首页 > 最新文献

Molecular Plant最新文献

英文 中文
The metal tolerance protein OsMTP11 facilitates cadmium sequestration in the vacuoles of leaf vascular cells for restricting its translocation into rice grains. 金属耐受蛋白 OsMTP11 有助于将镉封存在叶片维管细胞的液泡中,从而限制镉向水稻籽粒的转移。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-04 Epub Date: 2024-10-01 DOI: 10.1016/j.molp.2024.09.012
Peng Liu, Liang Sun, Yu Zhang, Yongjun Tan, Yuxing Zhu, Can Peng, Jiurong Wang, Huili Yan, Donghai Mao, Guohua Liang, Gang Liang, Xiaoxiang Li, Yuntao Liang, Feng Wang, Zhenyan He, Wenbang Tang, Daoyou Huang, Caiyan Chen

Rice (Oryza sativa) provides >20% of the consumed calories in the human diet. However, rice is also a leading source of dietary cadmium (Cd) that seriously threatens human health. Deciphering the genetic network that underlies the grain-Cd accumulation will benefit the development of low-Cd rice and mitigate the effects of Cd accumulation in the rice grain. In this study, we identified a QTL gene, OsCS1, which is allelic to OsMTP11 and encodes a protein sequestering Cd in the leaf during vegetative growth and preventing Cd from being translocated to the grain after heading in rice. OsCS1 is predominantly expressed in leaf vascular parenchyma cells, where it binds to a vacuole-sorting receptor protein OsVSR2 and is translocated intracellularly from the trans-Golgi network to pre-vacuolar compartments and then to the vacuole. In this trafficking process, OsCS1 actively transports Cd into the endomembrane system and sequesters it in the vacuoles. There are natural variations in the promoter of OsCS1 between the indica and japonica rice subspecies. Duplication of a G-box-like motif in the promoter region of the superior allele of OsCS1 from indica rice enhances the binding of the transcription factor OsIRO2 to the OsCS1 promoter, thereby promoting OsCS1 expression. Introgression of this allele into commercial rice varieties could significantly lower grain-Cd levels compared to the inferior allele present in japonica rice. Collectively, our findings offer new insights into the genetic control of leaf-to-grain Cd translocation and provide a novel gene and its superior allele for the genetic improvement of low-Cd variety in rice.

大米(Oryza sativa)提供了人类饮食中 20% 以上的热量。然而,大米也是膳食镉(Cd)的主要来源,对人类健康构成严重威胁。破译谷粒镉积累的遗传网络将有利于开发低镉水稻,以减轻镉在水稻谷粒中积累的影响。在这项研究中,我们发现了一个 QTL 基因 OsCS1,它与 OsMTP11 是等位基因,编码一种蛋白质,能在水稻无性生长期间将 Cd 封存在叶片中,并防止 Cd 在水稻抽穗后转移到谷粒中。OsCS1 主要在叶脉实质细胞中表达,它与液泡分选受体蛋白 OsVSR2 结合,在细胞内从跨高尔基网络(TGN)转运到前液泡区(PVC),然后再转运到液泡。在这一转运过程中,OsCS1 积极地将镉转运到内膜系统,并最终将其封存在液泡中。籼稻和粳稻亚种的 OsCS1 启动子存在天然差异。在籼稻 OsCS1 优良等位基因的启动子区域复制了一个类似 G-box 的基序,可增强转录因子 OsIRO2 与 OsCS1 启动子的结合,从而促进 OsCS1 的表达。与粳稻中的劣等位基因相比,将该等位基因引入商业水稻品种可显著降低谷粒中的镉含量。我们的研究结果填补了叶片到谷粒镉转位遗传控制方面的空白,并为水稻低镉品种的遗传改良提供了一个新基因及其优等等位基因。
