Pub Date : 2025-07-07DOI: 10.1038/s42254-025-00845-1
Omar Amer, Shouvanik Chakrabarti, Kaushik Chakraborty, Shaltiel Eloul, Niraj Kumar, Charles Lim, Minzhao Liu, Pradeep Niroula, Yash Satsangi, Ruslan Shaydulin, Marco Pistoia
The use of randomness is ubiquitous in our society, including jury pool selection, encryption of digital communications, and many other activities. However, in many applications, there is an incentive for malicious actors to influence or predict the randomness. Therefore, it is beneficial if the trustworthiness, unpredictability and security of the randomness can be certified by any participant that does not trust the randomness provider. Certified randomness can be generated with untrusted remote quantum computers using multiple known protocols, one of which has recently been realized experimentally. Unlike the randomness sources accessible on today’s classical computers, the output of these protocols can be certified to be random under certain computational hardness assumptions, with no trust required in the hardware generating the randomness. In this Perspective, we explore real-world applications for which the use of certified randomness protocols may lead to improved security and fairness. We identify promising applications in areas including cryptography, differential privacy, financial markets and blockchain. Randomness is used in many applications where unpredictability is often paramount to ensure fairness and security. This Perspective discusses how quantum computation can generate certified randomness that can be verified by any participant and introduces several applications that can benefit from it.
{"title":"Applications of certified randomness","authors":"Omar Amer, Shouvanik Chakrabarti, Kaushik Chakraborty, Shaltiel Eloul, Niraj Kumar, Charles Lim, Minzhao Liu, Pradeep Niroula, Yash Satsangi, Ruslan Shaydulin, Marco Pistoia","doi":"10.1038/s42254-025-00845-1","DOIUrl":"10.1038/s42254-025-00845-1","url":null,"abstract":"The use of randomness is ubiquitous in our society, including jury pool selection, encryption of digital communications, and many other activities. However, in many applications, there is an incentive for malicious actors to influence or predict the randomness. Therefore, it is beneficial if the trustworthiness, unpredictability and security of the randomness can be certified by any participant that does not trust the randomness provider. Certified randomness can be generated with untrusted remote quantum computers using multiple known protocols, one of which has recently been realized experimentally. Unlike the randomness sources accessible on today’s classical computers, the output of these protocols can be certified to be random under certain computational hardness assumptions, with no trust required in the hardware generating the randomness. In this Perspective, we explore real-world applications for which the use of certified randomness protocols may lead to improved security and fairness. We identify promising applications in areas including cryptography, differential privacy, financial markets and blockchain. Randomness is used in many applications where unpredictability is often paramount to ensure fairness and security. This Perspective discusses how quantum computation can generate certified randomness that can be verified by any participant and introduces several applications that can benefit from it.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 9","pages":"514-524"},"PeriodicalIF":39.5,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-03DOI: 10.1038/s42254-025-00838-0
Filiberto Ares, Pasquale Calabrese, Sara Murciano
The Mpemba effect, in which a hotter system can equilibrate faster than a cooler one, has long been a subject of fascination in classical physics. In the past few years, notable theoretical and experimental progress has been made in understanding its occurrence in both classical and quantum systems. In this Perspective, we provide a concise overview of recent work and open questions on the Mpemba effect in quantum systems, with a focus on both open and isolated dynamics, which give rise to distinct manifestations of this anomalous non-equilibrium phenomenon. We discuss key theoretical frameworks, highlight experimental observations and explore the fundamental mechanisms that give rise to anomalous relaxation behaviours. Particular attention is given to the role of quantum fluctuations, integrability and symmetry in shaping equilibration pathways. In recent years, notable theoretical and experimental progress has been made in understanding both the classical and quantum versions of the Mpemba effect, in which a hotter system freezes faster than a cooler one. This Perspective discusses this phenomenon in open and isolated quantum systems.
