首页 > 最新文献

Nature metabolism最新文献

英文 中文
Complex roles for mitochondrial complexes in microglia 线粒体复合体在小胶质细胞中的复杂作用
IF 18.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-24 DOI: 10.1038/s42255-024-01095-8
Rosa C. Paolicelli, Stefano Pluchino
Metabolism impacts various cellular types, and microglia are no exception. Two recent studies in Nature Metabolism demonstrate that impairing the mitochondrial respiratory chain, via deficiencies in complex I or complex III, affects microglia in a highly context-dependent manner.
新陈代谢会影响各种细胞类型,小胶质细胞也不例外。最近发表在《自然-新陈代谢》(Nature Metabolism)上的两项研究表明,线粒体呼吸链因复合体 I 或复合体 III 的缺陷而受损,会以高度依赖环境的方式影响小胶质细胞。
{"title":"Complex roles for mitochondrial complexes in microglia","authors":"Rosa C. Paolicelli, Stefano Pluchino","doi":"10.1038/s42255-024-01095-8","DOIUrl":"10.1038/s42255-024-01095-8","url":null,"abstract":"Metabolism impacts various cellular types, and microglia are no exception. Two recent studies in Nature Metabolism demonstrate that impairing the mitochondrial respiratory chain, via deficiencies in complex I or complex III, affects microglia in a highly context-dependent manner.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":null,"pages":null},"PeriodicalIF":18.9,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial respiration in microglia is essential for response to demyelinating injury but not proliferation 小胶质细胞的线粒体呼吸对脱髓鞘损伤的反应至关重要,但对增殖并不重要
IF 18.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-24 DOI: 10.1038/s42255-024-01080-1
Joshua S. Stoolman, Rogan A. Grant, Taylor A. Poor, Samuel E. Weinberg, Karis B. D’Alessandro, Jerica Tan, Jennifer Yuan-Shih Hu, Megan E. Zerrer, Walter A. Wood, Madeline C. Harding, Sahil Soni, Karen M. Ridge, Paul T. Schumacker, G. R. Scott Budinger, Navdeep S. Chandel
Microglia are necessary for central nervous system (CNS) function during development and play roles in ageing, Alzheimer’s disease and the response to demyelinating injury1–5. The mitochondrial respiratory chain (RC) is necessary for conventional T cell proliferation6 and macrophage-dependent immune responses7–10. However, whether mitochondrial RC is essential for microglia proliferation or function is not known. We conditionally deleted the mitochondrial complex III subunit Uqcrfs1 (Rieske iron-sulfur polypeptide 1) in the microglia of adult mice to assess the requirement of microglial RC for survival, proliferation and adult CNS function in vivo. Notably, mitochondrial RC function was not required for survival or proliferation of microglia in vivo. RNA sequencing analysis showed that loss of RC function in microglia caused changes in gene expression distinct from aged or disease-associated microglia. Microglia-specific loss of mitochondrial RC function is not sufficient to induce cognitive decline. Amyloid-β plaque coverage decreased and microglial interaction with amyloid-β plaques increased in the hippocampus of 5xFAD mice with mitochondrial RC-deficient microglia. Microglia-specific loss of mitochondrial RC function did impair remyelination following an acute, reversible demyelinating event. Thus, mitochondrial respiration in microglia is dispensable for proliferation but is essential to maintain a proper response to CNS demyelinating injury. Microglia rely on mitochondrial respiration to respond to demyelinating injury. However, mitochondrial respiration is not required to support microglial proliferation.