{"title":"The metal tolerance protein OsMTP11 facilitates cadmium sequestration in the vacuoles of leaf vascular cells for restricting its translocation into rice grains.","authors":"Peng Liu, Liang Sun, Yu Zhang, Yongjun Tan, Yuxing Zhu, Can Peng, Jiurong Wang, Huili Yan, Donghai Mao, Guohua Liang, Gang Liang, Xiaoxiang Li, Yuntao Liang, Feng Wang, Zhenyan He, Wenbang Tang, Daoyou Huang, Caiyan Chen","doi":"10.1016/j.molp.2024.09.012","DOIUrl":"10.1016/j.molp.2024.09.012","url":null,"abstract":"<p><p>Rice (Oryza sativa) provides >20% of the consumed calories in the human diet. However, rice is also a leading source of dietary cadmium (Cd) that seriously threatens human health. Deciphering the genetic network that underlies the grain-Cd accumulation will benefit the development of low-Cd rice and mitigate the effects of Cd accumulation in the rice grain. In this study, we identified a QTL gene, OsCS1, which is allelic to OsMTP11 and encodes a protein sequestering Cd in the leaf during vegetative growth and preventing Cd from being translocated to the grain after heading in rice. OsCS1 is predominantly expressed in leaf vascular parenchyma cells, where it binds to a vacuole-sorting receptor protein OsVSR2 and is translocated intracellularly from the trans-Golgi network to pre-vacuolar compartments and then to the vacuole. In this trafficking process, OsCS1 actively transports Cd into the endomembrane system and sequesters it in the vacuoles. There are natural variations in the promoter of OsCS1 between the indica and japonica rice subspecies. Duplication of a G-box-like motif in the promoter region of the superior allele of OsCS1 from indica rice enhances the binding of the transcription factor OsIRO2 to the OsCS1 promoter, thereby promoting OsCS1 expression. Introgression of this allele into commercial rice varieties could significantly lower grain-Cd levels compared to the inferior allele present in japonica rice. Collectively, our findings offer new insights into the genetic control of leaf-to-grain Cd translocation and provide a novel gene and its superior allele for the genetic improvement of low-Cd variety in rice.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1733-1752"},"PeriodicalIF":17.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanopore ultra-long sequencing and adaptive sampling spur plant complete telomere-to-telomere genome assembly. 纳米孔超长测序和自适应取样技术促进了植物端粒到端粒基因组的完全组装。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-04 Epub Date: 2024-10-16 DOI: 10.1016/j.molp.2024.10.008
Dongdong Lu, Caijuan Liu, Wenjun Ji, Ruiyan Xia, Shanshan Li, Yanxia Liu, Naixu Liu, Yongqi Liu, Xing Wang Deng, Bosheng Li

The pursuit of complete telomere-to-telomere (T2T) genome assembly in plants, challenged by genomic complexity, has been advanced by Oxford Nanopore Technologies (ONT), which offers ultra-long, real-time sequencing. Despite its promise, sequencing length and gap filling remain significant challenges. This study optimized DNA extraction and library preparation, achieving DNA lengths exceeding 485 kb; average N50 read lengths of 80.57 kb, reaching up to 440 kb; and maximum reads of 5.83 Mb. Importantly, we demonstrated that combining ultra-long sequencing and adaptive sampling can effectively fill gaps during assembly, evidenced by successfully filling the remaining gaps of a near-complete Arabidopsis genome assembly and resolving the sequence of an unknown telomeric region in watermelon genome. Collectively, our strategies improve the feasibility of complete T2T genomic assemblies across various plant species, enhancing genome-based research in diverse fields.

