首页 > 最新文献

Molecular Plant最新文献

英文 中文
Monoculm1 confers cold tolerance at the seedling stage in rice. 单眼水稻在苗期具有耐寒性。
IF 24.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-05 Epub Date: 2025-10-25 DOI: 10.1016/j.molp.2025.10.016
Ruiqing Li, Chenfan Zheng, Binqiang Wang, Shang Dai, Yue Song, Huali Zhang, Zhiguo E, Bo Liu, Jiale Chen, Can Zhang, Haowei Fu, Ning Xu, Liangyong Ma, Qian-Hao Zhu, Vasileios Fotopoulos, Qingyao Shu, Meng Jiang

Transcriptional regulation of cold-responsive genes plays crucial roles in plant cold tolerance, but the transcription factors (TFs)-centered regulatory networks remain largely unclear. In this study, we show that Monoculm1 (MOC1), a critical TF controlling tiller number and plant height in rice, positively regulates rice cold tolerance at the seedling stage. We found that OsMPK4, a mitogen-activated protein kinase, phosphorylates and stabilizes MOC1 under cold stress. Further investigations revealed that MOC1 recruits the TFs OsbZIP79 and OsNAC5 to form a triple complex and subsequently enhances their stability by inhibiting proteasome-mediated degradation under cold stress. Notably, we found that the OsbZIP79-MOC1-OsNAC5 complex activates several cold-responsive genes, including Dehydration-responsive element-binding factor 1G (OsDREB1G), to confer rice cold tolerance. Haplotype analysis of the OsDREB1G promoter in > 10,000 rice accessions identified the favorable haplotype and key variants that endow rice cold tolerance. Collectively, our work demonstrates a pivotal role of the OsMPK4-OsbZIP79-MOC1-OsNAC5-OsDREB1G module in regulating rice cold tolerance and provides genetic targets for improving cold tolerance through molecular breeding.

转录因子对冷响应基因的转录调控在水稻抗寒性调控中起着至关重要的作用,但具体的调控网络尚不完整。本研究发现,MOC1 (monocul1)在水稻苗期积极调控水稻的耐冷性,其稳定性是通过有丝分裂原激活蛋白激酶OsMPK4的磷酸化实现的。进一步分析表明,MOC1招募OsbZIP79和OsNAC5 tf形成三重复合物,从而通过抑制蛋白酶体介导的冷胁迫降解增强其稳定性。我们还发现OsbZIP79/MOC1/OsNAC5复合体激活了几个冷响应基因,包括OsDREB1G(脱水响应元件结合因子1G),从而赋予水稻抗寒性。通过对bbbb10 k水稻材料OsDREB1G启动子的单倍型分析,确定了水稻耐寒性的有利单倍型和关键变异。总之,我们的工作证明了OsMPK4-MOC1/OsbZIP79/OsNAC5-OsDREB1G模块在水稻抗寒性调控中的关键作用,并为通过分子育种提高水稻抗寒性提供了遗传靶点。
{"title":"Monoculm1 confers cold tolerance at the seedling stage in rice.","authors":"Ruiqing Li, Chenfan Zheng, Binqiang Wang, Shang Dai, Yue Song, Huali Zhang, Zhiguo E, Bo Liu, Jiale Chen, Can Zhang, Haowei Fu, Ning Xu, Liangyong Ma, Qian-Hao Zhu, Vasileios Fotopoulos, Qingyao Shu, Meng Jiang","doi":"10.1016/j.molp.2025.10.016","DOIUrl":"10.1016/j.molp.2025.10.016","url":null,"abstract":"<p><p>Transcriptional regulation of cold-responsive genes plays crucial roles in plant cold tolerance, but the transcription factors (TFs)-centered regulatory networks remain largely unclear. In this study, we show that Monoculm1 (MOC1), a critical TF controlling tiller number and plant height in rice, positively regulates rice cold tolerance at the seedling stage. We found that OsMPK4, a mitogen-activated protein kinase, phosphorylates and stabilizes MOC1 under cold