首页 > 最新文献

Molecular Plant最新文献

英文 中文
Arabidopsis photoperiodic regulator CONSTANS feeds back to control the circadian clock. 拟南芥中的光周期调节因子 CO 反馈控制昼夜节律。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-02 Epub Date: 2024-08-14 DOI: 10.1016/j.molp.2024.08.002
Abril San Martin, Marcelo Javier Yanovsky
{"title":"Arabidopsis photoperiodic regulator CONSTANS feeds back to control the circadian clock.","authors":"Abril San Martin, Marcelo Javier Yanovsky","doi":"10.1016/j.molp.2024.08.002","DOIUrl":"10.1016/j.molp.2024.08.002","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
REGENERATION FACTOR 1, a peptide boost for wound healing and plant biotechnology. 再生因子 1,一种促进伤口愈合和植物生物技术的多肽。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-02 Epub Date: 2024-07-26 DOI: 10.1016/j.molp.2024.07.012
Andreas Schaller
{"title":"REGENERATION FACTOR 1, a peptide boost for wound healing and plant biotechnology.","authors":"Andreas Schaller","doi":"10.1016/j.molp.2024.07.012","DOIUrl":"10.1016/j.molp.2024.07.012","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141766777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Too SHY 2 Repress. Too SHY 2 Repress.
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-02 DOI: 10.1016/j.molp.2024.09.001
Jason W Reed, Bastiaan O R Bargmann
{"title":"Too SHY 2 Repress.","authors":"Jason W Reed, Bastiaan O R Bargmann","doi":"10.1016/j.molp.2024.09.001","DOIUrl":"https://doi.org/10.1016/j.molp.2024.09.001","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell RNA sequencing facilitates the elucidation of the complete biosynthesis of the antidepressant hyperforin in St. John's wort. 单细胞 RNA 测序有助于阐明圣约翰草中抗抑郁剂金丝桃素的完整生物合成过程。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-02 Epub Date: 2024-08-12 DOI: 10.1016/j.molp.2024.08.003
Song Wu, Ana Luisa Malaco Morotti, Jun Yang, Ertao Wang, Evangelos C Tatsis

Hyperforin is the compound responsible for the effectiveness of St. John's wort (Hypericum perforatum) as an antidepressant, but its complete biosynthetic pathway remains unknown. Gene discovery based on co-expression analysis of bulk RNA-sequencing data or genome mining failed to discover the missing steps in hyperforin biosynthesis. In this study, we sequenced the 1.54-Gb tetraploid H. perforatum genome assembled into 32 chromosomes with the scaffold N50 value of 42.44 Mb. By single-cell RNA sequencing, we identified a type of cell, "Hyper cells", wherein hyperforin biosynthesis de novo takes place in both the leaves and flowers. Through pathway reconstitution in yeast and tobacco, we identified and characterized four transmembrane prenyltransferases (HpPT1-4) that are localized at the plastid envelope and complete the hyperforin biosynthetic pathway. The hyperforin polycyclic scaffold is created by a reaction cascade involving an irregular isoprenoid coupling and a tandem cyclization. Our findings reveal how and where hyperforin is biosynthesized, enabling synthetic-biology reconstitution of the complete pathway. Thus, this study not only deepens our comprehension of specialized metabolism at the cellular level but also provides strategic guidance for elucidation of the biosynthetic pathways of other specializied metabolites in plants.

