首页 > 最新文献

Molecular Plant最新文献

英文 中文
Harmonizing metabolic blueprint of flavor using complementary genomic insights. 利用互补基因组学见解协调风味的代谢蓝图。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 Epub Date: 2024-11-26 DOI: 10.1016/j.molp.2024.11.010
Rhowell N Tiozon, Nese Sreenivasulu
{"title":"Harmonizing metabolic blueprint of flavor using complementary genomic insights.","authors":"Rhowell N Tiozon, Nese Sreenivasulu","doi":"10.1016/j.molp.2024.11.010","DOIUrl":"10.1016/j.molp.2024.11.010","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"19-21"},"PeriodicalIF":17.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142730711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From steroidal glycoalkaloids to steroidal saponins: Biosynthesis and ecological role in the Solanum genus. 从类固醇糖生物碱到类固醇皂甙:茄属植物的生物合成和生态作用。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 Epub Date: 2024-11-26 DOI: 10.1016/j.molp.2024.11.012
Yan Li, Jie Luo
{"title":"From steroidal glycoalkaloids to steroidal saponins: Biosynthesis and ecological role in the Solanum genus.","authors":"Yan Li, Jie Luo","doi":"10.1016/j.molp.2024.11.012","DOIUrl":"10.1016/j.molp.2024.11.012","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"22-24"},"PeriodicalIF":17.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142730710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A telomere-to-telomere genome assembly of the cultivated peanut. 栽培花生的端粒到端粒基因组组装。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 Epub Date: 2024-12-02 DOI: 10.1016/j.molp.2024.12.001
Xiaobo Wang, Ziqi Sun, Feiyan Qi, Zhiyuan Zhou, Pei Du, Lei Shi, Wenzhao Dong, Bingyan Huang, Suoyi Han, Stefano Pavan, Meng Zhang, Mengjie Cui, Jing Xu, Hua Liu, Li Qin, Zhongxin Zhang, Xiaodong Dai, Wei Gao, Lijuan Miao, Ruifang Zhao, Juan Wang, Mengmeng Wang, Chenyang Zhi, Yaojun Hu, Huanhuan Zhao, Linjie Chen, Xiaodong Jin, Yanhui Sun, Zheng Zheng, Xinyou Zhang
{"title":"A telomere-to-telomere genome assembly of the cultivated peanut.","authors":"Xiaobo Wang, Ziqi Sun, Feiyan Qi, Zhiyuan Zhou, Pei Du, Lei Shi, Wenzhao Dong, Bingyan Huang, Suoyi Han, Stefano Pavan, Meng Zhang, Mengjie Cui, Jing Xu, Hua Liu, Li Qin, Zhongxin Zhang, Xiaodong Dai, Wei Gao, Lijuan Miao, Ruifang Zhao, Juan Wang, Mengmeng Wang, Chenyang Zhi, Yaojun Hu, Huanhuan Zhao, Linjie Chen, Xiaodong Jin, Yanhui Sun, Zheng Zheng, Xinyou Zhang","doi":"10.1016/j.molp.2024.12.001","DOIUrl":"10.1016/j.molp.2024.12.001","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"5-8"},"PeriodicalIF":17.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142770388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The long noncoding RNA ALEX1 confers a functional phase state of ARF3 to enhance rice resistance to bacterial pathogens. 长链非编码RNA ALEX1赋予ARF3的功能相状态,以增强水稻对细菌病原体的抗性。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 Epub Date: 2024-12-09 DOI: 10.1016/j.molp.2024.12.005
Meng-Qi Lei, Rui-Rui He, Yan-Fei Zhou, Lu Yang, Zhen-Fei Zhang, Chao Yuan, Wen-Long Zhao, Yu Cheng, Jian-Ping Lian, Yu-Chan Zhang, Wen-Tao Wang, Yang Yu, Yue-Qin Chen