stress. Further investigations revealed that MOC1 recruits the TFs OsbZIP79 and OsNAC5 to form a triple complex and subsequently enhances their stability by inhibiting proteasome-mediated degradation under cold stress. Notably, we found that the OsbZIP79-MOC1-OsNAC5 complex activates several cold-responsive genes, including Dehydration-responsive element-binding factor 1G (OsDREB1G), to confer rice cold tolerance. Haplotype analysis of the OsDREB1G promoter in > 10,000 rice accessions identified the favorable haplotype and key variants that endow rice cold tolerance. Collectively, our work demonstrates a pivotal role of the OsMPK4-OsbZIP79-MOC1-OsNAC5-OsDREB1G module in regulating rice cold tolerance and provides genetic targets for improving cold tolerance through molecular breeding.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"81-99"},"PeriodicalIF":24.1,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145372906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The F-box protein ZmFBK1 facilitates autophagy-mediated degradation of maize NLR protein Rp1-D21 to suppress the hypersensitive response F-box蛋白ZmFBK1促进自噬介导的玉米NLR蛋白Rp1-D21的降解,从而抑制过敏反应
IF 27.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-03 DOI: 10.1016/j.molp.2026.01.001
Chang-Xiao Tang, Shi-Jun Ma, Qi-Dong Ge, Yang Sun, Tong-Tong Liu, Man Yang, Zi-Xuan Kang, Yu-Chen Dai, Xuan Zhang, Xueman Liu, Yanyong Cao, Guan-Feng Wang
The recognition between nucleotide-binding, leucine-rich repeat (NLR) proteins and their cognate pathogen effectors often triggers the hypersensitive response (HR), a localized cell death in plants. Although NLR-interacting proteins are known to fine tune the activities of NLRs, the molecular mechanism of the kelch-containing F-box protein (FBK) in regulating NLR-mediated defense response remains unknown. Here, we report that maize ZmFBK1, but not its close homologs ZmFBK2 and ZmFBK3, modulates the homeostasis of the NLR protein Rp1-D21 and regulates Rp1-D21-mediated HR. Overexpression of ZmFBK1 suppresses the HR while mutation of ZmFBK1 enhances the HR in maize. Interestingly, ZmFBK1 is predominantly located in the autophagosome-like dots and it relocates Rp1-D21 from the nucleo-cytoplasm to the punctate dots. Moreover, we found that ZmFBK1 interacts with the autophagy-related protein ZmATG6 and facilitates autophagy-mediated degradation of Rp1-D21, thereby suppressing Rp1-D21-mediated HR. Notably, ZmFBK1 also negatively regulates the resistance to southern corn rust caused by Puccinia polysora and southern leaf blight caused by Cochliobolus heterostrophu, and both pathogens appear to promote ZmFBK1-mediated autophagy in maize. In summary, we demonstrate that ZmFBK1 and ZmATG6 suppresses Rp1-D21-mediated HR likely by sequestering Rp1-D21 in autophagosome-like structures for degradation. Our study reveals a novel mechanism about how the activity of an NLR protein is precisely regulated by an FBK protein and the autophagy pathway.