金丝桃素(Hyperforin)是圣约翰草(金丝桃)具有抗抑郁功效的化合物,但其完整的生物合成过程仍然未知。基于大量 RNA 测序数据的共表达分析或基因组挖掘发现的基因未能发现金丝桃素生物合成过程中缺失的步骤。在此,我们对组装成 32 条染色体的 1.54 Gb 四倍体穿孔草基因组进行了测序,其支架 N50 值为 42.44 Mb。通过单细胞RNA-seq,我们发现了一种细胞,即Hyper细胞,在叶片和花中都能从头开始进行高穿孔素的生物合成。通过在酵母和烟草中进行途径重组,我们发现并鉴定了四种跨膜前酰转移酶(HpPT1-4),它们定位在质体包膜上,解决了超木质素生物合成的问题。高杆生长素的多环支架是通过不规则异戊烯偶联和串联环化反应级联生成的。我们的研究结果揭示了高良姜素的生物合成方式和地点,从而实现了完整途径的合成生物学重组。这些结果加深了我们对细胞水平上特殊代谢的理解,我们预计植物代谢的途径阐释将会加速。
{"title":"Single-cell RNA sequencing facilitates the elucidation of the complete biosynthesis of the antidepressant hyperforin in St. John's wort.","authors":"Song Wu, Ana Luisa Malaco Morotti, Jun Yang, Ertao Wang, Evangelos C Tatsis","doi":"10.1016/j.molp.2024.08.003","DOIUrl":"10.1016/j.molp.2024.08.003","url":null,"abstract":"<p><p>Hyperforin is the compound responsible for the effectiveness of St. John's wort (Hypericum perforatum) as an antidepressant, but its complete biosynthetic pathway remains unknown. Gene discovery based on co-expression analysis of bulk RNA-sequencing data or genome mining failed to discover the missing steps in hyperforin biosynthesis. In this study, we sequenced the 1.54-Gb tetraploid H. perforatum genome assembled into 32 chromosomes with the scaffold N50 value of 42.44 Mb. By single-cell RNA sequencing, we identified a type of cell, \"Hyper cells\", wherein hyperforin biosynthesis de novo takes place in both the leaves and flowers. Through pathway reconstitution in yeast and tobacco, we identified and characterized four transmembrane prenyltransferases (HpPT1-4) that are localized at the plastid envelope and complete the hyperforin biosynthetic pathway. The hyperforin polycyclic scaffold is created by a reaction cascade involving an irregular isoprenoid coupling and a tandem cyclization. Our findings reveal how and where hyperforin is biosynthesized, enabling synthetic-biology reconstitution of the complete pathway. Thus, this study not only deepens our comprehension of specialized metabolism at the cellular level but also provides strategic guidance for elucidation of the biosynthetic pathways of other specializied metabolites in plants.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dose-dependent bimodal switch by homologous Aux/IAA transcriptional repressors. 同源 Aux/IAA 转录抑制因子的剂量依赖性双模切换。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-02 Epub Date: 2024-08-06 DOI: 10.1016/j.molp.2024.07.014
Hyung-Taeg Cho, Minsu Lee, Hee-Seung Choi, Kwang-Ho Maeng, Kyeonghoon Lee, Ha-Yeon Lee, Anindya Ganguly, Hoonyoung Park, Chang-Hoi Ho

Combinatorial interactions between different regulators diversify and enrich the chance of transcriptional regulation in eukaryotic cells. However, a dose-dependent functional switch of homologous transcriptional repressors has rarely been reported. Here, we show that SHY2, an auxin/indole-3-acetic acid (Aux/IAA) repressor, exhibits a dose-dependent bimodal role in auxin-sensitive root-hair growth and gene transcription in Arabidopsis, whereas other Aux/IAA homologs consistently repress the auxin responses. The co-repressor (TOPLESS [TPL])-binding affinity of a bimodal Aux/IAA was lower than that of a consistently repressing Aux/IAA. The switch of a single amino acid residue in the TPL-binding motif between the bimodal form and the consistently repressing form switched their TPL-binding affinity and transcriptional and biological roles in auxin responses. Based on these data, we propose a model whereby competition between homologous repressors with different co-repressor-binding affinities could generate a bimodal output at the transcriptional and developmental levels.

