新文献

Molecular Plant最新文献

英文 中文
Biosynthesis of nitric oxide in plants: An oxidative pathway orchestrated by the interplay of CYP79s, N-OX FMOs, and peroxidases 植物中一氧化氮的生物合成:由CYP79s、N-OX FMOs和过氧化物酶相互作用协调的氧化途径
IF 27.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-08 DOI: 10.1016/j.molp.2025.12.004
Barbara Dusak, Mengqi Liu, Stavaniya Ghosh, Birger Lindberg Møller
Nitric oxide (NO) is in the Pantheon of plant signal molecules and hormones controlling plant growth, development, and adaptation to environmental challenges. The route of NO biosynthesis in plants has remained enigmatic. Previous studies have shown the ability of peroxidases to utilize oximes for production of NO. Peroxidases are widely spread and highly expressed in plant tissues. What then is the identity of the pathway signature enzyme(s) offering tight, spatio-temporal regulation of NO production to effectuate its specific signal functions? And what are the key selection criteria to be fulfilled for genes and enzymes operating at the global level in an oxidative pathway for NO production in plants? Convergently evolved CYP79s and N-OX FMOs catalyze conversion of different amino acids into oximes. In this Perspective, we delineate how these oxygenases fine-tune spatio-temporal formation of the oximes as committed substrates for peroxidase catalyzed NO production. Based on the spatio-temporal location of the CYP79s and N-OX FMOs present in a specific plant species, NO formation in its different meristematic tissues is catalyzed by CYP79s, N-OX FMOs, or by their operation in conjunction. The oxime-based NO production is accompanied by formation of stoichiometric amounts of a diagnostic specific aldehyde detectable by GLC/LC-MS. When oximes derived from tryptophan, tyrosine, or phenylalanine are substrates for NO production, the different aldehydes formed may be oxidized to auxins. The outlined oxidative route for NO production in plants explains observations difficult to interpret in previous plant signal and hormone studies. FMOs may also contribute to NO-formation in animals.
一氧化氮(NO)是控制植物生长、发育和适应环境挑战的信号分子和激素之一。植物体内NO的生物合成途径一直是个谜。以前的研究已经表明过氧化物酶利用肟产生一氧化氮的能力。过氧化物酶在植物组织中广泛分布并高度表达。那么,为NO的产生提供严格的时空调控以实现其特定信号功能的途径特征酶的身份是什么?在植物一氧化氮产生的氧化途径中,在全球水平上运作的基因和酶的关键选择标准是什么?趋同进化的CYP79s和N-OX FMOs催化不同氨基酸转化为肟。从这个角度来看,我们描述了这些加氧酶如何微调氧的时空形成,作为过氧化物酶催化NO生产的承诺底物。基于特定植物物种中存在的CYP79s和N-OX FMOs的时空位置,其不同分生组织中NO的形成是由CYP79s、N-OX FMOs或它们共同作用催化的。以肟为基础的NO生产伴随着GLC/LC-MS检测到的诊断特异性醛的化学计量量的形成。当由色氨酸、酪氨酸或苯丙氨酸衍生的肟作为NO生成的底物时,形成的不同醛可能被氧化为生长素。概述了植物中NO生成的氧化途径,解释了以前植物信号和激素研究中难以解释的观察结果。FMOs也可能促进动物体内no的形成。
{"title":"Biosynthesis of nitric oxide in plants: An oxidative pathway orchestrated by the interplay of CYP79s, N-OX FMOs, and peroxidases","authors":"Barbara Dusak, Mengqi Liu, Stavaniya Ghosh, Birger Lindberg Møller","doi":"10.1016/j.molp.2025.12.004","DOIUrl":"https://doi.org/10.1016/j.molp.2025.12.004","url":null,"abstract":"Nitric oxide (NO) is in the Pantheon of plant signal molecules and hormones controlling plant growth, development, and adaptation to environmental challenges. The route of NO biosynthesis in plants has remained enigmatic. Previous studies have shown the ability of peroxidases to utilize oximes for production of NO. Peroxidases are widely spread and highly expressed in plant tissues. What then is the identity of the pathway signature enzyme(s) offering tight, spatio-temporal regulation of NO production to effectuate its specific signal functions? And what are the key selection criteria to be fulfilled for genes and enzymes