{"title":"The quantum Mpemba effects","authors":"Filiberto Ares, Pasquale Calabrese, Sara Murciano","doi":"10.1038/s42254-025-00838-0","DOIUrl":"10.1038/s42254-025-00838-0","url":null,"abstract":"The Mpemba effect, in which a hotter system can equilibrate faster than a cooler one, has long been a subject of fascination in classical physics. In the past few years, notable theoretical and experimental progress has been made in understanding its occurrence in both classical and quantum systems. In this Perspective, we provide a concise overview of recent work and open questions on the Mpemba effect in quantum systems, with a focus on both open and isolated dynamics, which give rise to distinct manifestations of this anomalous non-equilibrium phenomenon. We discuss key theoretical frameworks, highlight experimental observations and explore the fundamental mechanisms that give rise to anomalous relaxation behaviours. Particular attention is given to the role of quantum fluctuations, integrability and symmetry in shaping equilibration pathways. In recent years, notable theoretical and experimental progress has been made in understanding both the classical and quantum versions of the Mpemba effect, in which a hotter system freezes faster than a cooler one. This Perspective discusses this phenomenon in open and isolated quantum systems.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 8","pages":"451-460"},"PeriodicalIF":39.5,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-02DOI: 10.1038/s42254-025-00836-2
Sayed El. Soliman, Maria Barlou, Zi Jing Wong, Kosmas L. Tsakmakidis
Topological rainbow trapping (TRT) arises from the interplay between topological states and frequency-dependent slow-wave effects. Waves first slow down, then become spatially separated by frequency and are ultimately trapped at distinct locations. TRT designs have been primarily explored in the context of photonic crystals and subsequently extended to acoustic and elastic systems. This emerging TRT concept enables robust, frequency-selective localization beyond conventional rainbow trapping, supporting compact, multi-wavelength, topologically protected platforms for extreme wave manipulation. In this Review, we elucidate the fundamental principles of TRT, emphasizing the physical mechanisms that create near-zero group velocity points with robust frequency-dependent localization. We highlight three key TRT mechanisms: graded index profiles, which gradually vary material parameters to reshape dispersion and induce slow-wave effects; higher-order topological corner modes, which exploit localized corner states for robust frequency-specific wave confinement; and synthetic dimensions, which expand the parameter space of the system to engineer stable interface states at distinct frequencies. Furthermore, we address key challenges in TRT, such as energy dissipation and tunability, while highlighting its broad range of potential applications. Finally, we discuss emerging research directions for TRT. Topological rainbow trapping combines slow-wave effects with topological robustness to spatially separate wave frequencies. This Review highlights its physical principles, implementation in different waves-based systems and potential technological impacts.
{"title":"Topological rainbow trapping","authors":"Sayed El. Soliman, Maria Barlou, Zi Jing Wong, Kosmas L. Tsakmakidis","doi":"10.1038/s42254-025-00836-2","DOIUrl":"10.1038/s42254-025-00836-2","url":null,"abstract":"Topological rainbow trapping (TRT) arises from the interplay between topological states and frequency-dependent slow-wave effects. Waves first slow down, then become spatially separated by frequency and are ultimately trapped at distinct locations. TRT designs have been primarily explored in the context of photonic crystals and subsequently extended to acoustic and elastic systems. This emerging TRT concept enables robust, frequency-selective localization beyond conventional rainbow trapping, supporting compact, multi-wavelength, topologically protected platforms for extreme wave manipulation. In this Review, we elucidate the fundamental principles of TRT, emphasizing the physical mechanisms that create near-zero group velocity points with robust frequency-dependent localization. We highlight three key TRT mechanisms: graded index profiles, which gradually vary material parameters to reshape dispersion and induce slow-wave effects; higher-order topological corner modes, which exploit localized corner states for robust frequency-specific wave confinement; and synthetic dimensions, which expand the parameter space of the system to engineer stable interface states at distinct frequencies. Furthermore, we address key challenges in TRT, such as energy dissipation and tunability, while highlighting its broad range of potential applications. Finally, we discuss emerging research directions for TRT. Topological rainbow trapping combines slow-wave effects with topological robustness to spatially separate wave frequencies. This Review highlights its physical principles, implementation in different waves-based systems and potential technological impacts.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 8","pages":"409-424"},"PeriodicalIF":39.5,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-12DOI: 10.1038/s42254-025-00846-0
Coral Calero, Macario Polo, Elena Desdentado, Mª Ángeles Moraga
Quantum solutions are typically evaluated in terms of performance, efficiency, speedup or the number of qubits — but not energy consumption. Yet quantum computing comes at a high energy cost. To make sure quantum computing is developed energy-efficiently, it is essential to optimize the design of the circuit, and pay attention to aspects such as the circuit layout and how the execution is done on the quantum computer.