小胶质细胞是中枢神经系统(CNS)在发育过程中发挥功能的必要条件,并在衰老、阿尔茨海默病和脱髓鞘损伤反应中发挥作用1,2,3,4,5。线粒体呼吸链(RC)是传统 T 细胞增殖6 和巨噬细胞依赖性免疫反应7,8,9,10 所必需的。然而,线粒体 RC 对于小胶质细胞的增殖或功能是否必不可少尚不清楚。我们有条件地在成年小鼠的小胶质细胞中删除了线粒体复合体 III 亚基 Uqcrfs1(Rieske 铁硫多肽 1),以评估小胶质细胞 RC 在体内的存活、增殖和成年中枢神经系统功能的需求。值得注意的是,小胶质细胞在体内存活或增殖并不需要线粒体 RC 功能。RNA 测序分析表明,小胶质细胞中 RC 功能的缺失会导致基因表达发生变化,这种变化不同于老化或疾病相关的小胶质细胞。小胶质细胞特异性线粒体RC功能丧失不足以诱发认知能力下降。在线粒体RC缺陷的5xFAD小鼠海马中,淀粉样β斑块覆盖率下降,小胶质细胞与淀粉样β斑块的相互作用增加。小胶质细胞特异性线粒体 RC 功能缺失确实会损害急性、可逆性脱髓鞘事件后的再髓鞘化。因此,小胶质细胞中的线粒体呼吸对于增殖来说是不需要的,但对于维持对中枢神经系统脱髓鞘损伤的适当反应却是必不可少的。
{"title":"Mitochondrial respiration in microglia is essential for response to demyelinating injury but not proliferation","authors":"Joshua S. Stoolman, Rogan A. Grant, Taylor A. Poor, Samuel E. Weinberg, Karis B. D’Alessandro, Jerica Tan, Jennifer Yuan-Shih Hu, Megan E. Zerrer, Walter A. Wood, Madeline C. Harding, Sahil Soni, Karen M. Ridge, Paul T. Schumacker, G. R. Scott Budinger, Navdeep S. Chandel","doi":"10.1038/s42255-024-01080-1","DOIUrl":"10.1038/s42255-024-01080-1","url":null,"abstract":"Microglia are necessary for central nervous system (CNS) function during development and play roles in ageing, Alzheimer’s disease and the response to demyelinating injury1–5. The mitochondrial respiratory chain (RC) is necessary for conventional T cell proliferation6 and macrophage-dependent immune responses7–10. However, whether mitochondrial RC is essential for microglia proliferation or function is not known. We conditionally deleted the mitochondrial complex III subunit Uqcrfs1 (Rieske iron-sulfur polypeptide 1) in the microglia of adult mice to assess the requirement of microglial RC for survival, proliferation and adult CNS function in vivo. Notably, mitochondrial RC function was not required for survival or proliferation of microglia in vivo. RNA sequencing analysis showed that loss of RC function in microglia caused changes in gene expression distinct from aged or disease-associated microglia. Microglia-specific loss of mitochondrial RC function is not sufficient to induce cognitive decline. Amyloid-β plaque coverage decreased and microglial interaction with amyloid-β plaques increased in the hippocampus of 5xFAD mice with mitochondrial RC-deficient microglia. Microglia-specific loss of mitochondrial RC function did impair remyelination following an acute, reversible demyelinating event. Thus, mitochondrial respiration in microglia is dispensable for proliferation but is essential to maintain a proper response to CNS demyelinating injury. Microglia rely on mitochondrial respiration to respond to demyelinating injury. However, mitochondrial respiration is not required to support microglial proliferation.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":null,"pages":null},"PeriodicalIF":18.9,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen sulfide produced by the gut microbiota impairs host metabolism via reducing GLP-1 levels in male mice 肠道微生物群产生的硫化氢会通过降低雄性小鼠体内的 GLP-1 水平来损害宿主的新陈代谢。
IF 18.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-19 DOI: 10.1038/s42255-024-01068-x
Qingqing Qi, Huijie Zhang, Zheyu Jin, Changchun Wang, Mengyu Xia, Bandy Chen, Bomin Lv, Ludmila Peres Diaz, Xue Li, Ru Feng, Mengdi Qiu, Yang Li, David Meseguer, Xiaojiao Zheng, Wei Wang, Wei Song, He Huang, Hao Wu, Lei Chen, Marc Schneeberger, Xiaofei Yu
Dysbiosis of the gut microbiota has been implicated in the pathogenesis of metabolic syndrome (MetS) and may impair host metabolism through harmful metabolites. Here, we show that Desulfovibrio, an intestinal symbiont enriched in patients with MetS, suppresses the production of the gut hormone glucagon-like peptide 1 (GLP-1) through the production of hydrogen sulfide (H2S) in male mice. Desulfovibrio-derived H2S is found to inhibit mitochondrial respiration and induce the unfolded protein response in intestinal L cells, thereby hindering GLP-1 secretion and gene expression. Remarkably, blocking Desulfovibrio and H2S with an over-the-counter drug, bismuth subsalicylate, improves GLP-1 production and ameliorates diet-induced metabolic disorder in male mice. Together, our study uncovers that Desulfovibrio-derived H2S compromises GLP-1 production, shedding light on the gut-relayed mechanisms by which harmful microbiota-derived metabolites impair host metabolism in MetS and suggesting new possibilities for treating MetS. The intestinal symbiont Desulfovibrio, which is enriched in individuals with metabolic syndrome, is found to suppress the production of GLP-1 in male mice. The over-the-counter drug bismuth subsalicylate inhibits the effect of Desulfovibrio and restores GLP-1 levels.