operating at the global level in an oxidative pathway for NO production in plants? Convergently evolved CYP79s and N-OX FMOs catalyze conversion of different amino acids into oximes. In this Perspective, we delineate how these oxygenases fine-tune spatio-temporal formation of the oximes as committed substrates for peroxidase catalyzed NO production. Based on the spatio-temporal location of the CYP79s and N-OX FMOs present in a specific plant species, NO formation in its different meristematic tissues is catalyzed by CYP79s, N-OX FMOs, or by their operation in conjunction. The oxime-based NO production is accompanied by formation of stoichiometric amounts of a diagnostic specific aldehyde detectable by GLC/LC-MS. When oximes derived from tryptophan, tyrosine, or phenylalanine are substrates for NO production, the different aldehydes formed may be oxidized to auxins. The outlined oxidative route for NO production in plants explains observations difficult to interpret in previous plant signal and hormone studies. FMOs may also contribute to NO-formation in animals.","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":"1208 1","pages":""},"PeriodicalIF":27.5,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145705025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Viral Masterstroke: Geminivirus C4 Protein Reprograms Auxin Transport to Attract Its Insect Vector 病毒的妙招:双病毒C4蛋白重编程生长素运输以吸引其昆虫载体
IF 27.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-06 DOI: 10.1016/j.molp.2025.12.003
Mingjun Li, Lyuxin Wang, Gentu Wu, Ling Qing
{"title":"A Viral Masterstroke: Geminivirus C4 Protein Reprograms Auxin Transport to Attract Its Insect Vector","authors":"Mingjun Li, Lyuxin Wang, Gentu Wu, Ling Qing","doi":"10.1016/j.molp.2025.12.003","DOIUrl":"https://doi.org/10.1016/j.molp.2025.12.003","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":"1 1","pages":""},"PeriodicalIF":27.5,"publicationDate":"2025-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145689361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SnRK2.5-mediated phosphorylation of PIN2 links osmotic stress signaling with auxin-dependent root adaptive growth in Arabidopsis snrk2.5介导的PIN2磷酸化将渗透胁迫信号与生长素依赖的根适应性生长联系起来
IF 27.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-05 DOI: 10.1016/j.molp.2025.12.002
Shujuan Zhang, Zilong Cui, Yu Gao, Qi Liao, Wenyan Li, Siqi Yuan, Zhuomeng Li, Xinwen Zhang, Kai Ding, Wenjing Zhang, Like Shen, Jörg Kudla, Wenhua Zhang, Jing Zhang, Qun Zhang
The spatiotemporal regulation of polar auxin transport, mediated by PIN-FORMED (PIN) efflux carriers, enables plants to coordinate developmental programs with environmental cues. Here we identify SnRK2.5, an abscisic acid (ABA)-independent member of the SNF1-related protein kinase family, as a key regulator linking osmotic stress signaling to the modulation of auxin transport in Arabidopsis. Osmotic stress-activated SnRK2.5 directly phosphorylates PIN2 at Ser237 and Ser259. Genetic and cell biological analyses demonstrate that these phosphorylation events govern PIN2 vesicular trafficking, vacuolar targeting, and transport activity. Mutating these phosphorylation sites impairs PIN2-dependent auxin redistribution, thereby compromising root tropic responses and reducing osmotic stress tolerance. Our findings reveal a regulatory mechanism whereby SnRK2.5-mediated phosphorylation of PIN2 dynamically adjusts auxin flux to optimize plant growth in response to water availability, uncovering a critical adaptive strategy in plants.