不同调控因子之间的组合相互作用使真核细胞中转录调控的机会变得多样化和丰富。然而,同源转录抑制因子的剂量依赖性功能转换却鲜有报道。在这里,我们发现拟南芥中的叶绿素/吲哚-3-乙酸(Aux/IAA)抑制因子 SHY2 在对叶绿素敏感的根毛生长和基因转录中表现出剂量依赖性的双峰作用,而其他 Aux/IAA 同源物则始终抑制叶绿素反应。双模 Aux/IAA 的核心抑制因子(TOPLESS [TPL])结合亲和力低于持续抑制的 Aux/IAA。双峰型和持续抑制型之间 TPL 结合基序中一个氨基酸残基的改变,改变了它们的 TPL 结合亲和力以及在植物生长素反应中的转录和生物学作用。基于这些数据,我们提出了一个模型,即具有不同核心抑制因子结合亲和力的同源抑制因子之间的竞争可在转录和发育水平上产生双模输出。
{"title":"A dose-dependent bimodal switch by homologous Aux/IAA transcriptional repressors.","authors":"Hyung-Taeg Cho, Minsu Lee, Hee-Seung Choi, Kwang-Ho Maeng, Kyeonghoon Lee, Ha-Yeon Lee, Anindya Ganguly, Hoonyoung Park, Chang-Hoi Ho","doi":"10.1016/j.molp.2024.07.014","DOIUrl":"10.1016/j.molp.2024.07.014","url":null,"abstract":"<p><p>Combinatorial interactions between different regulators diversify and enrich the chance of transcriptional regulation in eukaryotic cells. However, a dose-dependent functional switch of homologous transcriptional repressors has rarely been reported. Here, we show that SHY2, an auxin/indole-3-acetic acid (Aux/IAA) repressor, exhibits a dose-dependent bimodal role in auxin-sensitive root-hair growth and gene transcription in Arabidopsis, whereas other Aux/IAA homologs consistently repress the auxin responses. The co-repressor (TOPLESS [TPL])-binding affinity of a bimodal Aux/IAA was lower than that of a consistently repressing Aux/IAA. The switch of a single amino acid residue in the TPL-binding motif between the bimodal form and the consistently repressing form switched their TPL-binding affinity and transcriptional and biological roles in auxin responses. Based on these data, we propose a model whereby competition between homologous repressors with different co-repressor-binding affinities could generate a bimodal output at the transcriptional and developmental levels.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Manipulation of photosensory and circadian signaling restricts phenotypic plasticity in response to changing environmental conditions in Arabidopsis. 操纵光感和昼夜节律信号可限制拟南芥对环境条件变化的表型可塑性。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-02 Epub Date: 2024-07-15 DOI: 10.1016/j.molp.2024.07.007
Martin William Battle, Scott Fraser Ewing, Cathryn Dickson, Joseph Obaje, Kristen N Edgeworth, Rebecca Bindbeutel, Rea L Antoniou-Kourounioti, Dmitri A Nusinow, Matthew Alan Jones

Plants exploit phenotypic plasticity to adapt their growth and development to prevailing environmental conditions. Interpretation of light and temperature signals is aided by the circadian system, which provides a temporal context. Phenotypic plasticity provides a selective and competitive advantage in nature but is obstructive during large-scale, intensive agricultural practices since economically important traits (including vegetative growth and flowering time) can vary widely depending on local environmental conditions. This prevents accurate prediction of harvesting times and produces a variable crop. In this study, we sought to restrict phenotypic plasticity and circadian regulation by manipulating signaling systems that govern plants' responses to environmental signals. Mathematical modeling of plant growth and development predicted reduced plant responses to changing environments when circadian and light signaling pathways were manipulated. We tested this prediction by utilizing a constitutively active allele of the plant photoreceptor phytochrome B, along with disruption of the circadian system via mutation of EARLY FLOWERING3. We found that these manipulations produced plants that are less responsive to light and temperature cues and thus fail to anticipate dawn. These engineered plants have uniform vegetative growth and flowering time, demonstrating how phenotypic plasticity can be limited while maintaining plant productivity. This has significant implications for future agriculture in both open fields and controlled environments.