牛津纳米孔技术公司(ONT)提供超长实时测序技术,推动了植物端粒到端粒(T2T)基因组的完整组装。尽管该技术前景广阔,但测序长度和缺口填补仍是重大挑战。这项研究优化了 DNA 提取和文库制备,实现了超过 485 Kb 的 DNA 长度,平均 N50 读取长度为 80.57 Kb,最高可达 440 Kb,最大读取长度为 5.83 Mb。重要的是,它证明了结合超长测序和自适应采样可以有效填补组装过程中的空白,成功实现拟南芥基因组剩余空白和西瓜未知端粒区就是证明。我们的方法提高了植物完整 T2T 基因组组装的可行性,加强了不同领域基于基因组的研究。
{"title":"Nanopore ultra-long sequencing and adaptive sampling spur plant complete telomere-to-telomere genome assembly.","authors":"Dongdong Lu, Caijuan Liu, Wenjun Ji, Ruiyan Xia, Shanshan Li, Yanxia Liu, Naixu Liu, Yongqi Liu, Xing Wang Deng, Bosheng Li","doi":"10.1016/j.molp.2024.10.008","DOIUrl":"10.1016/j.molp.2024.10.008","url":null,"abstract":"<p><p>The pursuit of complete telomere-to-telomere (T2T) genome assembly in plants, challenged by genomic complexity, has been advanced by Oxford Nanopore Technologies (ONT), which offers ultra-long, real-time sequencing. Despite its promise, sequencing length and gap filling remain significant challenges. This study optimized DNA extraction and library preparation, achieving DNA lengths exceeding 485 kb; average N50 read lengths of 80.57 kb, reaching up to 440 kb; and maximum reads of 5.83 Mb. Importantly, we demonstrated that combining ultra-long sequencing and adaptive sampling can effectively fill gaps during assembly, evidenced by successfully filling the remaining gaps of a near-complete Arabidopsis genome assembly and resolving the sequence of an unknown telomeric region in watermelon genome. Collectively, our strategies improve the feasibility of complete T2T genomic assemblies across various plant species, enhancing genome-based research in diverse fields.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1773-1786"},"PeriodicalIF":17.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The cartography of plant immunity: Proximity labeling puts a novel SGT1-NSL1 regulatory module on the map. 植物免疫制图:近距离标记将新型 SGT1-NSL1 调控模块置于地图上。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-04 Epub Date: 2024-10-04 DOI: 10.1016/j.molp.2024.10.003
Huang Tan, Chaonan Shi, Alberto P Macho, Rosa Lozano-Durán
{"title":"The cartography of plant immunity: Proximity labeling puts a novel SGT1-NSL1 regulatory module on the map.","authors":"Huang Tan, Chaonan Shi, Alberto P Macho, Rosa Lozano-Durán","doi":"10.1016/j.molp.2024.10.003","DOIUrl":"10.1016/j.molp.2024.10.003","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1645-1647"},"PeriodicalIF":17.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Next-generation research on transcriptional regulation of plant immunity. 植物免疫转录调控的新一代研究。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-04 Epub Date: 2024-10-11 DOI: 10.1016/j.molp.2024.10.005
Akira Mine
{"title":"Next-generation research on transcriptional regulation of plant immunity.","authors":"Akira Mine","doi":"10.1016/j.molp.2024.10.005","DOIUrl":"10.1016/j.molp.2024.10.005","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1651-1653"},"PeriodicalIF":17.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increasing seed lint fiber density for promoting cotton yield: Opportunities and challenges. 提高籽棉纤维密度以提高棉花产量:机遇与挑战。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-07 Epub Date: 2024-09-02 DOI: 10.1016/j.molp.2024.08.010
Tianlun Zhao, Jinhong Chen, Shuijin Zhu, Qian-Hao Zhu
{"title":"Increasing seed lint fiber density for promoting cotton yield: Opportunities and challenges.","authors":"Tianlun Zhao, Jinhong Chen, Shuijin Zhu, Qian-Hao Zhu","doi":"10.1016/j.molp.2024.08.010","DOIUrl":"10.1016/j.molp.2024.08.010","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1490-1493"},"PeriodicalIF":17.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Creation of folate-biofortified rice by simultaneously enhancing biosynthetic flux and blocking folate oxidation. 通过同时提高生物合成通量和阻止叶酸氧化,生产叶酸生物强化水稻。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-07 Epub Date: 2024-09-16 DOI: 10.1016/j.molp.2024.09.005