由PIN- formed (PIN)外排载体介导的极性生长素运输的时空调节,使植物能够根据环境线索协调发育程序。本研究发现SnRK2.5是snf1相关蛋白激酶家族中一个不依赖ABA的成员,是拟南芥渗透胁迫信号与生长素运输调节之间的关键调节因子。渗透胁迫激活的SnRK2.5直接磷酸化PIN2的Ser237和Ser259。遗传和细胞生物学分析表明,这些磷酸化事件控制着PIN2的囊泡运输、液泡靶向和运输活性。这些磷酸化位点的突变会损害依赖pin2的生长素再分配,从而损害向根反应并降低渗透胁迫耐受性。我们的研究结果揭示了snrk2.5介导的PIN2磷酸化动态调节生长素通量以优化植物生长以响应水分供应的调控机制,揭示了植物的关键适应策略。
{"title":"SnRK2.5-mediated phosphorylation of PIN2 links osmotic stress signaling with auxin-dependent root adaptive growth in Arabidopsis","authors":"Shujuan Zhang, Zilong Cui, Yu Gao, Qi Liao, Wenyan Li, Siqi Yuan, Zhuomeng Li, Xinwen Zhang, Kai Ding, Wenjing Zhang, Like Shen, Jörg Kudla, Wenhua Zhang, Jing Zhang, Qun Zhang","doi":"10.1016/j.molp.2025.12.002","DOIUrl":"https://doi.org/10.1016/j.molp.2025.12.002","url":null,"abstract":"The spatiotemporal regulation of polar auxin transport, mediated by PIN-FORMED (PIN) efflux carriers, enables plants to coordinate developmental programs with environmental cues. Here we identify SnRK2.5, an abscisic acid (ABA)-independent member of the SNF1-related protein kinase family, as a key regulator linking osmotic stress signaling to the modulation of auxin transport in Arabidopsis. Osmotic stress-activated SnRK2.5 directly phosphorylates PIN2 at Ser237 and Ser259. Genetic and cell biological analyses demonstrate that these phosphorylation events govern PIN2 vesicular trafficking, vacuolar targeting, and transport activity. Mutating these phosphorylation sites impairs PIN2-dependent auxin redistribution, thereby compromising root tropic responses and reducing osmotic stress tolerance. Our findings reveal a regulatory mechanism whereby SnRK2.5-mediated phosphorylation of PIN2 dynamically adjusts auxin flux to optimize plant growth in response to water availability, uncovering a critical adaptive strategy in plants.","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":"2 1","pages":""},"PeriodicalIF":27.5,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145689364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrative regulation of axillary meristem maturation and stolon fate determination in strawberry by light, gibberellin, and ZFP6 光、赤霉素和ZFP6对草莓腋生分生组织成熟和匍匐茎命运的综合调控
IF 27.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-05 DOI: 10.1016/j.molp.2025.12.001
Lei Guo, Muzi Li, Xi Luo, Tianlong He, Ning Ma, Shaojun Tang, Zhongchi Liu
The strawberry axillary-meristem can develop into a branch crown (a flowering shoot) or a stolon (a horizontal stem that produces daughter plants), with gibberellin promoting stolon fate. Despite its importance for plant architecture, asexual reproduction, and perennial growth, the regulatory mechanism governing this fate decision remains poorly understood. We found that the juvenile-to-adult transition of the axillary-meristem is marked by induction of GA20ox4 expression and the onset of stolon formation. RNA-sequencing of staged meristems identified the zinc-finger protein ZFP6, which is strongly co-expressed with GA20ox4. CRISPR knockout of ZFP6 abolished GA20ox4 expression and eliminated stolon formation, a phenotype rescued by exogenous gibberellin, demonstrating that ZFP6 acts to activate gibberellin biosynthesis and promote stolon formation. Genetic analysis of mutants in the red-light receptor PhyB, together with mutants in gibberellin biosynthesis and signaling, further revealed that red light and PhyB promote axillary-meristem maturation-a previously unrecognized developmental stage that precedes fate determination. Together, these findings illuminate how developmental stage and environmental cues converge to regulate axillary-meristem maturation and fate determination and identify a stage-specific regulator controlling the switch to stolon formation.