植物利用表型可塑性使其生长和发育适应当前的环境条件。昼夜节律系统提供了时间背景,有助于解读光照和温度信号。表型可塑性在自然界中提供了选择性和竞争优势,但在大规模集约化农业实践中却会造成阻碍,因为经济上重要的性状(包括植株生长和开花时间)会因当地环境条件的不同而有很大差异。这妨碍了对收获时间的准确预测,并造成作物的多变性。我们试图通过控制植物对环境信号反应的信号系统来限制表型可塑性和昼夜节律调节。植物生长和发育的数学模型预测,当昼夜节律和光信号途径受到操纵时,植物对环境变化的反应会减弱。我们利用植物光感受器植物色素 B 的组成型活性等位基因,并通过突变早开花 3(EARLY FLOWERING3)来破坏昼夜节律系统,从而验证了这一假设。我们发现,通过这些操作培育出的植物对光照和温度线索的反应较弱,而且无法预知黎明的到来。这些经过改造的植物具有统一的无性生长和开花时间,证明了如何在保持植物生产力的同时限制表型的可塑性。这对未来露地和受控环境中的农业都有重大意义。
{"title":"Manipulation of photosensory and circadian signaling restricts phenotypic plasticity in response to changing environmental conditions in Arabidopsis.","authors":"Martin William Battle, Scott Fraser Ewing, Cathryn Dickson, Joseph Obaje, Kristen N Edgeworth, Rebecca Bindbeutel, Rea L Antoniou-Kourounioti, Dmitri A Nusinow, Matthew Alan Jones","doi":"10.1016/j.molp.2024.07.007","DOIUrl":"10.1016/j.molp.2024.07.007","url":null,"abstract":"<p><p>Plants exploit phenotypic plasticity to adapt their growth and development to prevailing environmental conditions. Interpretation of light and temperature signals is aided by the circadian system, which provides a temporal context. Phenotypic plasticity provides a selective and competitive advantage in nature but is obstructive during large-scale, intensive agricultural practices since economically important traits (including vegetative growth and flowering time) can vary widely depending on local environmental conditions. This prevents accurate prediction of harvesting times and produces a variable crop. In this study, we sought to restrict phenotypic plasticity and circadian regulation by manipulating signaling systems that govern plants' responses to environmental signals. Mathematical modeling of plant growth and development predicted reduced plant responses to changing environments when circadian and light signaling pathways were manipulated. We tested this prediction by utilizing a constitutively active allele of the plant photoreceptor phytochrome B, along with disruption of the circadian system via mutation of EARLY FLOWERING3. We found that these manipulations produced plants that are less responsive to light and temperature cues and thus fail to anticipate dawn. These engineered plants have uniform vegetative growth and flowering time, demonstrating how phenotypic plasticity can be limited while maintaining plant productivity. This has significant implications for future agriculture in both open fields and controlled environments.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SIZ1-mediated SUMOylation of CPSF100 promotes plant thermomorphogenesis by controlling alternative polyadenylation. SIZ1介导的CPSF100的SUMOlation通过控制替代多聚腺苷酸化促进植物的热形态发生。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-02 Epub Date: 2024-07-25 DOI: 10.1016/j.molp.2024.07.011
Zhibo Yu, Jun Wang, Cheng Zhang, Qiuna Zhan, Leqian Shi, Bing Song, Danlu Han, Jieming Jiang, Junwen Huang, Xiaolin Ou, Zhonghui Zhang, Jianbin Lai, Qingshun Quinn Li, Chengwei Yang

Under warm temperatures, plants adjust their morphologies for environmental adaption via precise gene expression regulation. However, the function and regulation of alternative polyadenylation (APA), an important fine-tuning of gene expression, remains unknown in plant thermomorphogenesis. In this study, we found that SUMOylation, a critical post-translational modification, is induced by a long-term treatment at warm temperatures via a SUMO ligase SIZ1 in Arabidopsis. Disruption of SIZ1 altered the global usage of polyadenylation signals and affected the APA dynamic of thermomorphogenesis-related genes. CPSF100, a key subunit of the CPSF complex for polyadenylation regulation, is SUMOylated by SIZ1. Importantly, we demonstrated that SUMOylation is essential for the function of CPSF100 in genome-wide polyadenylation site choice during thermomorphogenesis. Further analyses revealed that the SUMO conjugation on CPSF100 attenuates its interaction with two isoforms of its partner CPSF30, increasing the nuclear accumulation of CPSF100 for polyadenylation regulation. In summary, our study uncovers a regulatory mechanism of APA via SIZ1-mediated SUMOylation in plant thermomorphogenesis.