Qiuju Liang, Wei Zhang, Jianzhou Pang, Shuncong Zhang, Xiaowan Hou, Chunyi Zhang
{"title":"Creation of folate-biofortified rice by simultaneously enhancing biosynthetic flux and blocking folate oxidation.","authors":"Qiuju Liang, Wei Zhang, Jianzhou Pang, Shuncong Zhang, Xiaowan Hou, Chunyi Zhang","doi":"10.1016/j.molp.2024.09.005","DOIUrl":"10.1016/j.molp.2024.09.005","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1487-1489"},"PeriodicalIF":17.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient control of root-knot nematodes by expressing Bt nematicidal proteins in root leucoplasts. 通过在根白质中表达 Bt 杀线虫蛋白有效控制根结线虫。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-07 Epub Date: 2024-08-14 DOI: 10.1016/j.molp.2024.08.004
Yong Wang, Mengnan Wang, Yali Zhang, Longwei Peng, Dadong Dai, Fengjuan Zhang, Jiang Zhang

Root-knot nematodes (RKNs) are plant pests that infect the roots of host plants. Bacillus thuringiensis (Bt) nematicidal proteins exhibited toxicity to nematodes. However, the application of nematicidal proteins for plant protection is hampered by the lack of effective delivery systems in transgenic plants. In this study, we discovered the accumulation of leucoplasts (root plastids) in galls and RKN-induced giant cells. RKN infection causes the degradation of leucoplasts into small vesicle-like structures, which are responsible for delivering proteins to RKNs, as observed through confocal microscopy and immunoelectron microscopy. We showed that different-sized proteins from leucoplasts could be taken up by Meloidogyne incognita female. To further explore the potential applications of leucoplasts, we introduced the Bt crystal protein Cry5Ba2 into tobacco and tomato leucoplasts by fusing it with a transit peptide. The transgenic plants showed significant resistance to RKNs. Intriguingly, RKN females preferentially took up Cry5Ba2 protein when delivered through plastids rather than the cytosol. The decrease in progeny was positively correlated with the delivery efficiency of the nematicidal protein. In conclusion, this study offers new insights into the feeding behavior of RKNs and their ability to ingest leucoplast proteins, and demonstrates that root leucoplasts can be used for delivering nematicidal proteins, thereby offering a promising approach for nematode control.

根结线虫(RKNs)是一种感染寄主植物根部的植物害虫。苏云金芽孢杆菌(Bt)杀线虫蛋白对线虫具有毒性。然而,由于转基因植物缺乏有效的传递系统,杀线虫蛋白在植物保护中的应用受到阻碍。在这项研究中,我们发现在虫瘿和 RKN 诱导的巨细胞中积累了白质体(根质体)。通过共聚焦显微镜和免疫电镜观察,RKN 感染导致白质体降解为小囊泡状结构,负责向 RKN 运送蛋白质。我们还通过 Western 印迹分析进一步证明,白细胞中不同大小的蛋白质可被黑僵菌雌虫吸收。为了进一步探索白细胞的潜在应用,我们将 Bt 晶体蛋白 Cry5Ba2 与转运肽融合后导入烟草和番茄白细胞。由此产生的转基因植株对 RKN 具有显著的抗性。耐人寻味的是,当 Cry5Ba2 蛋白通过质体而不是细胞质传递时,RKN 雌虫会优先吸收它。后代产量的减少与杀线虫蛋白的传递效率呈正相关。总之,这项研究为了解 RKNs 的取食行为及其摄取白质体蛋白的能力提供了新的视角。此外,该研究还证明了白细胞作为杀线虫蛋白高效递送系统的潜在用途,为控制线虫提供了一种前景广阔的方法。
{"title":"Efficient control of root-knot nematodes by expressing Bt nematicidal proteins in root leucoplasts.","authors":"Yong Wang, Mengnan Wang, Yali Zhang, Longwei Peng, Dadong Dai, Fengjuan Zhang, Jiang Zhang","doi":"10.1016/j.molp.2024.08.004","DOIUrl":"10.1016/j.molp.2024.08.004","url":null,"abstract":"<p><p>Root-knot nematodes (RKNs) are plant pests that infect the roots of host plants. Bacillus thuringiensis (Bt) nematicidal proteins exhibited toxicity to nematodes. However, the application of nematicidal proteins for plant protection is hampered by the lack of effective delivery systems in