{"title":"Consider the energy consumption of your quantum circuits","authors":"Coral Calero, Macario Polo, Elena Desdentado, Mª Ángeles Moraga","doi":"10.1038/s42254-025-00846-0","DOIUrl":"10.1038/s42254-025-00846-0","url":null,"abstract":"Quantum solutions are typically evaluated in terms of performance, efficiency, speedup or the number of qubits — but not energy consumption. Yet quantum computing comes at a high energy cost. To make sure quantum computing is developed energy-efficiently, it is essential to optimize the design of the circuit, and pay attention to aspects such as the circuit layout and how the execution is done on the quantum computer.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 7","pages":"352-353"},"PeriodicalIF":39.5,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-11DOI: 10.1038/s42254-025-00837-1
Frank Jenko
The pursuit of fusion energy is gaining momentum, driven by factors including advances in high-performance computing. As the need for sustainable energy solutions grows ever more urgent, supercomputing emerges as a key enabler, accelerating fusion power toward practical realization. Supercomputers empower researchers to simulate complex plasma dynamics with remarkable precision, aiding in the prediction and optimization of plasma confinement and stability — both essential for sustaining burning plasmas. They also have a critical role in assessing the resilience of materials exposed to the extreme conditions of future fusion power plants. As the fusion community transitions from laboratory experiments to pilot plants, supercomputing bridges the gap between scientific discovery and engineering implementation, and it promises to reduce costs and shorten development timelines. Against a backdrop of global energy demands, it would be helpful to accelerate the transition of fusion energy from laboratory experiments to working power plants. This Perspective discusses areas of fusion energy research that are benefitting from supercomputing, such as simulations of complex plasma behaviour and materials under extreme conditions.
{"title":"Accelerating fusion research via supercomputing","authors":"Frank Jenko","doi":"10.1038/s42254-025-00837-1","DOIUrl":"10.1038/s42254-025-00837-1","url":null,"abstract":"The pursuit of fusion energy is gaining momentum, driven by factors including advances in high-performance computing. As the need for sustainable energy solutions grows ever more urgent, supercomputing emerges as a key enabler, accelerating fusion power toward practical realization. Supercomputers empower researchers to simulate complex plasma dynamics with remarkable precision, aiding in the prediction and optimization of plasma confinement and stability — both essential for sustaining burning plasmas. They also have a critical role in assessing the resilience of materials exposed to the extreme conditions of future fusion power plants. As the fusion community transitions from laboratory experiments to pilot plants, supercomputing bridges the gap between scientific discovery and engineering implementation, and it promises to reduce costs and shorten development timelines. Against a backdrop of global energy demands, it would be helpful to accelerate the transition of fusion energy from laboratory experiments to working power plants. This Perspective discusses areas of fusion energy research that are benefitting from supercomputing, such as simulations of complex plasma behaviour and materials under extreme conditions.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 7","pages":"365-377"},"PeriodicalIF":39.5,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-09DOI: 10.1038/s42254-025-00834-4
Byoung Hee Moon, Ashok Mondal, Dmitry K. Efimkin, Young Hee Lee
Van der Waals layered materials have emerged as a platform for exploring exciton condensation, a phenomenon that reflects quantum coherence and collective behaviour. Unlike traditional quantum Hall systems, 2D layered materials offer a unique opportunity to observe exciton condensation without external magnetic field and at relatively high temperatures, making them highly attractive for both fundamental studies and potential applications. This Perspective focuses on recent advances in understanding the electrical transport behaviours of exciton condensates in 2D layered materials and the strategies proposed to achieve high-temperature exciton condensation, while addressing the challenges and discussing potential future developments in this area. Excitonic condensation occurs when electrons and holes in closely placed bilayers form bound pairs and condense into a coherent quantum state. This Perspective highlights recent experimental breakthroughs and emerging directions in the rapidly evolving field of excitonic condensation in van der Waals bilayer systems.