草莓的腋生分生组织可以发育成分枝冠(开花的枝条)或匍匐茎(产生子植株的水平茎),赤霉素促进匍匐茎的形成。尽管它对植物结构、无性生殖和多年生生长很重要,但控制这种命运决定的调节机制仍然知之甚少。我们发现腋窝分生组织从幼体到成体的转变是以诱导GA20ox4的表达和匍匐茎形成的开始为标志的。分生组织的rna测序鉴定出锌指蛋白ZFP6,该蛋白与GA20ox4强共表达。CRISPR敲除ZFP6后,GA20ox4表达被抑制,匍匐茎形成被消除,这是外源赤霉素拯救的表型,表明ZFP6激活了赤霉素的生物合成,促进了匍匐茎的形成。对红光受体PhyB突变体以及赤霉素生物合成和信号转导突变体的遗传分析进一步揭示,红光和PhyB促进腋窝分生组织成熟,这是一个在命运决定之前未被认识到的发育阶段。总之,这些发现阐明了发育阶段和环境因素如何共同调节腋窝分生组织的成熟和命运决定,并确定了一个控制向匍匐茎形成转换的阶段特异性调节因子。
{"title":"Integrative regulation of axillary meristem maturation and stolon fate determination in strawberry by light, gibberellin, and ZFP6","authors":"Lei Guo, Muzi Li, Xi Luo, Tianlong He, Ning Ma, Shaojun Tang, Zhongchi Liu","doi":"10.1016/j.molp.2025.12.001","DOIUrl":"https://doi.org/10.1016/j.molp.2025.12.001","url":null,"abstract":"The strawberry axillary-meristem can develop into a branch crown (a flowering shoot) or a stolon (a horizontal stem that produces daughter plants), with gibberellin promoting stolon fate. Despite its importance for plant architecture, asexual reproduction, and perennial growth, the regulatory mechanism governing this fate decision remains poorly understood. We found that the juvenile-to-adult transition of the axillary-meristem is marked by induction of GA20ox4 expression and the onset of stolon formation. RNA-sequencing of staged meristems identified the zinc-finger protein ZFP6, which is strongly co-expressed with GA20ox4. CRISPR knockout of ZFP6 abolished GA20ox4 expression and eliminated stolon formation, a phenotype rescued by exogenous gibberellin, demonstrating that ZFP6 acts to activate gibberellin biosynthesis and promote stolon formation. Genetic analysis of mutants in the red-light receptor PhyB, together with mutants in gibberellin biosynthesis and signaling, further revealed that red light and PhyB promote axillary-meristem maturation-a previously unrecognized developmental stage that precedes fate determination. Together, these findings illuminate how developmental stage and environmental cues converge to regulate axillary-meristem maturation and fate determination and identify a stage-specific regulator controlling the switch to stolon formation.","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":"7 1","pages":""},"PeriodicalIF":27.5,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145689363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PLETHORA transcription factors orchestrate epigenetic silencing of bivalent chromatin to promote root meristem development in rice 过多的转录因子协调二价染色质的表观遗传沉默,促进水稻根分生组织的发育
IF 27.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-02 DOI: 10.1016/j.molp.2025.11.012
Qi Li, Junjie Li, Xintian Tang, Chen Chu, Jing Wang, Dao-Xiu Zhou, Yu Zhao
{"title":"PLETHORA transcription factors orchestrate epigenetic silencing of bivalent chromatin to promote root meristem development in rice","authors":"Qi Li, Junjie Li, Xintian Tang, Chen Chu, Jing Wang, Dao-Xiu Zhou, Yu Zhao","doi":"10.1016/j.molp.2025.11.012","DOIUrl":"https://doi.org/10.1016/j.molp.2025.11.012","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":"1 1","pages":""},"PeriodicalIF":27.5,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145657544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rice SINA E3 ligases dichotomously control ERECTA1 ubiquitination and stability to regulate panicle morphogenesis and grain yield 水稻SINA E3连接酶二分调控ERECTA1泛素化和稳定性,调控穗部形态发生和产量
IF 27.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-02 DOI: 10.1016/j.molp.2025.11.015
Zi-Qi Lu, Tao Guo, Ying-Jie Cao, Jun-Xiang Shan, Wang-Wei Ye, Nai-Qian Dong, Yi Kan, Yi-Bing Yang, Shuang-Qin Guo, Jie-Jie Lei, Xiao-Rui Mu, Ji-Fu Zhou, Jin Gao, Hong-Xuan Lin