核苷酸结合的富含亮氨酸重复序列(NLR)蛋白与其同源病原体效应物之间的识别通常会引发植物的超敏反应(HR),这是一种局部细胞死亡。虽然已知nlr相互作用蛋白可以微调nlr的活性,但含kelch的F-box蛋白(FBK)调节nlr介导的防御反应的分子机制尚不清楚。在这里,我们报道了玉米ZmFBK1,而不是其同源基因ZmFBK2和ZmFBK3,可以调节NLR蛋白Rp1-D21的稳态,并调节Rp1-D21介导的HR。ZmFBK1过表达抑制HR,而ZmFBK1突变提高HR。有趣的是,ZmFBK1主要位于自噬体样点中,它将Rp1-D21从核细胞质转移到点状点中。此外,我们发现ZmFBK1与自噬相关蛋白ZmATG6相互作用,促进自噬介导的Rp1-D21降解,从而抑制Rp1-D21介导的HR。值得注意的是,ZmFBK1还能负向调节玉米对南方玉米锈病和南方白叶枯病的抗性,这两种病原菌似乎都能促进ZmFBK1介导的玉米自噬。总之,我们证明ZmFBK1和ZmATG6抑制Rp1-D21介导的HR可能是通过将Rp1-D21隔离在自噬体样结构中进行降解。我们的研究揭示了NLR蛋白的活性如何被FBK蛋白和自噬途径精确调节的新机制。
{"title":"The F-box protein ZmFBK1 facilitates autophagy-mediated degradation of maize NLR protein Rp1-D21 to suppress the hypersensitive response","authors":"Chang-Xiao Tang, Shi-Jun Ma, Qi-Dong Ge, Yang Sun, Tong-Tong Liu, Man Yang, Zi-Xuan Kang, Yu-Chen Dai, Xuan Zhang, Xueman Liu, Yanyong Cao, Guan-Feng Wang","doi":"10.1016/j.molp.2026.01.001","DOIUrl":"https://doi.org/10.1016/j.molp.2026.01.001","url":null,"abstract":"The recognition between nucleotide-binding, leucine-rich repeat (NLR) proteins and their cognate pathogen effectors often triggers the hypersensitive response (HR), a localized cell death in plants. Although NLR-interacting proteins are known to fine tune the activities of NLRs, the molecular mechanism of the kelch-containing F-box protein (FBK) in regulating NLR-mediated defense response remains unknown. Here, we report that maize ZmFBK1, but not its close homologs ZmFBK2 and ZmFBK3, modulates the homeostasis of the NLR protein Rp1-D21 and regulates Rp1-D21-mediated HR. Overexpression of ZmFBK1 suppresses the HR while mutation of ZmFBK1 enhances the HR in maize. Interestingly, ZmFBK1 is predominantly located in the autophagosome-like dots and it relocates Rp1-D21 from the nucleo-cytoplasm to the punctate dots. Moreover, we found that ZmFBK1 interacts with the autophagy-related protein ZmATG6 and facilitates autophagy-mediated degradation of Rp1-D21, thereby suppressing Rp1-D21-mediated HR. Notably, ZmFBK1 also negatively regulates the resistance to southern corn rust caused by Puccinia polysora and southern leaf blight caused by Cochliobolus heterostrophu, and both pathogens appear to promote ZmFBK1-mediated autophagy in maize. In summary, we demonstrate that ZmFBK1 and ZmATG6 suppresses Rp1-D21-mediated HR likely by sequestering Rp1-D21 in autophagosome-like structures for degradation. Our study reveals a novel mechanism about how the activity of an NLR protein is precisely regulated by an FBK protein and the autophagy pathway.","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":"53 1","pages":""},"PeriodicalIF":27.5,"publicationDate":"2026-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145894380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic improvement of nitrogen- and phosphorus-use efficiency in crops: Old goals with new aspirations 作物氮磷利用效率的遗传改良:旧目标与新愿望
IF 27.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-02 DOI: 10.1016/j.molp.2025.12.030
Wei Wang, Da Chen, Huwei Sun, Surya Kant, John P. Hammond, Lei Shi, Chengcai Chu
Nitrogen (N) and phosphorus (P) are indispensable macronutrients for crop growth and productivity, whereas their excessive application in agriculture has caused severe environmental degradation. Enhancing crop N-use efficiency (NUE) and P-use efficiency (PUE) is a critical strategy to reconcile high productivity with sustainability. In this review, we systematically synthesize recent advances in the genetic basis of NUE and PUE in crops, with a focus on key traits and their associated signaling networks. We summarize the identification of N/P-efficiency genes and explore how natural variations in these genes correlate with soil nutrient availability, revealing adaptive patterns from crop domestication. Given the distinct biogeochemical behaviors of N and P, we propose tailored strategies that leverage nutrient-specific traits to optimize environment-resource coordination and yield-quality balance. Finally, we discuss strategies for developing future crops cultivars with enhanced NUE or PUE to advance sustainable agriculture.