肠道微生物群失调与代谢综合征(MetS)的发病机制有关,并可能通过有害代谢物损害宿主的新陈代谢。在这里,我们发现代谢综合征患者体内富含的一种肠道共生菌--脱硫弧菌会通过产生硫化氢(H2S)来抑制雄性小鼠体内肠道激素胰高血糖素样肽 1(GLP-1)的产生。研究发现,脱硫弧菌产生的 H2S 会抑制线粒体呼吸,诱发肠道 L 细胞的未折叠蛋白反应,从而阻碍 GLP-1 的分泌和基因表达。值得注意的是,用一种非处方药物--亚水杨酸铋来阻断脱硫弧菌和 H2S,可以改善 GLP-1 的分泌,并改善饮食引起的雄性小鼠代谢紊乱。总之,我们的研究揭示了脱硫弧菌产生的 H2S 会损害 GLP-1 的产生,从而揭示了有害微生物群衍生代谢物损害 MetS 宿主代谢的肠道相关机制,并为治疗 MetS 提出了新的可能性。
{"title":"Hydrogen sulfide produced by the gut microbiota impairs host metabolism via reducing GLP-1 levels in male mice","authors":"Qingqing Qi, Huijie Zhang, Zheyu Jin, Changchun Wang, Mengyu Xia, Bandy Chen, Bomin Lv, Ludmila Peres Diaz, Xue Li, Ru Feng, Mengdi Qiu, Yang Li, David Meseguer, Xiaojiao Zheng, Wei Wang, Wei Song, He Huang, Hao Wu, Lei Chen, Marc Schneeberger, Xiaofei Yu","doi":"10.1038/s42255-024-01068-x","DOIUrl":"10.1038/s42255-024-01068-x","url":null,"abstract":"Dysbiosis of the gut microbiota has been implicated in the pathogenesis of metabolic syndrome (MetS) and may impair host metabolism through harmful metabolites. Here, we show that Desulfovibrio, an intestinal symbiont enriched in patients with MetS, suppresses the production of the gut hormone glucagon-like peptide 1 (GLP-1) through the production of hydrogen sulfide (H2S) in male mice. Desulfovibrio-derived H2S is found to inhibit mitochondrial respiration and induce the unfolded protein response in intestinal L cells, thereby hindering GLP-1 secretion and gene expression. Remarkably, blocking Desulfovibrio and H2S with an over-the-counter drug, bismuth subsalicylate, improves GLP-1 production and ameliorates diet-induced metabolic disorder in male mice. Together, our study uncovers that Desulfovibrio-derived H2S compromises GLP-1 production, shedding light on the gut-relayed mechanisms by which harmful microbiota-derived metabolites impair host metabolism in MetS and suggesting new possibilities for treating MetS. The intestinal symbiont Desulfovibrio, which is enriched in individuals with metabolic syndrome, is found to suppress the production of GLP-1 in male mice. The over-the-counter drug bismuth subsalicylate inhibits the effect of Desulfovibrio and restores GLP-1 levels.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":null,"pages":null},"PeriodicalIF":18.9,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
H2S as a metabolic saboteur 作为新陈代谢破坏者的 H2S。
IF 18.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-19 DOI: 10.1038/s42255-024-01086-9
Naisi Zhao, Guojun Wu, Liping Zhao
In this issue of Nature Metabolism, Qi and colleagues show that the gut microbiota members Desulfovibrio spp. produce hydrogen sulfide, which disrupts host metabolism by suppressing GLP-1 production in mice. The study unveils a microbial mechanism that affects metabolic health.