在温暖的温度下,植物通过精确的基因表达调控来调整形态以适应环境。然而,替代多腺苷酸化(APA)作为基因表达的重要微调手段,在植物恒温形态发生中的功能和调控仍然未知。在这里,我们发现在拟南芥中,SUMO连接酶SIZ1介导的SUMO酰化(一种关键的翻译后修饰)在长时间的暖温处理下被诱导。SIZ1的缺失改变了多聚腺苷酸化信号的全局使用,并影响了热形态发生基因的APA动态。CPSF100是CPSF复合物中进行多聚腺苷化调控的一个关键亚基,它通过SIZ1被SUMO化。重要的是,SUMO化对CPSF100在热形体发生过程中选择全基因组多聚腺苷酸化位点的功能至关重要。CPSF100上的SUMO共轭作用减弱了它与其伙伴CPSF30的两种异构体之间的相互作用,从而增加了CPSF100在核内的积累以进行多聚腺苷酸化调控。综上所述,我们揭示了植物恒温态发生过程中通过SUMO化调控APA的机制。
{"title":"SIZ1-mediated SUMOylation of CPSF100 promotes plant thermomorphogenesis by controlling alternative polyadenylation.","authors":"Zhibo Yu, Jun Wang, Cheng Zhang, Qiuna Zhan, Leqian Shi, Bing Song, Danlu Han, Jieming Jiang, Junwen Huang, Xiaolin Ou, Zhonghui Zhang, Jianbin Lai, Qingshun Quinn Li, Chengwei Yang","doi":"10.1016/j.molp.2024.07.011","DOIUrl":"10.1016/j.molp.2024.07.011","url":null,"abstract":"<p><p>Under warm temperatures, plants adjust their morphologies for environmental adaption via precise gene expression regulation. However, the function and regulation of alternative polyadenylation (APA), an important fine-tuning of gene expression, remains unknown in plant thermomorphogenesis. In this study, we found that SUMOylation, a critical post-translational modification, is induced by a long-term treatment at warm temperatures via a SUMO ligase SIZ1 in Arabidopsis. Disruption of SIZ1 altered the global usage of polyadenylation signals and affected the APA dynamic of thermomorphogenesis-related genes. CPSF100, a key subunit of the CPSF complex for polyadenylation regulation, is SUMOylated by SIZ1. Importantly, we demonstrated that SUMOylation is essential for the function of CPSF100 in genome-wide polyadenylation site choice during thermomorphogenesis. Further analyses revealed that the SUMO conjugation on CPSF100 attenuates its interaction with two isoforms of its partner CPSF30, increasing the nuclear accumulation of CPSF100 for polyadenylation regulation. In summary, our study uncovers a regulatory mechanism of APA via SIZ1-mediated SUMOylation in plant thermomorphogenesis.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141766778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proxitome profiling reveals a conserved SGT1-NSL1 signaling module that activates NLR-mediated immunity. Proxitome 图谱揭示了激活 NLR 介导的免疫的保守 SGT1-NSL1 信号模块。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-02 Epub Date: 2024-07-25 DOI: 10.1016/j.molp.2024.07.010
Dingliang Zhang, Xinxin Yang, Zhiyan Wen, Zhen Li, Xinyu Zhang, Chenchen Zhong, Jiajie She, Qianshen Zhang, He Zhang, Wenli Li, Xiaoyun Zhao, Mingliang Xu, Zhen Su, Dawei Li, Savithramma P Dinesh-Kumar, Yongliang Zhang

Suppressor of G2 allele of skp1 (SGT1) is a highly conserved eukaryotic protein that plays a vital role in growth, development, and immunity in both animals and plants. Although some SGT1 interactors have been identified, the molecular regulatory network of SGT1 remains unclear. SGT1 serves as a co-chaperone to stabilize protein complexes such as the nucleotide-binding leucine-rich repeat (NLR) class of immune receptors, thereby positively regulating plant immunity. SGT1 has also been found to be associated with the SKP1-Cullin-F-box (SCF) E3 ubiquitin ligase complex. However, whether SGT1 