氮(N)和磷(P)是作物生长和生产不可缺少的大量营养元素,但在农业中过量施用已造成严重的环境退化。提高作物氮利用效率(NUE)和磷利用效率(PUE)是协调高生产力与可持续性的关键策略。本文系统地综述了近年来作物NUE和PUE遗传基础的研究进展,重点介绍了NUE和PUE的关键性状及其相关信号网络。我们总结了氮磷效率基因的鉴定,并探讨了这些基因的自然变异与土壤养分有效性的关系,揭示了作物驯化的适应模式。鉴于氮和磷不同的生物地球化学行为,我们提出了针对性的策略,利用营养特异性性状来优化环境资源协调和产量质量平衡。最后,我们讨论了开发未来具有更高氮肥和PUE的作物品种的策略,以促进可持续农业的发展。
{"title":"Genetic improvement of nitrogen- and phosphorus-use efficiency in crops: Old goals with new aspirations","authors":"Wei Wang, Da Chen, Huwei Sun, Surya Kant, John P. Hammond, Lei Shi, Chengcai Chu","doi":"10.1016/j.molp.2025.12.030","DOIUrl":"https://doi.org/10.1016/j.molp.2025.12.030","url":null,"abstract":"Nitrogen (N) and phosphorus (P) are indispensable macronutrients for crop growth and productivity, whereas their excessive application in agriculture has caused severe environmental degradation. Enhancing crop N-use efficiency (NUE) and P-use efficiency (PUE) is a critical strategy to reconcile high productivity with sustainability. In this review, we systematically synthesize recent advances in the genetic basis of NUE and PUE in crops, with a focus on key traits and their associated signaling networks. We summarize the identification of N/P-efficiency genes and explore how natural variations in these genes correlate with soil nutrient availability, revealing adaptive patterns from crop domestication. Given the distinct biogeochemical behaviors of N and P, we propose tailored strategies that leverage nutrient-specific traits to optimize environment-resource coordination and yield-quality balance. Finally, we discuss strategies for developing future crops cultivars with enhanced NUE or PUE to advance sustainable agriculture.","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":"127 1","pages":""},"PeriodicalIF":27.5,"publicationDate":"2026-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145894381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dephosphorylation and polyubiquitination of the histone variant H2AX coordinately terminate DNA damage signaling in Arabidopsis. 组蛋白变体H2AX的去磷酸化和多泛素化协同终止拟南芥DNA损伤信号。
IF 24.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-29 DOI: 10.1016/j.molp.2025.12.029
Xuerui Lu, Xiaodan Yu, Zhiping Deng, Zhichao Wang, Lvwen Zhang, Shixi Shi, Lili Wang, Shunping Yan

Both activation and termination of DNA damage response (DDR) are essential to maintain genome stability. It is well-known that the histone variant H2AX is rapidly phosphorylated to activate DDR in eukaryotes. But how H2AX signaling is terminated remains poorly understood, especially in plants. Through forward genetic screening in Arabidopsis, we find that the DNA Damage Response Mutant 5 (ddrm5) mutant is hypersensitive to DNA damage-inducing reagents. Gene mapping and genetic complementation analysis reveal that DDRM5 encodes a plant-unique phosphatase MAIL3, whose phosphatase domain is necessary and sufficient for its function in DDR. Biochemically, MAIL3 physically interacts with and dephosphorylates H2AX, promoting its polyubiquitination at Lys103 and Lys127 by the E3 ubiquitin ligase SCFAFB1, which results in H2AX degradation through the proteasome. Genetically, loss of H2AX or overexpression of AFB1 rescue the DDR defects of the mail3 mutant. Taken together, this study identifies MAIL3 and SCFAFB1 as the first phosphatase and the first E3 ubiquitin ligase for plant H2AX, highlighting the importance of H2AX dephosphorylation and polyubiquitination in DDR termination.