Rice bacterial blight is a devastating disease worldwide, causing significant yield losses. Understanding how plants defend against microbial infection is critical for sustainable crop production. In this study, we show that ALEX1, a previously identified pathogen-induced long noncoding RNA, localizes to the nucleus and directly binds AUXIN RESPONSE FACTOR 3 (ARF3). We showed that ARF3 forms the condensates in the nucleus via its intrinsically disordered middle region (MR), and that these ARF3 condensates display solid-like properties. We further revealed that ALEX1 directly binds the MR of ARF3 to regulate ARF3 condensate dynamics and promote ARF3 homodimerization. The dispersed, dimeric form of ARF3, referred to as its functional phase state, enhances its ability to transcriptionally repress the expression of downstream target genes such as JAZ13, thereby modulating the jasmonic acid signaling pathway and enhancing pathogen resistance in rice. Collectively, this study reveals the role of a long noncoding RNA in regulating protein condensation and complex assembly, thus contributing to plant pathogen resistance.

水稻白叶枯病是一种世界性的毁灭性疾病,造成严重的产量损失。了解植物如何抵御微生物感染对可持续作物生产至关重要。我们之前鉴定了病原体诱导的长链非编码RNA (ALEX1)。在这项研究中,我们发现ALEX1定位于细胞核并直接结合生长素反应因子3 (ARF3)。我们证明了ARF3通过其内在无序的中间区域(MR)在原子核中形成凝聚。值得注意的是,ARF3凝析油具有固体状性质。我们进一步发现,ALEX1直接结合ARF3的MR,调节ARF3的凝聚动力学,促进ARF3的二聚化。分散二聚体形式的ARF3被称为功能相态,增强了其转录抑制JAZ13等下游靶基因的能力,从而调节茉莉酸(jasmonic acid, JA)信号通路,增强水稻对病原菌的抗性。这项研究强调了长链非编码RNA在调节蛋白质凝聚和组装中的作用,有助于植物的病原体防御。
{"title":"The long noncoding RNA ALEX1 confers a functional phase state of ARF3 to enhance rice resistance to bacterial pathogens.","authors":"Meng-Qi Lei, Rui-Rui He, Yan-Fei Zhou, Lu Yang, Zhen-Fei Zhang, Chao Yuan, Wen-Long Zhao, Yu Cheng, Jian-Ping Lian, Yu-Chan Zhang, Wen-Tao Wang, Yang Yu, Yue-Qin Chen","doi":"10.1016/j.molp.2024.12.005","DOIUrl":"10.1016/j.molp.2024.12.005","url":null,"abstract":"<p><p>Rice bacterial blight is a devastating disease worldwide, causing significant yield losses. Understanding how plants defend against microbial infection is critical for sustainable crop production. In this study, we show that ALEX1, a previously identified pathogen-induced long noncoding RNA, localizes to the nucleus and directly binds AUXIN RESPONSE FACTOR 3 (ARF3). We showed that ARF3 forms the condensates in the nucleus via its intrinsically disordered middle region (MR), and that these ARF3 condensates display solid-like properties. We further revealed that ALEX1 directly binds the MR of ARF3 to regulate ARF3 condensate dynamics and promote ARF3 homodimerization. The dispersed, dimeric form of ARF3, referred to as its functional phase state, enhances its ability to transcriptionally repress the expression of downstream target genes such as JAZ13, thereby modulating the jasmonic acid signaling pathway and enhancing pathogen resistance in rice. Collectively, this study reveals the role of a long noncoding RNA in regulating protein condensation and complex assembly, thus contributing to plant pathogen resistance.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"114-129"},"PeriodicalIF":17.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142807741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular and cellular mechanisms of photoperiod- and thermo-sensitive genic male sterility in plants. 植物光敏性和热敏性雄性不育的分子和细胞机制。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 Epub Date: 2024-12-19 DOI: 10.1016/j.molp.2024.12.012
Na Wang, Xiang Li, Jun Zhu, Zhong-Nan Yang