targets immune repressors to coordinate plant immune activation remains elusive. In this study, we constructed a toolbox for TurboID- and split-TurboID-based proximity labeling (PL) assays in Nicotiana benthamiana and used the PL toolbox to explore the SGT1 interactome during pre- and post-immune activation. The comprehensive SGT1 interactome network we identified highlights a dynamic shift from proteins associated with plant development to those linked with plant immune responses. We found that SGT1 interacts with Necrotic Spotted Lesion 1 (NSL1), which negatively regulates salicylic acid-mediated defense by interfering with the nucleocytoplasmic trafficking of non-expressor of pathogenesis-related genes 1 (NPR1) during N NLR-mediated response to tobacco mosaic virus. SGT1 promotes the SCF-dependent degradation of NSL1 to facilitate immune activation, while salicylate-induced protein kinase-mediated phosphorylation of SGT1 further potentiates this process. Besides N NLR, NSL1 also functions in several other NLR-mediated immunity. Collectively, our study unveils the regulatory landscape of SGT1 and reveals a novel SGT1-NSL1 signaling module that orchestrates plant innate immunity.

SGT1 是一种高度保守的真核蛋白,在动物和植物的生长、发育和免疫中发挥着重要作用。虽然已经发现了一些 SGT1 的相互作用者,但 SGT1 的分子调控网络仍不清楚。SGT1 是一种辅助伴侣蛋白,可稳定核苷酸结合富亮氨酸重复(NLR)类免疫受体等蛋白质复合物,从而积极调节植物免疫。还发现 SGT1 与 SKP1-Cullin-F-box (SCF) E3 泛素连接酶复合物有关。然而,SGT1 是否以免疫抑制因子为靶标来协调植物免疫激活仍是一个未知数。在这里,我们构建了一个工具箱,用于基于 TurboID 和 split-TurboID 的近距离标记(PL)测定。我们利用PL工具箱探索了免疫激活前后的SGT1相互作用组。我们发现的全面的 SGT1 相互作用组网络突显了从与植物发育相关的蛋白质到与植物免疫反应相关的蛋白质的动态转变。SGT1 与坏死性斑点病变 1(NSL1)相互作用,NSL1 在 NLR 介导的对烟草花叶病毒(TMV)的应答过程中,通过干扰非致病相关基因表达者 1(NPR1)的核胞浆转运,对水杨酸(SA)介导的防御起负性调节作用。SGT1 可促进 NSL1 的 SCF 依赖性降解,从而促进免疫激活,而水杨酸诱导蛋白激酶(SIPK)介导的 SGT1 磷酸化可进一步加强这一过程。除 N NLR 外,NSL1 还在其他几种 NLR 介导的免疫中发挥作用。我们的研究揭示了 SGT1 的调控格局,并揭示了一个协调植物先天免疫的新型 SGT1-NSL1 信号模块。
{"title":"Proxitome profiling reveals a conserved SGT1-NSL1 signaling module that activates NLR-mediated immunity.","authors":"Dingliang Zhang, Xinxin Yang, Zhiyan Wen, Zhen Li, Xinyu Zhang, Chenchen Zhong, Jiajie She, Qianshen Zhang, He Zhang, Wenli Li, Xiaoyun Zhao, Mingliang Xu, Zhen Su, Dawei Li, Savithramma P Dinesh-Kumar, Yongliang Zhang","doi":"10.1016/j.molp.2024.07.010","DOIUrl":"10.1016/j.molp.2024.07.010","url":null,"abstract":"<p><p>Suppressor of G2 allele of skp1 (SGT1) is a highly conserved eukaryotic protein that plays a vital role in growth, development, and immunity in both animals and plants. Although some SGT1 interactors have been identified, the molecular regulatory network of SGT1 remains unclear. SGT1 serves as a co-chaperone to stabilize protein complexes such as the nucleotide-binding leucine-rich repeat (NLR) class of immune receptors, thereby positively regulating plant immunity. SGT1 has also been found to be associated with the SKP1-Cullin-F-box (SCF) E3 ubiquitin ligase complex. However, whether SGT1 targets immune repressors to coordinate plant immune activation remains elusive. In this study, we constructed a toolbox for TurboID- and split-TurboID-based proximity labeling (PL) assays in Nicotiana benthamiana and used the PL toolbox to explore the SGT1 interactome during pre- and post-immune activation. The