Pub Date : 2024-11-04Epub Date: 2024-10-01DOI: 10.1016/j.molp.2024.09.013
Qianqian Zhang, Qianya Xu, Nan Zhang, Tao Zhong, Yuexian Xing, Zhou Fan, Mingzhu Yan, Mingliang Xu
Obligate biotrophs depend on living hosts for nutrient acquisition to complete their life cycle, yet the mechanisms by which hosts restrict nutrient availability to pathogens remain largely unknown. The fungal pathogen Sporisorium reilianum infects maize seedlings and causes head smut disease in inflorescences at maturity, while a cell wall-associated kinase, ZmWAK, provides quantitative resistance against it. In this study, we demonstrate that S. reilianum can rapidly activate ZmWAK kinase activity, which is sustained by the 407th threonine residue in the juxtamembrane domain, enabling it to interact with and phosphorylate ZmSnRK1α2, a conserved sucrose non-fermenting-related kinase α subunit. The activated ZmSnRK1α2 translocates from the cytoplasm to the nucleus, where it phosphorylates and destabilizes the transcription factor ZmWRKY53. The reduced ZmWRKY53 abundance leads to the downregulation of genes involved in transmembrane transport and carbohydrate metabolism, resulting in nutrient starvation for S. reilianum in the apoplast. Collectively, our study uncovers a WAK-SnRK1α2-WRKY53 signaling module in maize that conveys phosphorylation cascades from the plasma membrane to the nucleus to confer plant resistance against head smut in maize, offering new insights and potential targets for crop disease management.
{"title":"A maize WAK-SnRK1α2-WRKY module regulates nutrient availability to defend against head smut disease.","authors":"Qianqian Zhang, Qianya Xu, Nan Zhang, Tao Zhong, Yuexian Xing, Zhou Fan, Mingzhu Yan, Mingliang Xu","doi":"10.1016/j.molp.2024.09.013","DOIUrl":"10.1016/j.molp.2024.09.013","url":null,"abstract":"<p><p>Obligate biotrophs depend on living hosts for nutrient acquisition to complete their life cycle, yet the mechanisms by which hosts restrict nutrient availability to pathogens remain largely unknown. The fungal pathogen Sporisorium reilianum infects maize seedlings and causes head smut disease in inflorescences at maturity, while a cell wall-associated kinase, ZmWAK, provides quantitative resistance against it. In this study, we demonstrate that S. reilianum can rapidly activate ZmWAK kinase activity, which is sustained by the 407th threonine residue in the juxtamembrane domain, enabling it to interact with and phosphorylate ZmSnRK1α2, a conserved sucrose non-fermenting-related kinase α subunit. The activated ZmSnRK1α2 translocates from the cytoplasm to the nucleus, where it phosphorylates and destabilizes the transcription factor ZmWRKY53. The reduced ZmWRKY53 abundance leads to the downregulation of genes involved in transmembrane transport and carbohydrate metabolism, resulting in nutrient starvation for S. reilianum in the apoplast. Collectively, our study uncovers a WAK-SnRK1α2-WRKY53 signaling module in maize that conveys phosphorylation cascades from the plasma membrane to the nucleus to confer plant resistance against head smut in maize, offering new insights and potential targets for crop disease management.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1654-1671"},"PeriodicalIF":17.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04Epub Date: 2024-10-04DOI: 10.1016/j.molp.2024.10.001
Sophia Müller, Wouter Kohlen
{"title":"Jazzin' up nodules: The groovy role of jasmonic acid during nodulation.","authors":"Sophia Müller, Wouter Kohlen","doi":"10.1016/j.molp.2024.10.001","DOIUrl":"10.1016/j.molp.2024.10.001","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1639-1641"},"PeriodicalIF":17.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bioactive compounds play an increasingly prominent role in breeding functional and nutritive fruit crops such as citrus. However, the genomic and metabolic bases for the selection and differentiation underlying bioactive compound variations in citrus remain poorly understood. In this study, we constructed a species-level variation atlas of genomes and metabolomes using 299 citrus accessions. A total of 19 829 significant SNPs were targeted to 653 annotated metabolites, among which multiple significant signals were identified for secondary metabolites, especially flavonoids. Significant differential accumulation of bioactive compounds in the phenylpropane pathway, mainly flavonoids and coumarins, was unveiled across ancestral citrus species during differentiation, which is likely associated with the divergent haplotype distribution and/or expression profiles of relevant genes, including p-coumaroyl coenzyme A 2'-hydroxylases, flavone synthases, cytochrome P450 enzymes, prenyltransferases, and uridine diphosphate glycosyltransferases. Moreover, we systematically evaluated the beneficial bioactivities such as the antioxidant and anticancer capacities of 219 citrus varieties, and identified robust associations between distinct bioactivities and specific metabolites. Collectively, these findings provide citrus breeding options for enrichment of beneficial flavonoids and avoidance of potential risk of coumarins. Our study will accelerate the application of genomic and metabolic engineering strategies in developing modern healthy citrus cultivars.