Photoperiod- and thermo-sensitive genic male sterile (P/TGMS) lines display male sterility under high-temperature/long-day light conditions and male fertility under low-temperature/short-day light conditions. P/TGMS lines are the fundamental basis for the two-line hybrid breeding, which has notably increased the yield potential and grain quality of rice cultivars. In this review, we focus on the research progress on photoperiod- and thermo-sensitive genic male sterility in plants. The essence of P/TGMS line is their ability to produce viable pollen under varying conditions. We overview the processes involved in anther and pollen development, as well as the molecular, cellular, and genetic mechanisms underlying P/TGMS in Arabidopsis, rice, and other crops. Slow development has been identified as a common mechanism of P/TGMS fertility restoration in both Arabidopsis and rice, while reactive oxygen species homeostasis has been implicated in rice P/TGMS. Furthermore, we discuss the prospective applications of P/TGMS and potential solutions to the challenges in this field. This review deepens the understanding of the mechanisms underlying P/TGMS and its utilization in two-line hybrid breeding across diverse crops.

光敏性雄性不育系(P/TGMS)在高温/长日照条件下表现出雄性不育性,在低温/短日照条件下表现出雄性育性。P/TGMS系是两系杂交育种的基础,显著提高了水稻品种的产量潜力和籽粒品质。本文综述了植物光敏性和热敏性雄性不育的研究进展。P/TGMS系的本质是它们在不同条件下产生活花粉的能力。我们对拟南芥、水稻和其他作物的花药和花粉发育过程以及P/TGMS的分子、细胞和遗传机制进行了综述。发育缓慢已被确定为拟南芥和水稻P/TGMS育性恢复的共同机制,而ROS稳态与水稻P/TGMS有关。此外,我们还讨论了P/TGMS在该领域的应用前景和潜在的解决方案。这一综述加深了我们对P/TGMS机制的理解及其在不同作物两系杂交育种中的应用。
{"title":"Molecular and cellular mechanisms of photoperiod- and thermo-sensitive genic male sterility in plants.","authors":"Na Wang, Xiang Li, Jun Zhu, Zhong-Nan Yang","doi":"10.1016/j.molp.2024.12.012","DOIUrl":"10.1016/j.molp.2024.12.012","url":null,"abstract":"<p><p>Photoperiod- and thermo-sensitive genic male sterile (P/TGMS) lines display male sterility under high-temperature/long-day light conditions and male fertility under low-temperature/short-day light conditions. P/TGMS lines are the fundamental basis for the two-line hybrid breeding, which has notably increased the yield potential and grain quality of rice cultivars. In this review, we focus on the research progress on photoperiod- and thermo-sensitive genic male sterility in plants. The essence of P/TGMS line is their ability to produce viable pollen under varying conditions. We overview the processes involved in anther and pollen development, as well as the molecular, cellular, and genetic mechanisms underlying P/TGMS in Arabidopsis, rice, and other crops. Slow development has been identified as a common mechanism of P/TGMS fertility restoration in both Arabidopsis and rice, while reactive oxygen species homeostasis has been implicated in rice P/TGMS. Furthermore, we discuss the prospective applications of P/TGMS and potential solutions to the challenges in this field. This review deepens the understanding of the mechanisms underlying P/TGMS and its utilization in two-line hybrid breeding across diverse crops.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"26-41"},"PeriodicalIF":17.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142864901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
N6-methyladenosine on the natural antisense transcript of NIA1 stabilizes its mRNA to boost NO biosynthesis and modulate stomatal movement. n6 -甲基腺苷在NIA1天然反义转录本上稳定其mRNA,促进NO生物合成和调节气孔运动。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 Epub Date: 2024-12-17 DOI: 10.1016/j.molp.2024.12.011
Jie Li, Wen Tian, Ting Chen, Qing-Yan Liu, Hua-Wei Wu, Chuan-Hui Liu, Yuan-Yuan Fang, Hui-Shan Guo, Jian-Hua Zhao