comprehensive SGT1 interactome network we identified highlights a dynamic shift from proteins associated with plant development to those linked with plant immune responses. We found that SGT1 interacts with Necrotic Spotted Lesion 1 (NSL1), which negatively regulates salicylic acid-mediated defense by interfering with the nucleocytoplasmic trafficking of non-expressor of pathogenesis-related genes 1 (NPR1) during N NLR-mediated response to tobacco mosaic virus. SGT1 promotes the SCF-dependent degradation of NSL1 to facilitate immune activation, while salicylate-induced protein kinase-mediated phosphorylation of SGT1 further potentiates this process. Besides N NLR, NSL1 also functions in several other NLR-mediated immunity. Collectively, our study unveils the regulatory landscape of SGT1 and reveals a novel SGT1-NSL1 signaling module that orchestrates plant innate immunity.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141766776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Next-generation mapping of the salicylic acid signaling hub and transcriptional cascade. 水杨酸信号枢纽和转录级联的下一代图谱。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-22 DOI: 10.1016/j.molp.2024.08.008
Jordan Powers, Xing Zhang, Andres V Reyes, Raul Zavaliev, Roni Ochakovski, Shou-Ling Xu, Xinnian Dong

For over 60 years, salicylic acid (SA) has been known as a plant immune signal required for basal and systemic acquired resistance (SAR). SA activates these immune responses by reprogramming ∼20% of the transcriptome through the function of NPR1. However, components in the NPR1-signaling hub, which appears as nuclear condensates, and the NPR1-signaling cascade remained elusive due to difficulties in studying this transcriptional cofactor whose chromatin association is indirect and likely transient. To overcome this challenge, we applied TurboID to divulge the NPR1-proxiome, which detected almost all known NPR1-interactors as well as new components of transcription-related complexes. Testing of new components showed that chromatin remodeling and histone demethylation contribute to SA-induced resistance. Globally, NPR1-proxiome shares a striking similarity to GBPL3-proxiome involved in SA synthesis, except associated transcription factors (TFs), suggesting that common regulatory modules are recruited to reprogram specific transcriptomes by transcriptional cofactors, like NPR1, through binding to unique TFs. Stepwise greenCUT&RUN analyses showed that, upon SA-induction, NPR1 initiates the transcriptional cascade primarily through association with TGA TFs to induce expression of secondary TFs, predominantly WRKYs. WRKY54 and WRKY70 then play a major role in inducing immune-output genes without interacting with NPR1 at the chromatin. Moreover, loss of NPR1 condensate formation decreases the protein's chromatin-association and transcriptional activity, indicating the importance of condensates in organizing the NPR1-signaling hub and initiating the transcriptional cascade. This study demonstrates how combinatorial applications of TurboID and stepwise greenCUT&RUN transcend traditional genetic methods to globally map signaling hubs and transcriptional cascades for in-depth explorations.