{"title":"Genomic and metabolomic insights into the selection and differentiation of bioactive compounds in citrus.","authors":"Xiao Liang, Yue Wang, Wanxia Shen, Bin Liao, Xiaojuan Liu, Zimeng Yang, Jiebiao Chen, Chenning Zhao, Zhenkun Liao, Jinping Cao, Ping Wang, Peng Wang, Fuzhi Ke, Jianguo Xu, Qiong Lin, Wanpeng Xi, Lishu Wang, Juan Xu, Xiaochun Zhao, Chongde Sun","doi":"10.1016/j.molp.2024.10.009","DOIUrl":"10.1016/j.molp.2024.10.009","url":null,"abstract":"<p><p>Bioactive compounds play an increasingly prominent role in breeding functional and nutritive fruit crops such as citrus. However, the genomic and metabolic bases for the selection and differentiation underlying bioactive compound variations in citrus remain poorly understood. In this study, we constructed a species-level variation atlas of genomes and metabolomes using 299 citrus accessions. A total of 19 829 significant SNPs were targeted to 653 annotated metabolites, among which multiple significant signals were identified for secondary metabolites, especially flavonoids. Significant differential accumulation of bioactive compounds in the phenylpropane pathway, mainly flavonoids and coumarins, was unveiled across ancestral citrus species during differentiation, which is likely associated with the divergent haplotype distribution and/or expression profiles of relevant genes, including p-coumaroyl coenzyme A 2'-hydroxylases, flavone synthases, cytochrome P450 enzymes, prenyltransferases, and uridine diphosphate glycosyltransferases. Moreover, we systematically evaluated the beneficial bioactivities such as the antioxidant and anticancer capacities of 219 citrus varieties, and identified robust associations between distinct bioactivities and specific metabolites. Collectively, these findings provide citrus breeding options for enrichment of beneficial flavonoids and avoidance of potential risk of coumarins. Our study will accelerate the application of genomic and metabolic engineering strategies in developing modern healthy citrus cultivars.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1753-1772"},"PeriodicalIF":17.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04Epub Date: 2024-09-30DOI: 10.1016/j.molp.2024.09.011
Jakub Hajný, Tereza Trávníčková, Martina Špundová, Michelle Roenspies, R M Imtiaz Karim Rony, Sebastian Sacharowski, Michal Krzyszton, David Zalabák, Christian S Hardtke, Aleš Pečinka, Holger Puchta, Szymon Swiezewski, Jaimie M van Norman, Ondřej Novák
In plants, sugars are the key source of energy and metabolic building blocks. The systemic transport of sugars is essential for plant growth and morphogenesis. Plants evolved intricate molecular networks to effectively distribute sugars. The dynamic distribution of these osmotically active compounds is a handy tool for regulating cell turgor pressure, an instructive force in developmental biology. In this study, we have investigated the molecular mechanism behind the dual role of the receptor-like kinase CANAR. We functionally characterized a long non-coding RNA, CARMA, as a negative regulator of CANAR. Sugar-responsive CARMA specifically fine-tunes CANAR expression in the phloem, the route of sugar transport. Our genetic, molecular, microscopy, and biophysical data suggest that the CARMA-CANAR module controls the shoot-to-root phloem transport of sugars, allows cells to flexibly adapt to the external osmolality by appropriate water uptake, and thus adjust the size of vascular cell types during organ growth and development. Our study identifies a nexus of plant vascular tissue formation with cell internal pressure monitoring, revealing a novel functional aspect of long non-coding RNAs in developmental biology.