DNA损伤反应(DDR)的激活和终止对于维持基因组的稳定性至关重要。众所周知,组蛋白变体H2AX在真核生物中被迅速磷酸化以激活DDR。但是人们对H2AX信号是如何终止的仍然知之甚少,尤其是在植物中。通过对拟南芥的正向遗传筛选,我们发现DNA损伤反应突变体5 (ddrm5)突变体对DNA损伤诱导试剂敏感。基因定位和遗传互补分析表明,DDRM5编码一种植物特有的磷酸酶MAIL3,其磷酸酶结构域是其在DDR中发挥功能所必需的和充分的。生化方面,MAIL3物理上与H2AX相互作用并使其去磷酸化,通过E3泛素连接酶SCFAFB1促进其在Lys103和Lys127的多泛素化,从而通过蛋白酶体降解H2AX。遗传上,H2AX的缺失或AFB1的过表达挽救了mail3突变体的DDR缺陷。综上所述,本研究确定了MAIL3和SCFAFB1是植物H2AX的第一个磷酸酶和第一个E3泛素连接酶,突出了H2AX去磷酸化和多泛素化在DDR终止中的重要性。
{"title":"Dephosphorylation and polyubiquitination of the histone variant H2AX coordinately terminate DNA damage signaling in Arabidopsis.","authors":"Xuerui Lu, Xiaodan Yu, Zhiping Deng, Zhichao Wang, Lvwen Zhang, Shixi Shi, Lili Wang, Shunping Yan","doi":"10.1016/j.molp.2025.12.029","DOIUrl":"https://doi.org/10.1016/j.molp.2025.12.029","url":null,"abstract":"<p><p>Both activation and termination of DNA damage response (DDR) are essential to maintain genome stability. It is well-known that the histone variant H2AX is rapidly phosphorylated to activate DDR in eukaryotes. But how H2AX signaling is terminated remains poorly understood, especially in plants. Through forward genetic screening in Arabidopsis, we find that the DNA Damage Response Mutant 5 (ddrm5) mutant is hypersensitive to DNA damage-inducing reagents. Gene mapping and genetic complementation analysis reveal that DDRM5 encodes a plant-unique phosphatase MAIL3, whose phosphatase domain is necessary and sufficient for its function in DDR. Biochemically, MAIL3 physically interacts with and dephosphorylates H2AX, promoting its polyubiquitination at Lys103 and Lys127 by the E3 ubiquitin ligase SCF<sup>AFB1</sup>, which results in H2AX degradation through the proteasome. Genetically, loss of H2AX or overexpression of AFB1 rescue the DDR defects of the mail3 mutant. Taken together, this study identifies MAIL3 and SCF<sup>AFB1</sup> as the first phosphatase and the first E3 ubiquitin ligase for plant H2AX, highlighting the importance of H2AX dephosphorylation and polyubiquitination in DDR termination.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":24.1,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145863869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic insights into stepwise selection reshaping fruit traits and male-biased selection driving hermaphroditism in papayas 逐步选择重塑果实性状和雄性偏向选择驱动木瓜雌雄同体的基因组见解
IF 27.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-27 DOI: 10.1016/j.molp.2025.12.027
Changmian Ji, Ruizong Jia, Yuliang Zhang, Xiaoxi Du, Xueying Huang, Huiliang Li, He Dai, Yu Wang, Qian Jiang, Zhengnan Xie, Shanshan Huo, Yang Cao, Hua Kong, Xiaoxue Ye, Yan Yan, Jingyuan Guo, Pingping He, Shuai Hu, Lili Zhang, Qiyu Xia, Xiaoqi Jiang, Miancai Chen, Yufa Peng, Biao Liu, Ruhong Cheng, Jesus Morales, Shuai Liu, Jiankang Zhu, Zhaobo Lang, Anping Guo, Wei Hu, Hui Zhao