transgenic plants. In this study, we discovered the accumulation of leucoplasts (root plastids) in galls and RKN-induced giant cells. RKN infection causes the degradation of leucoplasts into small vesicle-like structures, which are responsible for delivering proteins to RKNs, as observed through confocal microscopy and immunoelectron microscopy. We showed that different-sized proteins from leucoplasts could be taken up by Meloidogyne incognita female. To further explore the potential applications of leucoplasts, we introduced the Bt crystal protein Cry5Ba2 into tobacco and tomato leucoplasts by fusing it with a transit peptide. The transgenic plants showed significant resistance to RKNs. Intriguingly, RKN females preferentially took up Cry5Ba2 protein when delivered through plastids rather than the cytosol. The decrease in progeny was positively correlated with the delivery efficiency of the nematicidal protein. In conclusion, this study offers new insights into the feeding behavior of RKNs and their ability to ingest leucoplast proteins, and demonstrates that root leucoplasts can be used for delivering nematicidal proteins, thereby offering a promising approach for nematode control.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1504-1519"},"PeriodicalIF":17.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The OsSRO1c-OsDREB2B complex undergoes protein phase transition to enhance cold tolerance in rice. OsSRO1c-OsDREB2B 复合物经历蛋白质相变以增强水稻的耐寒性。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-07 Epub Date: 2024-08-22 DOI: 10.1016/j.molp.2024.08.006
Dan Hu, Yilong Yao, Yan Lv, Jun You, Yu Zhang, Qingya Lv, Jiawei Li, Stephanie Hutin, Haiyan Xiong, Chloe Zubieta, Xuelei Lai, Lizhong Xiong

Cold stress is one of the major abiotic stress factors affecting rice growth and development, leading to significant yield loss in the context of global climate change. Exploring natural variants that confer cold resistance and the underlying molecular mechanism responsible for this is the major strategy to breed cold-tolerant rice varieties. Here, we show that natural variations of a SIMILAR to RCD ONE (SRO) gene, OsSRO1c, confer cold tolerance in rice at both seedling and booting stages. Our in vivo and in vitro experiments demonstrated that OsSRO1c possesses intrinsic liquid-liquid phase-separation ability and recruits OsDREB2B, an AP2/ERF transcription factor that functions as a positive regulator of cold stress, into its biomolecular condensates in the nucleus, resulting in elevated transcriptional activity of OsDREB2B. We found that the OsSRO1c-OsDREB2B complex directly responds to low temperature through dynamic phase transitions and regulates key cold-response genes, including COLD1. Furthermore, we showed that introgression of an elite haplotype of OsSRO1c into a cold-susceptible indica rice could significantly increase its cold resistance. Collectively, our work reveals a novel cold-tolerance regulatory module in rice and provides promising genetic targets for molecular breeding of cold-tolerant rice varieties.

冷胁迫是影响水稻生长发育的主要非生物胁迫因素之一,在全球气候变化的背景下会导致严重的产量损失。探索赋予抗寒性的天然变异及其潜在的分子机制是培育抗寒水稻品种的主要策略。在这里,我们发现一个与 RCD ONE 相似(SRO)基因 OsSRO1c 的天然变异在水稻幼苗和出苗阶段都具有抗寒性。OsSRO1c 在体内和体外都具有内在的液-液相分离能力,并能将 AP2/ERF 转录因子和冷胁迫正调控因子 OsDREB2B 募集到细胞核内的生物分子凝聚体中,从而提高 OsDREB2B 的转录活性。OsSRO1c-OsDREB2B 复合物通过动态相变直接响应低温,并调控包括 COLD1 在内的关键冷响应基因。此外,将 OsSRO1c 的精英单倍型导入到易感冷的籼稻中可显著提高其抗寒性。总之,我们的研究揭示了水稻中一个新的耐寒调控模块,为耐寒水稻品种的分子育种提供了有前景的遗传目标。