{"title":"Sucrose-responsive osmoregulation of plant cell size by a long non-coding RNA.","authors":"Jakub Hajný, Tereza Trávníčková, Martina Špundová, Michelle Roenspies, R M Imtiaz Karim Rony, Sebastian Sacharowski, Michal Krzyszton, David Zalabák, Christian S Hardtke, Aleš Pečinka, Holger Puchta, Szymon Swiezewski, Jaimie M van Norman, Ondřej Novák","doi":"10.1016/j.molp.2024.09.011","DOIUrl":"10.1016/j.molp.2024.09.011","url":null,"abstract":"<p><p>In plants, sugars are the key source of energy and metabolic building blocks. The systemic transport of sugars is essential for plant growth and morphogenesis. Plants evolved intricate molecular networks to effectively distribute sugars. The dynamic distribution of these osmotically active compounds is a handy tool for regulating cell turgor pressure, an instructive force in developmental biology. In this study, we have investigated the molecular mechanism behind the dual role of the receptor-like kinase CANAR. We functionally characterized a long non-coding RNA, CARMA, as a negative regulator of CANAR. Sugar-responsive CARMA specifically fine-tunes CANAR expression in the phloem, the route of sugar transport. Our genetic, molecular, microscopy, and biophysical data suggest that the CARMA-CANAR module controls the shoot-to-root phloem transport of sugars, allows cells to flexibly adapt to the external osmolality by appropriate water uptake, and thus adjust the size of vascular cell types during organ growth and development. Our study identifies a nexus of plant vascular tissue formation with cell internal pressure monitoring, revealing a novel functional aspect of long non-coding RNAs in developmental biology.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1719-1732"},"PeriodicalIF":17.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bread wheat (Triticum aestivum) became a globally dominant crop after incorporating the D genome from the donor species Aegilops tauschii, but the evolutionary history that shaped the D genome during this process remains to be clarified. Here, we propose a renewed evolutionary model linking Ae. tauschii and the hexaploid wheat D genome by constructing an ancestral haplotype map covering 762 Ae. tauschii and hexaploid wheat accessions. We dissected the evolutionary trajectories of Ae. tauschii lineages and reported a few independent intermediate accessions, demonstrating that low-frequency inter-sublineage gene flow had enriched the diversity of Ae. tauschii. We discovered that the D genome of hexaploid wheat was inherited from a unified ancestral template, but with a mosaic composition that was highly mixed and derived mainly from three Ae. tauschii L2 sublineages located in the Caspian coastal region. This result suggests that early agricultural activities facilitated innovations in D-genome composition and finalized the success of hexaploidization. We found that the majority (51.4%) of genetic diversity was attributed to novel mutations absent in Ae. tauschii, and we identified large Ae. tauschii introgressions from various lineages, which expanded the diversity of the wheat D genome and introduced beneficial alleles. This work sheds light on the process of wheat hexaploidization and highlights the evolutionary significance of the multi-layered genetic diversity of the bread wheat D genome.
面包小麦(Triticum aestivum)在吸收了供体种Aegilops tauschii的D基因组后成为全球优势作物,但在这一过程中D基因组的进化历史仍然难以捉摸。在这里,我们通过构建一个覆盖 762 个 Ae. tauschii 和六倍体小麦基因组的祖先单倍型图谱,提出了一个连接 Ae. tauschii 和六倍体小麦 D 基因组的新进化模型。我们剖析了Ae. tauschii品系的进化轨迹,并报告了一些独立的中间品系,证明低频的子品系间基因流丰富了Ae. tauschii的多样性。我们发现,六倍体小麦的 D 基因组遗传自统一的祖先模板,但主要由位于里海沿岸地区的三个 Ae. tauschii L2 亚系高度混合组成,这表明早期的农业活动促进了 D 基因组组成的创新,并最终成功实现了六倍体化。我们进一步发现,遗传多样性的大部分(51.4%)归因于Ae. tauschii中不存在的新突变,还发现了来自不同系的大量Ae. tauschii引种,扩大了小麦D基因组的多样性并引入了有益的等位基因。这项工作揭示了小麦六倍化过程,并强调了面包小麦 D 基因组多层遗传多样性的进化意义。
{"title":"On the evolution and genetic diversity of the bread wheat D genome.","authors":"Zihao Wang, Wenxi Wang, Yachao He, Xiaoming Xie, Zhengzhao Yang, Xiaoyu Zhang, Jianxia Niu, Huiru Peng, Yingyin Yao, Chaojie Xie, Mingming Xin, Zhaorong Hu, Qixin Sun, Zhongfu Ni, Weilong Guo","doi":"10.1016/j.molp.2024.09.007","DOIUrl":"10.1016/j.molp.2024.09.007","url":null,"abstract":"<p><p>Bread wheat (Triticum aestivum) became a globally dominant crop after incorporating the D genome from the donor species Aegilops tauschii, but the evolutionary history that shaped the D genome during this process remains to be clarified. Here, we propose a renewed evolutionary model linking Ae. tauschii and the