在本期《自然-新陈代谢》(Nature Metabolism)杂志上,Qi及其同事发现肠道微生物群成员脱硫弧菌会产生硫化氢,硫化氢会抑制小鼠体内GLP-1的产生,从而破坏宿主的新陈代谢。这项研究揭示了影响代谢健康的微生物机制。
{"title":"H2S as a metabolic saboteur","authors":"Naisi Zhao, Guojun Wu, Liping Zhao","doi":"10.1038/s42255-024-01086-9","DOIUrl":"10.1038/s42255-024-01086-9","url":null,"abstract":"In this issue of Nature Metabolism, Qi and colleagues show that the gut microbiota members Desulfovibrio spp. produce hydrogen sulfide, which disrupts host metabolism by suppressing GLP-1 production in mice. The study unveils a microbial mechanism that affects metabolic health.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":null,"pages":null},"PeriodicalIF":18.9,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adipose glutaminolysis resurfaces in metabolic disease 代谢性疾病中的脂肪谷氨酰胺溶解症再次出现
IF 18.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-15 DOI: 10.1038/s42255-024-01084-x
John A. Haley, David A. Guertin
Analysis of glutamine metabolism in white adipose tissue (WAT) uncovers a novel role in metabolic disease that could be leveraged in therapies to combat disease.
对白色脂肪组织(WAT)中谷氨酰胺代谢的分析揭示了谷氨酰胺在代谢性疾病中的新作用,这种作用可用于治疗疾病。
{"title":"Adipose glutaminolysis resurfaces in metabolic disease","authors":"John A. Haley, David A. Guertin","doi":"10.1038/s42255-024-01084-x","DOIUrl":"10.1038/s42255-024-01084-x","url":null,"abstract":"Analysis of glutamine metabolism in white adipose tissue (WAT) uncovers a novel role in metabolic disease that could be leveraged in therapies to combat disease.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":null,"pages":null},"PeriodicalIF":18.9,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduced adipocyte glutaminase activity promotes energy expenditure and metabolic health 降低脂肪细胞谷氨酰胺酶活性可促进能量消耗和代谢健康
IF 18.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-15 DOI: 10.1038/s42255-024-01083-y
Simon Lecoutre, Salwan Maqdasy, David Rizo-Roca, Gianluca Renzi, Ivan Vlassakev, Lynn M. Alaeddine, Romane Higos, Jutta Jalkanen, Jiawei Zhong, Danae S. Zareifi, Scott Frendo-Cumbo, Lucas Massier, Ondrej Hodek, Marta Juvany, Thomas Moritz, Thais de Castro Barbosa, Muhmmad Omar-Hmeadi, Marta López-Yus, Fatiha Merabtene, Jimon Boniface Abatan, Geneviève Marcelin, Elie-Julien El Hachem, Christine Rouault, Martin O. Bergo, Paul Petrus, Juleen R. Zierath, Karine Clément, Anna Krook, Niklas Mejhert, Mikael Rydén
Glutamine and glutamate are interconverted by several enzymes and alterations in this metabolic cycle are linked to cardiometabolic traits. Herein, we show that obesity-associated insulin resistance is characterized by decreased plasma and white adipose tissue glutamine-to-glutamate ratios. We couple these stoichiometric changes to perturbed fat cell glutaminase and glutamine synthase messenger RNA and protein abundance, which together promote glutaminolysis. In human white adipocytes, reductions in glutaminase activity promote aerobic glycolysis and mitochondrial oxidative capacity via increases in hypoxia-inducible factor 1α abundance, lactate levels and p38 mitogen-activated protein kinase signalling. Systemic glutaminase inhibition in male and female mice, or genetically in adipocytes of male mice, triggers the activation of thermogenic gene programs in inguinal adipocytes. Consequently, the knockout mice display higher energy expenditure and improved glucose tolerance compared to control littermates, even under high-fat diet conditions. Altogether, our findings highlight white adipocyte glutamine turnover as an important determinant of energy expenditure and metabolic health. Lecoutre, Maqdasy and Rizo-Roca show that whole-body pharmacological inhibition or adipocyte-specific deletion of glutaminase in mice activates thermogenesis in inguinal adipocytes and promotes metabolic health. They also link decreased plasma and adipose tissue glutamine-to-glutamate ratios to insulin resistance in humans with obesity.