{"title":"The OsSRO1c-OsDREB2B complex undergoes protein phase transition to enhance cold tolerance in rice.","authors":"Dan Hu, Yilong Yao, Yan Lv, Jun You, Yu Zhang, Qingya Lv, Jiawei Li, Stephanie Hutin, Haiyan Xiong, Chloe Zubieta, Xuelei Lai, Lizhong Xiong","doi":"10.1016/j.molp.2024.08.006","DOIUrl":"10.1016/j.molp.2024.08.006","url":null,"abstract":"<p><p>Cold stress is one of the major abiotic stress factors affecting rice growth and development, leading to significant yield loss in the context of global climate change. Exploring natural variants that confer cold resistance and the underlying molecular mechanism responsible for this is the major strategy to breed cold-tolerant rice varieties. Here, we show that natural variations of a SIMILAR to RCD ONE (SRO) gene, OsSRO1c, confer cold tolerance in rice at both seedling and booting stages. Our in vivo and in vitro experiments demonstrated that OsSRO1c possesses intrinsic liquid-liquid phase-separation ability and recruits OsDREB2B, an AP2/ERF transcription factor that functions as a positive regulator of cold stress, into its biomolecular condensates in the nucleus, resulting in elevated transcriptional activity of OsDREB2B. We found that the OsSRO1c-OsDREB2B complex directly responds to low temperature through dynamic phase transitions and regulates key cold-response genes, including COLD1. Furthermore, we showed that introgression of an elite haplotype of OsSRO1c into a cold-susceptible indica rice could significantly increase its cold resistance. Collectively, our work reveals a novel cold-tolerance regulatory module in rice and provides promising genetic targets for molecular breeding of cold-tolerant rice varieties.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1520-1538"},"PeriodicalIF":17.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strigolactone-gibberellin crosstalk mediated by a distant silencer fine-tunes plant height in upland cotton. 由遥远的沉默因子介导的赤霉内酯-赤霉素串扰微调了陆地棉的植株高度。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-07 Epub Date: 2024-08-22 DOI: 10.1016/j.molp.2024.08.007
Zailong Tian, Baojun Chen, Hongge Li, Xinxin Pei, Yaru Sun, Gaofei Sun, Zhaoe Pan, Panhong Dai, Xu Gao, Xiaoli Geng, Zhen Peng, Yinhua Jia, Daowu Hu, Liru Wang, Baoyin Pang, Ai Zhang, Xiongming Du, Shoupu He

Optimal plant height is crucial in modern agriculture, influencing lodging resistance and facilitating mechanized crop production. Upland cotton (Gossypium hirsutum) is the most important fiber crop globally; however, the genetic basis underlying plant height remains largely unexplored. In this study, we conducted a genome-wide association study to identify a major locus controlling plant height (PH1) in upland cotton. This locus encodes gibberellin 2-oxidase 1A (GhPH1) and features a 1133-bp structural variation (PAVPH1) located approximately 16 kb upstream. The presence or absence of PAVPH1 influences the expression of GhPH1, thereby affecting plant height. Further analysis revealed that a gibberellin-regulating transcription factor (GhGARF) recognizes and binds to a specific CATTTG motif in both the GhPH1 promoter and PAVPH1. This interaction downregulates GhPH1, indicating that PAVPH1 functions as a distant upstream silencer. Intriguingly, we found that DWARF53 (D53), a key repressor of the strigolactone (SL) signaling pathway, directly interacts with GhGARF to inhibit its binding to targets. Moreover, we identified a previously unrecognized gibberellin-SL crosstalk mechanism mediated by the GhD53-GhGARF-GhPH1/PAVPH1 module, which is crucial for regulating plant height in upland cotton. These findings shed light on the genetic basis and gene interaction network underlying plant height, providing valuable insights for the development of semi-dwarf cotton varieties through precise modulation of GhPH1 expression.