{"title":"Genomic insights into stepwise selection reshaping fruit traits and male-biased selection driving hermaphroditism in papayas","authors":"Changmian Ji, Ruizong Jia, Yuliang Zhang, Xiaoxi Du, Xueying Huang, Huiliang Li, He Dai, Yu Wang, Qian Jiang, Zhengnan Xie, Shanshan Huo, Yang Cao, Hua Kong, Xiaoxue Ye, Yan Yan, Jingyuan Guo, Pingping He, Shuai Hu, Lili Zhang, Qiyu Xia, Xiaoqi Jiang, Miancai Chen, Yufa Peng, Biao Liu, Ruhong Cheng, Jesus Morales, Shuai Liu, Jiankang Zhu, Zhaobo Lang, Anping Guo, Wei Hu, Hui Zhao","doi":"10.1016/j.molp.2025.12.027","DOIUrl":"https://doi.org/10.1016/j.molp.2025.12.027","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":"29 1","pages":""},"PeriodicalIF":27.5,"publicationDate":"2025-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145845021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A positive feedback loop formed between OsFTIP9 and OSH1 orchestrates temperature-sensitive seed germination in rice OsFTIP9和OSH1之间形成了一个正反馈回路,协调了水稻中温度敏感的种子萌发
IF 27.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-27 DOI: 10.1016/j.molp.2025.12.028
Liang Zhang, Jun Shen, Jiaqun Li, Yu Li, Hong Zhang, Liang Shao, Zhixiang Zha, Tongtong Duan, Sheng Zhao, Xingbing Xu, Likai Zheng, Dawei Xue, Hao Yu, Ying Chen
{"title":"A positive feedback loop formed between OsFTIP9 and OSH1 orchestrates temperature-sensitive seed germination in rice","authors":"Liang Zhang, Jun Shen, Jiaqun Li, Yu Li, Hong Zhang, Liang Shao, Zhixiang Zha, Tongtong Duan, Sheng Zhao, Xingbing Xu, Likai Zheng, Dawei Xue, Hao Yu, Ying Chen","doi":"10.1016/j.molp.2025.12.028","DOIUrl":"https://doi.org/10.1016/j.molp.2025.12.028","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":"13 1","pages":""},"PeriodicalIF":27.5,"publicationDate":"2025-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145845024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PlantscRNAdb 4.0: Improved marker identification and annotation under a cell type uniformity for plants PlantscRNAdb 4.0:改进了植物在细胞类型均匀性下的标记识别和注释
IF 27.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-25 DOI: 10.1016/j.molp.2025.12.026
Dihuai Zheng, Xiaolin Lu, Yaqian Lu, Pu Liang, Nianmin Shang, Jiwei Xu, Jie Yao, Fangyu Mo, Qinjie Chu, Longjiang Fan, Hongyu Chen
{"title":"PlantscRNAdb 4.0: Improved marker identification and annotation under a cell type uniformity for plants","authors":"Dihuai Zheng, Xiaolin Lu, Yaqian Lu, Pu Liang, Nianmin Shang, Jiwei Xu, Jie Yao, Fangyu Mo, Qinjie Chu, Longjiang Fan, Hongyu Chen","doi":"10.1016/j.molp.2025.12.026","DOIUrl":"https://doi.org/10.1016/j.molp.2025.12.026","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":"66 1","pages":""},"PeriodicalIF":27.5,"publicationDate":"2025-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145822976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive plasticity of wheat tillering for high yield in fluctuating environments 波动环境下小麦分蘖高产的适应可塑性
IF 27.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-25 DOI: 10.1016/j.molp.2025.12.024
Yan Liang, Junfeng Zhai, Jing Ning, Yonghong Wang