Nitric oxide (NO) is a crucial signaling molecule that regulates a wide range of metabolic pathways in different strata of organisms. In plants, nitrate reductase (NR) is a key enzyme for NO biosynthesis. There are two NR-encoding genes in Arabidopsis genome, NIA1 and NIA2, which are precisely regulated and expressed in a tissue-specific manner. In this study, we found that the natural antisense transcript as-NIA1, transcribed from the 3' UTR of NIA1, stabilizes NIA1 mRNA to maintain its circadian oscillation in plants grown under the light/dark cycle. Importantly, as-NIA1-dependent NIA1 mRNA stability is indispensable for NIA1-mediated NO biosynthesis in guard cells and natural stomatal closure. Moreover, we revealed that polypyrimidine tract-binding 3 (PTB3) regulates the stabilization of NIA1 mRNA by directly binding to UC-rich elements of as-NIA1. We further found that MTA deposits N6-methyladenosine (m6A) on as-NIA1, facilitating the as-NIA1-PTB3 interaction in vivo, in agreement with RNA structure prediction in that m6A-mediated structural alterations expose the UC-rich elements to enhance the accessibility of PTB3. Taken together, these findings reveal a novel molecular mechanism by which plants precisely manipulate NO biosynthesis to modulate light/dark-regulated stomatal movement, highlighting the coupling of RNA epigenetic modifications and structures shaping RNA-protein interactions in the regulation of hormone biosynthesis.

一氧化氮(NO)是一种重要的信号分子,它调节着生物体不同层次的多种代谢途径。在植物体内,硝酸还原酶(NR)是NO生物合成的关键酶。拟南芥中有两个编码nr的基因NIA1和NIA2,它们以组织特异性的方式被精确调控和表达。本研究发现,从NIA1的3' UTR转录而来的天然反义转录物NIA1可以稳定NIA1 mRNA,维持植物在光/暗循环下的昼夜节律振荡。重要的是,as-NIA1依赖性NIA1 mRNA的稳定性对于NIA1介导的保护细胞NO生物合成和自然气孔关闭是必不可少的。此外,我们发现PTB3通过直接结合as-NIA1的uc -富元素来调节NIA1 mRNA的稳定性。我们进一步发现,MTA在as-NIA1上沉积n6 -甲基腺苷(m6A),促进了as-NIA1-PTB3在体内的相互作用,这与RNA结构预测一致,m6A介导的结构改变暴露了富含uc3的元素,从而增强了PTB3的可及性。我们的发现揭示了植物通过精确操纵NO生物合成来调节光/暗调节的气孔运动的机制,扩大了对RNA表观遗传修饰和形成RNA -蛋白相互作用的结构耦合的理解。
{"title":"N<sup>6</sup>-methyladenosine on the natural antisense transcript of NIA1 stabilizes its mRNA to boost NO biosynthesis and modulate stomatal movement.","authors":"Jie Li, Wen Tian, Ting Chen, Qing-Yan Liu, Hua-Wei Wu, Chuan-Hui Liu, Yuan-Yuan Fang, Hui-Shan Guo, Jian-Hua Zhao","doi":"10.1016/j.molp.2024.12.011","DOIUrl":"10.1016/j.molp.2024.12.011","url":null,"abstract":"<p><p>Nitric oxide (NO) is a crucial signaling molecule that regulates a wide range of metabolic pathways in different strata of organisms. In plants, nitrate reductase (NR) is a key enzyme for NO biosynthesis. There are two NR-encoding genes in Arabidopsis genome, NIA1 and NIA2, which are precisely regulated and expressed in a tissue-specific manner. In this study, we found that the natural antisense transcript as-NIA1, transcribed from the 3' UTR of NIA1, stabilizes NIA1 mRNA to maintain its circadian oscillation in plants grown under the light/dark cycle. Importantly, as-NIA1-dependent NIA1 mRNA stability is indispensable for NIA1-mediated NO biosynthesis in guard cells and natural stomatal closure. Moreover, we revealed that polypyrimidine tract-binding 3 (PTB3) regulates the stabilization of NIA1 mRNA by directly binding to UC-rich elements of as-NIA1. We further found that MTA deposits N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) on as-NIA1, facilitating the as-NIA1-PTB3 interaction in vivo, in agreement with RNA structure prediction in that m<sup>6</sup>A-mediated structural alterations expose the UC-rich elements to enhance the accessibility of PTB3. Taken together, these findings reveal a novel molecular mechanism by which plants precisely manipulate NO biosynthesis to modulate light/dark-regulated stomatal movement, highlighting the coupling of RNA epigenetic modifications and structures shaping RNA-protein interactions in the regulation of hormone biosynthesis.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"151-165"},"PeriodicalIF":17.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142854978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Branching out: Nitrogen-dependent modulation of strigolactone signaling. 分支:氮依赖性地调节绞股蓝内酯信号。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 Epub Date: 2024-11-15 DOI: 10.1016/j.molp.2024.11.006
Andrew J Tuckey, Mark T Waters
{"title":"Branching out: Nitrogen-dependent modulation of strigolactone signaling.","authors":"Andrew J Tuckey, Mark T Waters","doi":"10.1016/j.molp.2024.11.006","DOIUrl":"10.1016/j.molp.2024.11.006","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"14-16"},"PeriodicalIF":17.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomolecular condensates modulate membrane remodeling. 生物分子凝聚物调节膜重塑。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 Epub Date: 2024-11-21 DOI: 10.1016/j.molp.2024.11.009
Emma K Meese, Lucia C Strader
{"title":"Biomolecular condensates modulate membrane remodeling.","authors":"Emma K Meese, Lucia C Strader","doi":"10.1016/j.molp.2024.11.009","DOIUrl":"10.1016/j.molp.2024.11.009","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"17-18"},"PeriodicalIF":17.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142687629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Histone H4K8hib modification promotes gene expression and regulates rice immunity. 组蛋白H4K8hib修饰促进基因表达,调控水稻免疫。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 Epub Date: 2024-12-06 DOI: 10.1016/j.molp.2024.12.003
Qiutao Xu, Xuan Ma, Xuelu Wei, Zhengting Chen, Yuhang Duan, Yuliang Ju, Zhaoyun Wang, Jing Chen, Lu Zheng, Xiaolin Chen, Junbin Huang, Jisen Zhang, Xiaoyang Chen