{"title":"Exciton condensate in van der Waals layered materials","authors":"Byoung Hee Moon, Ashok Mondal, Dmitry K. Efimkin, Young Hee Lee","doi":"10.1038/s42254-025-00834-4","DOIUrl":"10.1038/s42254-025-00834-4","url":null,"abstract":"Van der Waals layered materials have emerged as a platform for exploring exciton condensation, a phenomenon that reflects quantum coherence and collective behaviour. Unlike traditional quantum Hall systems, 2D layered materials offer a unique opportunity to observe exciton condensation without external magnetic field and at relatively high temperatures, making them highly attractive for both fundamental studies and potential applications. This Perspective focuses on recent advances in understanding the electrical transport behaviours of exciton condensates in 2D layered materials and the strategies proposed to achieve high-temperature exciton condensation, while addressing the challenges and discussing potential future developments in this area. Excitonic condensation occurs when electrons and holes in closely placed bilayers form bound pairs and condense into a coherent quantum state. This Perspective highlights recent experimental breakthroughs and emerging directions in the rapidly evolving field of excitonic condensation in van der Waals bilayer systems.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 7","pages":"388-401"},"PeriodicalIF":39.5,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-09DOI: 10.1038/s42254-025-00848-y
Avi Schneider
Avi Schneider discusses how Janus-like magnetic particles can help to study spin-related effects in biomolecules.
阿维·施耐德讨论了类janus磁粒子如何帮助研究生物分子中的自旋相关效应。
{"title":"Janus-like magnetic particles for spin-controlled biological research","authors":"Avi Schneider","doi":"10.1038/s42254-025-00848-y","DOIUrl":"10.1038/s42254-025-00848-y","url":null,"abstract":"Avi Schneider discusses how Janus-like magnetic particles can help to study spin-related effects in biomolecules.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 7","pages":"354-354"},"PeriodicalIF":39.5,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-09DOI: 10.1038/s42254-025-00842-4
As we launch Journal Clubs and reintroduce Tools of the Trade, we invite research students and postdocs to write for Nature Reviews Physics.
当我们启动期刊俱乐部并重新引入行业工具时,我们邀请研究生和博士后为自然评论物理撰写文章。
{"title":"Calling all early-career physicists","authors":"","doi":"10.1038/s42254-025-00842-4","DOIUrl":"10.1038/s42254-025-00842-4","url":null,"abstract":"As we launch Journal Clubs and reintroduce Tools of the Trade, we invite research students and postdocs to write for Nature Reviews Physics.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 6","pages":"281-281"},"PeriodicalIF":39.5,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42254-025-00842-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-06DOI: 10.1038/s42254-025-00847-z
Saki the Artist
Like everyone else, scientists often know how to work in a more sustainable way — but choose not to. How can art help bridge the gap between knowledge and motivation?
{"title":"Art as a catalyst for promoting sustainable research","authors":"Saki the Artist","doi":"10.1038/s42254-025-00847-z","DOIUrl":"10.1038/s42254-025-00847-z","url":null,"abstract":"Like everyone else, scientists often know how to work in a more sustainable way — but choose not to. How can art help bridge the gap between knowledge and motivation?","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 7","pages":"350-351"},"PeriodicalIF":39.5,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-28DOI: 10.1038/s42254-025-00844-2
May Chiao
In the 100 years since Knut Lundmark established supernovae as a separate class, they have helped to expand our knowledge of the Universe.
在克努特·伦德马克将超新星作为一个独立的类别建立以来的100年里,它们帮助扩展了我们对宇宙的认识。
{"title":"100 years of supernovae","authors":"May Chiao","doi":"10.1038/s42254-025-00844-2","DOIUrl":"10.1038/s42254-025-00844-2","url":null,"abstract":"In the 100 years since Knut Lundmark established supernovae as a separate class, they have helped to expand our knowledge of the Universe.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 6","pages":"283-283"},"PeriodicalIF":39.5,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}