最佳株高在现代农业中至关重要,它影响着作物的抗倒伏性并促进机械化生产。陆地棉(Gossypium hirsutum)是全球最重要的纤维作物,但植株高度的遗传基础仍有待探索。在此,我们进行了一项全基因组关联研究(GWAS),以确定控制陆地棉株高的主要位点(PH1)。该基因座编码赤霉素 2-氧化酶 1A(GhPH1),其上游约 16 kb 处有一个 1,133 bp 长的结构变异(PAVPH1)。PAVPH1 的存在与否会导致 GhPH1 的不同表达,从而导致植株高度的变化。进一步分析发现,赤霉素调节转录因子(GhGARF)能识别 GhPH1 启动子和 PAVPH1 上的特定 "CATTTG "基序。这一结合事件下调了 GhPH1,表明 PAVPH1 起着遥远的上游沉默因子的作用。有趣的是,我们发现芪醇内酯(SL)信号通路的关键抑制因子 DWARF53(D53)与 GhGARF 直接相互作用,并抑制其与靶标的结合。此外,我们的研究还发现了一种以前未曾认识到的由 GhD53-GhGARF-GhPH1/PAVPH1 模块介导的 GA-SL 互作机制,该机制在调控陆地棉株高方面至关重要。这些发现揭示了植株高度的遗传基础和基因互作网络,为通过精确调控 GhPH1 的表达来培育半矮小棉花品种提供了有价值的见解。
{"title":"Strigolactone-gibberellin crosstalk mediated by a distant silencer fine-tunes plant height in upland cotton.","authors":"Zailong Tian, Baojun Chen, Hongge Li, Xinxin Pei, Yaru Sun, Gaofei Sun, Zhaoe Pan, Panhong Dai, Xu Gao, Xiaoli Geng, Zhen Peng, Yinhua Jia, Daowu Hu, Liru Wang, Baoyin Pang, Ai Zhang, Xiongming Du, Shoupu He","doi":"10.1016/j.molp.2024.08.007","DOIUrl":"10.1016/j.molp.2024.08.007","url":null,"abstract":"<p><p>Optimal plant height is crucial in modern agriculture, influencing lodging resistance and facilitating mechanized crop production. Upland cotton (Gossypium hirsutum) is the most important fiber crop globally; however, the genetic basis underlying plant height remains largely unexplored. In this study, we conducted a genome-wide association study to identify a major locus controlling plant height (PH1) in upland cotton. This locus encodes gibberellin 2-oxidase 1A (GhPH1) and features a 1133-bp structural variation (PAV<sup>PH1</sup>) located approximately 16 kb upstream. The presence or absence of PAV<sup>PH1</sup> influences the expression of GhPH1, thereby affecting plant height. Further analysis revealed that a gibberellin-regulating transcription factor (GhGARF) recognizes and binds to a specific CATTTG motif in both the GhPH1 promoter and PAV<sup>PH1</sup>. This interaction downregulates GhPH1, indicating that PAV<sup>PH1</sup> functions as a distant upstream silencer. Intriguingly, we found that DWARF53 (D53), a key repressor of the strigolactone (SL) signaling pathway, directly interacts with GhGARF to inhibit its binding to targets. Moreover, we identified a previously unrecognized gibberellin-SL crosstalk mechanism mediated by the GhD53-GhGARF-GhPH1/PAV<sup>PH1</sup> module, which is crucial for regulating plant height in upland cotton. These findings shed light on the genetic basis and gene interaction network underlying plant height, providing valuable insights for the development of semi-dwarf cotton varieties through precise modulation of GhPH1 expression.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1539-1557"},"PeriodicalIF":17.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The OsNAC41-RoLe1-OsAGAP module promotes root development and drought resistance in upland rice. OsNAC41-RoLe1-OsAGAP 模块促进高原水稻根系发育和耐旱性。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-07 Epub Date: 2024-09-02 DOI: 10.1016/j.molp.2024.09.002
Shichen Han, Yulong Wang, Yingxiu Li, Rui Zhu, Yunsong Gu, Jin Li, Haifeng Guo, Wei Ye, Hafiz Ghualm Nabi, Tao Yang, Yanming Wang, Pengli Liu, Junzhi Duan, Xingming Sun, Zhanying Zhang, Hongliang Zhang, Zichao Li, Jinjie Li

Drought is a major environmental stress limiting crop yields worldwide. Upland rice (Oryza sativa) has evolved complex genetic mechanisms for adaptative growth under drought stress. However, few genetic variants that mediate drought resistance in upland rice have been identified, and little is known about the evolution of this trait during rice domestication. In this study, using a genome-wide association study we identified ROOT LENGTH 1 (RoLe1) that controls rice root length and drought resistance. We found that a G-to-T polymorphism in the RoLe1 promoter causes increased binding of the transcription factor OsNAC41 and thereby enhanced expression of RoLe1. We further showed that RoLe1 interacts with OsAGAP, an ARF-GTPase activating protein involved in auxin-dependent root development, and interferes with its function to modulate root development. Interestingly, RoLe1 could enhance crop yield by increasing the seed-setting rate under moderate drought conditions. Genomic evolutionary analysis revealed that a newly arisen favorable allelic variant, proRoLe1-526T, originated from the midwest Asia and was retained in upland rice during domestication. Collectively, our study identifies an OsNAC41-RoLe1-OsAGAP module that promotes upland rice root development and drought resistance, providing promising genetic targets for molecular breeding of drought-resistant rice varieties.