This study uncovers the role of H4K8hib as an active epigenetic mark in rice that positively correlates with gene expression and enhances immune responses. Furthermore, HDA705 was identified as the key enzyme regulating H4K8hib. Mutation of HDA705 led to hyper-H4K8hib, which in turn activated the expression of defense-related genes and enhanced rice resistance to pathogens.

摘要:本研究揭示了H4K8hib在水稻中作为一个活跃的表观遗传标记,与基因表达呈正相关,增强免疫应答。此外,HDA705被鉴定为调控H4K8hib的关键酶。HDA705突变导致hyper-H4K8hib,进而激活防御相关基因的表达,增强水稻对病原体的抗性。
{"title":"Histone H4K8hib modification promotes gene expression and regulates rice immunity.","authors":"Qiutao Xu, Xuan Ma, Xuelu Wei, Zhengting Chen, Yuhang Duan, Yuliang Ju, Zhaoyun Wang, Jing Chen, Lu Zheng, Xiaolin Chen, Junbin Huang, Jisen Zhang, Xiaoyang Chen","doi":"10.1016/j.molp.2024.12.003","DOIUrl":"10.1016/j.molp.2024.12.003","url":null,"abstract":"<p><p>This study uncovers the role of H4K8hib as an active epigenetic mark in rice that positively correlates with gene expression and enhances immune responses. Furthermore, HDA705 was identified as the key enzyme regulating H4K8hib. Mutation of HDA705 led to hyper-H4K8hib, which in turn activated the expression of defense-related genes and enhanced rice resistance to pathogens.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"9-13"},"PeriodicalIF":17.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142791842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ALFIN-like proteins link histone H3K4me3 to H2A ubiquitination and coordinate diverse chromatin modifications in Arabidopsis. ALFIN 样蛋白将组蛋白 H3K4me3 与 H2A 泛素化联系起来,并协调拟南芥中的多种染色质修饰。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 Epub Date: 2024-12-11 DOI: 10.1016/j.molp.2024.12.007
Xiao-Min Su, Dan-Yang Yuan, Na Liu, Zhao-Chen Zhang, Minqi Yang, Lin Li, She Chen, Yue Zhou, Xin-Jian He