hexaploid wheat D genome by constructing an ancestral haplotype map covering 762 Ae. tauschii and hexaploid wheat accessions. We dissected the evolutionary trajectories of Ae. tauschii lineages and reported a few independent intermediate accessions, demonstrating that low-frequency inter-sublineage gene flow had enriched the diversity of Ae. tauschii. We discovered that the D genome of hexaploid wheat was inherited from a unified ancestral template, but with a mosaic composition that was highly mixed and derived mainly from three Ae. tauschii L2 sublineages located in the Caspian coastal region. This result suggests that early agricultural activities facilitated innovations in D-genome composition and finalized the success of hexaploidization. We found that the majority (51.4%) of genetic diversity was attributed to novel mutations absent in Ae. tauschii, and we identified large Ae. tauschii introgressions from various lineages, which expanded the diversity of the wheat D genome and introduced beneficial alleles. This work sheds light on the process of wheat hexaploidization and highlights the evolutionary significance of the multi-layered genetic diversity of the bread wheat D genome.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1672-1686"},"PeriodicalIF":17.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rice (Oryza sativa) provides >20% of the consumed calories in the human diet. However, rice is also a leading source of dietary cadmium (Cd) that seriously threatens human health. Deciphering the genetic network that underlies the grain-Cd accumulation will benefit the development of low-Cd rice and mitigate the effects of Cd accumulation in the rice grain. In this study, we identified a QTL gene, OsCS1, which is allelic to OsMTP11 and encodes a protein sequestering Cd in the leaf during vegetative growth and preventing Cd from being translocated to the grain after heading in rice. OsCS1 is predominantly expressed in leaf vascular parenchyma cells, where it binds to a vacuole-sorting receptor protein OsVSR2 and is translocated intracellularly from the trans-Golgi network to pre-vacuolar compartments and then to the vacuole. In this trafficking process, OsCS1 actively transports Cd into the endomembrane system and sequesters it in the vacuoles. There are natural variations in the promoter of OsCS1 between the indica and japonica rice subspecies. Duplication of a G-box-like motif in the promoter region of the superior allele of OsCS1 from indica rice enhances the binding of the transcription factor OsIRO2 to the OsCS1 promoter, thereby promoting OsCS1 expression. Introgression of this allele into commercial rice varieties could significantly lower grain-Cd levels compared to the inferior allele present in japonica rice. Collectively, our findings offer new insights into the genetic control of leaf-to-grain Cd translocation and provide a novel gene and its superior allele for the genetic improvement of low-Cd variety in rice.
{"title":"The metal tolerance protein OsMTP11 facilitates cadmium sequestration in the vacuoles of leaf vascular cells for restricting its translocation into rice grains.","authors":"Peng Liu, Liang Sun, Yu Zhang, Yongjun Tan, Yuxing Zhu, Can Peng, Jiurong Wang, Huili Yan, Donghai Mao, Guohua Liang, Gang Liang, Xiaoxiang Li, Yuntao Liang, Feng Wang, Zhenyan He, Wenbang Tang, Daoyou Huang, Caiyan Chen","doi":"10.1016/j.molp.2024.09.012","DOIUrl":"10.1016/j.molp.2024.09.012","url":null,"abstract":"<p><p>Rice (Oryza sativa) provides >20% of the consumed calories in the human diet. However, rice is also a leading source of dietary cadmium (Cd) that seriously threatens human health. Deciphering the genetic network that underlies the grain-Cd accumulation will benefit the development of low-Cd rice and mitigate the effects of Cd accumulation in the rice grain. In this study, we identified a QTL gene, OsCS1, which is allelic to OsMTP11 and encodes a protein sequestering Cd in the leaf during vegetative growth and preventing Cd from being translocated to the grain after heading in rice. OsCS1 is predominantly expressed in leaf vascular parenchyma cells, where it binds to a vacuole-sorting receptor protein OsVSR2 and is translocated intracellularly from the trans-Golgi network to pre-vacuolar compartments and then to the vacuole. In this trafficking process, OsCS1 actively transports Cd into the endomembrane system and sequesters it in the vacuoles. There are natural variations in the promoter of OsCS1 between the indica and japonica rice subspecies. Duplication of a G-box-like motif in the promoter region of the superior allele of OsCS1 from indica rice enhances the binding of the transcription factor OsIRO2 to the OsCS1 promoter, thereby promoting OsCS1 expression. Introgression of this allele into commercial rice varieties could significantly lower grain-Cd levels compared to the inferior allele present in japonica rice. Collectively, our findings offer new insights into the genetic control of leaf-to-grain Cd translocation and provide a novel gene and its superior allele for the genetic improvement of low-Cd variety in rice.