60 多年来,水杨酸(SA)一直是基础和系统获得性抗性(SAR)所需的植物免疫信号。水杨酸通过 NPR1 的功能对 20% 的转录组进行重编程,从而激活这些免疫反应。然而,由于研究这种转录辅助因子的困难,NPR1-信号中枢(以核凝聚物的形式出现)和 NPR1-信号级联中的成分仍然难以捉摸,因为这种转录辅助因子的染色质关联是间接的,而且很可能是瞬时的。为了克服这一难题,我们应用 TurboID 揭示了 NPR1-proxiome,它检测到了几乎所有已知的 NPR1-interactors,以及转录相关复合物的新成分。对新成分的测试表明,染色质重塑和组蛋白去甲基化有助于提高 SA 诱导的抗性。从全球来看,除了相关的转录因子(TFs)外,NPR1-proxiome与参与SA合成的GBPL3-proxiome有着惊人的相似性,这表明NPR1等转录辅助因子通过与独特的TFs结合,招募了共同的调控模块来重编特定的转录组。逐步绿色 CUT&RUN 分析表明,在 SA 诱导下,NPR1 主要通过与 TGA TFs 结合启动转录级联,诱导次级 TFs(主要是 WRKYs)的表达。然后,WRKY54 和 WRKY70 在诱导免疫输出基因方面发挥主要作用,而不与 NPR1 在染色质上相互作用。此外,失去 NPR1 凝聚物的形成会降低该蛋白的染色质结合和转录活性,这表明凝聚物在组织 NPR1 信号中枢和启动转录级联方面的重要性。这项研究展示了 TurboID 和 stepwise greenCUT&RUN 的组合应用如何超越传统的遗传学方法,在全球范围内绘制信号枢纽和转录级联图,进行深入探索。
{"title":"Next-generation mapping of the salicylic acid signaling hub and transcriptional cascade.","authors":"Jordan Powers, Xing Zhang, Andres V Reyes, Raul Zavaliev, Roni Ochakovski, Shou-Ling Xu, Xinnian Dong","doi":"10.1016/j.molp.2024.08.008","DOIUrl":"10.1016/j.molp.2024.08.008","url":null,"abstract":"<p><p>For over 60 years, salicylic acid (SA) has been known as a plant immune signal required for basal and systemic acquired resistance (SAR). SA activates these immune responses by reprogramming ∼20% of the transcriptome through the function of NPR1. However, components in the NPR1-signaling hub, which appears as nuclear condensates, and the NPR1-signaling cascade remained elusive due to difficulties in studying this transcriptional cofactor whose chromatin association is indirect and likely transient. To overcome this challenge, we applied TurboID to divulge the NPR1-proxiome, which detected almost all known NPR1-interactors as well as new components of transcription-related complexes. Testing of new components showed that chromatin remodeling and histone demethylation contribute to SA-induced resistance. Globally, NPR1-proxiome shares a striking similarity to GBPL3-proxiome involved in SA synthesis, except associated transcription factors (TFs), suggesting that common regulatory modules are recruited to reprogram specific transcriptomes by transcriptional cofactors, like NPR1, through binding to unique TFs. Stepwise greenCUT&RUN analyses showed that, upon SA-induction, NPR1 initiates the transcriptional cascade primarily through association with TGA TFs to induce expression of secondary TFs, predominantly WRKYs. WRKY54 and WRKY70 then play a major role in inducing immune-output genes without interacting with NPR1 at the chromatin. Moreover, loss of NPR1 condensate formation decreases the protein's chromatin-association and transcriptional activity, indicating the importance of condensates in organizing the NPR1-signaling hub and initiating the transcriptional cascade. This study demonstrates how combinatorial applications of TurboID and stepwise greenCUT&RUN transcend traditional genetic methods to globally map signaling hubs and transcriptional cascades for in-depth explorations.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can the dependence of the xenia effect on long-distance mRNA transport be used to improve fruit traits? 能否利用enia效应对mRNA远距离运输的依赖性来改善果实性状?
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-22 DOI: 10.1016/j.molp.2024.08.009
Munenori Kitagawa
{"title":"Can the dependence of the xenia effect on long-distance mRNA transport be used to improve fruit traits?","authors":"Munenori Kitagawa","doi":"10.1016/j.molp.2024.08.009","DOIUrl":"https://doi.org/10.1016/j.molp.2024.08.009","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Plant
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1