Trimethylation of histone H3K4 (H3K4me3) is widely distributed at numerous actively transcribed protein-coding genes throughout the genome. However, the interplay between H3K4me3 and other chromatin modifications in plants remains poorly understood. In this study, we show that the Arabidopsis thaliana ALFIN-LIKE (AL) proteins contain a C-terminal PHD finger capable of binding to H3K4me3 and a PHD-associated AL (PAL) domain that interacts with components of the Polycomb repressive complex 1, thereby facilitating H2A ubiquitination (H2Aub) at H3K4me3-enriched genes throughout the genome. Furthermore, we demonstrate that loss of function of SDG2, encoding a key histone H3K4 methyltransferase, leads to a reduction in H3K4me3 level, which subsequently causes a genome-wide decrease in H2Aub, revealing a strong association between H3K4me3 and H2Aub. Finally, we discover that the PAL domain of AL proteins interacts with various other chromatin-related proteins or complexes, including those involved in regulating H2A.Z deposition, H3K27me3 demethylation, histone deacetylation, and chromatin accessibility. Our genome-wide analysis suggests that the AL proteins play a crucial role in coordinating H3K4me3 with multiple other chromatin modifications across the genome.

组蛋白H3K4 (H3K4me3)的三甲基化在整个基因组中广泛分布于许多活跃转录的蛋白质编码基因中。然而,植物中H3K4me3与其他染色质修饰之间的相互作用仍然知之甚少。在这项研究中,我们发现拟南芥ALFIN-LIKE (AL)蛋白含有一个能够结合H3K4me3的c端PHD指,以及一个与Polycomb抑制复合体1 (PRC1)组分相互作用的PHD相关AL (PAL)结构域,从而促进H2A泛素化(H2Aub)在整个基因组中富集H3K4me3的基因上。此外,我们证明了关键组蛋白H3K4甲基转移酶SDG2的缺失会导致H3K4me3水平的降低,从而导致全基因组范围内H2Aub的减少,揭示了H3K4me3和H2Aub之间的强烈关联。此外,我们发现PAL结构域与其他各种染色质相关蛋白或复合物相互作用,包括那些参与调节H2A的蛋白或复合物。Z沉积,H3K27me3去甲基化,组蛋白去乙酰化和染色质可及性。我们的全基因组分析表明,AL蛋白在协调H3K4me3与基因组中多种其他染色质修饰方面起着至关重要的作用。
{"title":"ALFIN-like proteins link histone H3K4me3 to H2A ubiquitination and coordinate diverse chromatin modifications in Arabidopsis.","authors":"Xiao-Min Su, Dan-Yang Yuan, Na Liu, Zhao-Chen Zhang, Minqi Yang, Lin Li, She Chen, Yue Zhou, Xin-Jian He","doi":"10.1016/j.molp.2024.12.007","DOIUrl":"10.1016/j.molp.2024.12.007","url":null,"abstract":"<p><p>Trimethylation of histone H3K4 (H3K4me3) is widely distributed at numerous actively transcribed protein-coding genes throughout the genome. However, the interplay between H3K4me3 and other chromatin modifications in plants remains poorly understood. In this study, we show that the Arabidopsis thaliana ALFIN-LIKE (AL) proteins contain a C-terminal PHD finger capable of binding to H3K4me3 and a PHD-associated AL (PAL) domain that interacts with components of the Polycomb repressive complex 1, thereby facilitating H2A ubiquitination (H2Aub) at H3K4me3-enriched genes throughout the genome. Furthermore, we demonstrate that loss of function of SDG2, encoding a key histone H3K4 methyltransferase, leads to a reduction in H3K4me3 level, which subsequently causes a genome-wide decrease in H2Aub, revealing a strong association between H3K4me3 and H2Aub. Finally, we discover that the PAL domain of AL proteins interacts with various other chromatin-related proteins or complexes, including those involved in regulating H2A.Z deposition, H3K27me3 demethylation, histone deacetylation, and chromatin accessibility. Our genome-wide analysis suggests that the AL proteins play a crucial role in coordinating H3K4me3 with multiple other chromatin modifications across the genome.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"130-150"},"PeriodicalIF":17.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142818756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Plant
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1