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1733-1752"},"PeriodicalIF":17.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04Epub Date: 2024-10-04DOI: 10.1016/j.molp.2024.10.003
Huang Tan, Chaonan Shi, Alberto P Macho, Rosa Lozano-Durán
{"title":"The cartography of plant immunity: Proximity labeling puts a novel SGT1-NSL1 regulatory module on the map.","authors":"Huang Tan, Chaonan Shi, Alberto P Macho, Rosa Lozano-Durán","doi":"10.1016/j.molp.2024.10.003","DOIUrl":"10.1016/j.molp.2024.10.003","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1645-1647"},"PeriodicalIF":17.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04Epub Date: 2024-10-16DOI: 10.1016/j.molp.2024.10.008
Dongdong Lu, Caijuan Liu, Wenjun Ji, Ruiyan Xia, Shanshan Li, Yanxia Liu, Naixu Liu, Yongqi Liu, Xing Wang Deng, Bosheng Li
The pursuit of complete telomere-to-telomere (T2T) genome assembly in plants, challenged by genomic complexity, has been advanced by Oxford Nanopore Technologies (ONT), which offers ultra-long, real-time sequencing. Despite its promise, sequencing length and gap filling remain significant challenges. This study optimized DNA extraction and library preparation, achieving DNA lengths exceeding 485 kb; average N50 read lengths of 80.57 kb, reaching up to 440 kb; and maximum reads of 5.83 Mb. Importantly, we demonstrated that combining ultra-long sequencing and adaptive sampling can effectively fill gaps during assembly, evidenced by successfully filling the remaining gaps of a near-complete Arabidopsis genome assembly and resolving the sequence of an unknown telomeric region in watermelon genome. Collectively, our strategies improve the feasibility of complete T2T genomic assemblies across various plant species, enhancing genome-based research in diverse fields.
牛津纳米孔技术公司(ONT)提供超长实时测序技术,推动了植物端粒到端粒(T2T)基因组的完整组装。尽管该技术前景广阔,但测序长度和缺口填补仍是重大挑战。这项研究优化了 DNA 提取和文库制备,实现了超过 485 Kb 的 DNA 长度,平均 N50 读取长度为 80.57 Kb,最高可达 440 Kb,最大读取长度为 5.83 Mb。重要的是,它证明了结合超长测序和自适应采样可以有效填补组装过程中的空白,成功实现拟南芥基因组剩余空白和西瓜未知端粒区就是证明。我们的方法提高了植物完整 T2T 基因组组装的可行性,加强了不同领域基于基因组的研究。
{"title":"Nanopore ultra-long sequencing and adaptive sampling spur plant complete telomere-to-telomere genome assembly.","authors":"Dongdong Lu, Caijuan Liu, Wenjun Ji, Ruiyan Xia, Shanshan Li, Yanxia Liu, Naixu Liu, Yongqi Liu, Xing Wang Deng, Bosheng Li","doi":"10.1016/j.molp.2024.10.008","DOIUrl":"10.1016/j.molp.2024.10.008","url":null,"abstract":"<p><p>The pursuit of complete telomere-to-telomere (T2T) genome assembly in plants, challenged by genomic complexity, has been advanced by Oxford Nanopore Technologies (ONT), which offers ultra-long, real-time sequencing. Despite its promise, sequencing length and gap filling remain significant challenges. This study optimized DNA extraction and library preparation, achieving DNA lengths exceeding 485 kb; average N50 read lengths of 80.57 kb, reaching up to 440 kb; and maximum reads of 5.83 Mb. Importantly, we demonstrated that combining ultra-long sequencing and adaptive sampling can effectively fill gaps during assembly, evidenced by successfully filling the remaining gaps of a near-complete Arabidopsis genome assembly and resolving the sequence of an unknown telomeric region in watermelon genome. Collectively, our strategies improve the feasibility of complete T2T genomic assemblies across various plant species, enhancing genome-based research in diverse fields.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1773-1786"},"PeriodicalIF":17.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04Epub Date: 2024-10-11DOI: 10.1016/j.molp.2024.10.005
Akira Mine
{"title":"Next-generation research on transcriptional regulation of plant immunity.","authors":"Akira Mine","doi":"10.1016/j.molp.2024.10.005","DOIUrl":"10.1016/j.molp.2024.10.005","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1651-1653"},"PeriodicalIF":17.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}