{"title":"Adaptive plasticity of wheat tillering for high yield in fluctuating environments","authors":"Yan Liang, Junfeng Zhai, Jing Ning, Yonghong Wang","doi":"10.1016/j.molp.2025.12.024","DOIUrl":"https://doi.org/10.1016/j.molp.2025.12.024","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":"1 1","pages":""},"PeriodicalIF":27.5,"publicationDate":"2025-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145823743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The plant ontology of cell types 细胞类型的植物本体
IF 27.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-25 DOI: 10.1016/j.molp.2025.12.025
Hongyu Chen, Pu Liang, Xiaolin Lu, Shuai Jiang, Jingjing Jin, Jiaqi Cai, Yaqian Lu, Dihuai Zheng, Jie Yao, Qinjie Chu, Huixia Shou, Chengxin Fu, Tingting Lu, Yi Jing, Yinqi Bai, Ning Yang, Silin Zhong, Jun Xiao, Fang Yang, Xing Guo, Jixian Zhai, Alexandre P. Marand, Zhixi Tian, Fan Chen, Jian Xu, Yuling Jiao, Dijun Chen, Peijian Cao, Xiaofeng Cui, Dave Jackson, Tatsuya Nobori, Xiaofeng Gu, Jiawei Wang, James Whelan, Jianbing Yan, Robert J. Schmitz, Zhang Zhang, Longjiang Fan
{"title":"The plant ontology of cell types","authors":"Hongyu Chen, Pu Liang, Xiaolin Lu, Shuai Jiang, Jingjing Jin, Jiaqi Cai, Yaqian Lu, Dihuai Zheng, Jie Yao, Qinjie Chu, Huixia Shou, Chengxin Fu, Tingting Lu, Yi Jing, Yinqi Bai, Ning Yang, Silin Zhong, Jun Xiao, Fang Yang, Xing Guo, Jixian Zhai, Alexandre P. Marand, Zhixi Tian, Fan Chen, Jian Xu, Yuling Jiao, Dijun Chen, Peijian Cao, Xiaofeng Cui, Dave Jackson, Tatsuya Nobori, Xiaofeng Gu, Jiawei Wang, James Whelan, Jianbing Yan, Robert J. Schmitz, Zhang Zhang, Longjiang Fan","doi":"10.1016/j.molp.2025.12.025","DOIUrl":"https://doi.org/10.1016/j.molp.2025.12.025","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":"22 1","pages":""},"PeriodicalIF":27.5,"publicationDate":"2025-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145822975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Posttranslational regulation of TOR kinase activity controls resource allocation between plant growth and immunity in Arabidopsis 拟南芥翻译后调控TOR激酶活性控制植物生长和免疫之间的资源分配
IF 27.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-25 DOI: 10.1016/j.molp.2025.12.023
Jianwei Li, Ran Wang, Chenying Li, Xijie Guo, Qinghong Li, Zhixuan Wu, Shanshan Zeng, Fan Qi, Yuchen Wang, Zhiyi Jia, Weiwei Yu, Zeming Huang, Yaxing Su, Ying Peng, Xiunan Jin, Wenxiu Zheng, Ping Li, Yan Xiong, Feng Yu, José M. Estevez, Dawei Zhang, Zuhua He, Fucheng Lin, Yan Liang
{"title":"Posttranslational regulation of TOR kinase activity controls resource allocation between plant growth and immunity in Arabidopsis","authors":"Jianwei Li, Ran Wang, Chenying Li, Xijie Guo, Qinghong Li, Zhixuan Wu, Shanshan Zeng, Fan Qi, Yuchen Wang, Zhiyi Jia, Weiwei Yu, Zeming Huang, Yaxing Su, Ying Peng, Xiunan Jin, Wenxiu Zheng, Ping Li, Yan Xiong, Feng Yu, José M. Estevez, Dawei Zhang, Zuhua He, Fucheng Lin, Yan Liang","doi":"10.1016/j.molp.2025.12.023","DOIUrl":"https://doi.org/10.1016/j.molp.2025.12.023","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":"17 1","pages":""},"PeriodicalIF":27.5,"publicationDate":"2025-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145822977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Plant
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1