干旱是限制全球作物产量的主要环境胁迫。陆稻(Oryza sativa)已进化出复杂的遗传机制来适应干旱胁迫。然而,在陆地水稻中发现的介导抗旱性的遗传变异很少,人们对这一性状在驯化过程中的进化也知之甚少。在此,我们利用水稻的全基因组关联研究,确定了控制根长和抗旱性的根长 1(RoLe1)。我们证明,RoLe1 启动子中的 G 到 T 多态性增加了转录因子 OsNAC41 的结合,从而激活了其转录。我们还发现,RoLe1 与参与辅助素依赖性根系发育的 ARF-GTPase 激活蛋白 OsAGAP 相互作用并干扰其功能,从而调节根系发育。此外,在中度干旱条件下,RoLe1通过提高种子结实率提高了作物产量。基因组进化分析表明,一个新出现的有利等位基因变体 proRoLe1-526T 起源于 I 区(亚洲中西部),并在驯化过程中保留在高原水稻中。我们的研究结果提出了一个 OsNAC41-RoLe1-OsAGAP 模块,为水稻抗旱品种的分子育种提供了有前景的遗传目标。
{"title":"The OsNAC41-RoLe1-OsAGAP module promotes root development and drought resistance in upland rice.","authors":"Shichen Han, Yulong Wang, Yingxiu Li, Rui Zhu, Yunsong Gu, Jin Li, Haifeng Guo, Wei Ye, Hafiz Ghualm Nabi, Tao Yang, Yanming Wang, Pengli Liu, Junzhi Duan, Xingming Sun, Zhanying Zhang, Hongliang Zhang, Zichao Li, Jinjie Li","doi":"10.1016/j.molp.2024.09.002","DOIUrl":"10.1016/j.molp.2024.09.002","url":null,"abstract":"<p><p>Drought is a major environmental stress limiting crop yields worldwide. Upland rice (Oryza sativa) has evolved complex genetic mechanisms for adaptative growth under drought stress. However, few genetic variants that mediate drought resistance in upland rice have been identified, and little is known about the evolution of this trait during rice domestication. In this study, using a genome-wide association study we identified ROOT LENGTH 1 (RoLe1) that controls rice root length and drought resistance. We found that a G-to-T polymorphism in the RoLe1 promoter causes increased binding of the transcription factor OsNAC41 and thereby enhanced expression of RoLe1. We further showed that RoLe1 interacts with OsAGAP, an ARF-GTPase activating protein involved in auxin-dependent root development, and interferes with its function to modulate root development. Interestingly, RoLe1 could enhance crop yield by increasing the seed-setting rate under moderate drought conditions. Genomic evolutionary analysis revealed that a newly arisen favorable allelic variant, proRoLe1<sup>-526T</sup>, originated from the midwest Asia and was retained in upland rice during domestication. Collectively, our study identifies an OsNAC41-RoLe1-OsAGAP module that promotes upland rice root development and drought resistance, providing promising genetic targets for molecular breeding of drought-resistant rice varieties.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1573-1593"},"PeriodicalIF":17.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Plant
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1