{"title":"Rice SINA E3 ligases dichotomously control ERECTA1 ubiquitination and stability to regulate panicle morphogenesis and grain yield","authors":"Zi-Qi Lu, Tao Guo, Ying-Jie Cao, Jun-Xiang Shan, Wang-Wei Ye, Nai-Qian Dong, Yi Kan, Yi-Bing Yang, Shuang-Qin Guo, Jie-Jie Lei, Xiao-Rui Mu, Ji-Fu Zhou, Jin Gao, Hong-Xuan Lin","doi":"10.1016/j.molp.2025.11.015","DOIUrl":"https://doi.org/10.1016/j.molp.2025.11.015","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":"4 1","pages":""},"PeriodicalIF":27.5,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145657545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond execution: Metacaspases emerge as master switches in plant immunity 超越执行:metacaspase作为植物免疫的主开关出现
IF 27.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-02 DOI: 10.1016/j.molp.2025.11.016
Yuanyuan Li, Savithramma P. Dinesh-Kumar
{"title":"Beyond execution: Metacaspases emerge as master switches in plant immunity","authors":"Yuanyuan Li, Savithramma P. Dinesh-Kumar","doi":"10.1016/j.molp.2025.11.016","DOIUrl":"https://doi.org/10.1016/j.molp.2025.11.016","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":"27 1","pages":""},"PeriodicalIF":27.5,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145658091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The CsWRKY3-CsHB7 Transcriptional Cascade Promotes Temperature-responsive Peel Pigmentation via CsCCD4b-Mediated β-Citraurin Biosynthesis in Citrus CsWRKY3-CsHB7转录级联通过csccd4b介导的柑橘β-Citraurin生物合成促进温度响应性果皮色素沉着
IF 27.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-02 DOI: 10.1016/j.molp.2025.11.014
Ranran Wei, Ang Fu, Yu Fang, Quan Sun, Zhijing Mo, Pengtao Yue, Ying Liang, Zongzhou Xie, Lijun Chai, Junli Ye, Xiuxin Deng
{"title":"The CsWRKY3-CsHB7 Transcriptional Cascade Promotes Temperature-responsive Peel Pigmentation via CsCCD4b-Mediated β-Citraurin Biosynthesis in Citrus","authors":"Ranran Wei, Ang Fu, Yu Fang, Quan Sun, Zhijing Mo, Pengtao Yue, Ying Liang, Zongzhou Xie, Lijun Chai, Junli Ye, Xiuxin Deng","doi":"10.1016/j.molp.2025.11.014","DOIUrl":"https://doi.org/10.1016/j.molp.2025.11.014","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":"117 1","pages":""},"PeriodicalIF":27.5,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145657543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How sodium gets sequestered in the vacuoles of salinized plants? 钠是如何被隔离在盐碱化植物的液泡中的?
IF 24.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-09-09 DOI: 10.1016/j.molp.2025.09.010
Francisco M Gámez-Arjona, José M Pardo, Francisco J Quintero
{"title":"How sodium gets sequestered in the vacuoles of salinized plants?","authors":"Francisco M Gámez-Arjona, José M Pardo, Francisco J Quintero","doi":"10.1016/j.molp.2025.09.010","DOIUrl":"10.1016/j.molp.2025.09.010","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"2045-2047"},"PeriodicalIF":24.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145033798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adenylate cyclases tune heat-dependent stomatal responses. 腺苷酸环化酶调节热依赖性气孔反应。
IF 24.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-09-12 DOI: 10.1016/j.molp.2025.09.011
Aloysius Wong, Chris Gehring
{"title":"Adenylate cyclases tune heat-dependent stomatal responses.","authors":"Aloysius Wong, Chris Gehring","doi":"10.1016/j.molp.2025.09.011","DOIUrl":"10.1016/j.molp.2025.09.011","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"2051-2053"},"PeriodicalIF":24.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145058599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Plant
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1