谷氨酰胺和谷氨酸通过几种酶相互转化,这种代谢循环的改变与心脏代谢特征有关。在本文中,我们发现肥胖相关的胰岛素抵抗表现为血浆和白色脂肪组织谷氨酰胺与谷氨酸比率的降低。我们将这些化学计量学变化与脂肪细胞谷氨酰胺酶和谷氨酰胺合成酶信使核糖核酸和蛋白质丰度的扰动结合起来,共同促进谷氨酰胺分解。在人类白色脂肪细胞中,谷氨酰胺酶活性的降低会通过低氧诱导因子1α丰度、乳酸水平和p38丝裂原活化蛋白激酶信号的增加促进有氧糖酵解和线粒体氧化能力。抑制雌雄小鼠体内的谷氨酰胺酶或雄性小鼠脂肪细胞中的谷氨酰胺酶基因,可激活腹股沟脂肪细胞中的致热基因程序。因此,与对照组小鼠相比,即使在高脂肪饮食条件下,基因敲除小鼠也能表现出更高的能量消耗和更好的葡萄糖耐受性。总之,我们的研究结果凸显了白脂肪细胞谷氨酰胺周转是能量消耗和代谢健康的重要决定因素。
{"title":"Reduced adipocyte glutaminase activity promotes energy expenditure and metabolic health","authors":"Simon Lecoutre, Salwan Maqdasy, David Rizo-Roca, Gianluca Renzi, Ivan Vlassakev, Lynn M. Alaeddine, Romane Higos, Jutta Jalkanen, Jiawei Zhong, Danae S. Zareifi, Scott Frendo-Cumbo, Lucas Massier, Ondrej Hodek, Marta Juvany, Thomas Moritz, Thais de Castro Barbosa, Muhmmad Omar-Hmeadi, Marta López-Yus, Fatiha Merabtene, Jimon Boniface Abatan, Geneviève Marcelin, Elie-Julien El Hachem, Christine Rouault, Martin O. Bergo, Paul Petrus, Juleen R. Zierath, Karine Clément, Anna Krook, Niklas Mejhert, Mikael Rydén","doi":"10.1038/s42255-024-01083-y","DOIUrl":"10.1038/s42255-024-01083-y","url":null,"abstract":"Glutamine and glutamate are interconverted by several enzymes and alterations in this metabolic cycle are linked to cardiometabolic traits. Herein, we show that obesity-associated insulin resistance is characterized by decreased plasma and white adipose tissue glutamine-to-glutamate ratios. We couple these stoichiometric changes to perturbed fat cell glutaminase and glutamine synthase messenger RNA and protein abundance, which together promote glutaminolysis. In human white adipocytes, reductions in glutaminase activity promote aerobic glycolysis and mitochondrial oxidative capacity via increases in hypoxia-inducible factor 1α abundance, lactate levels and p38 mitogen-activated protein kinase signalling. Systemic glutaminase inhibition in male and female mice, or genetically in adipocytes of male mice, triggers the activation of thermogenic gene programs in inguinal adipocytes. Consequently, the knockout mice display higher energy expenditure and improved glucose tolerance compared to control littermates, even under high-fat diet conditions. Altogether, our findings highlight white adipocyte glutamine turnover as an important determinant of energy expenditure and metabolic health. Lecoutre, Maqdasy and Rizo-Roca show that whole-body pharmacological inhibition or adipocyte-specific deletion of glutaminase in mice activates thermogenesis in inguinal adipocytes and promotes metabolic health. They also link decreased plasma and adipose tissue glutamine-to-glutamate ratios to insulin resistance in humans with obesity.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":null,"pages":null},"PeriodicalIF":18.9,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42255-024-01083-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Obesity-induced inflammation: connecting the periphery to the brain 肥胖引发的炎症:连接外周与大脑
IF 18.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-12 DOI: 10.1038/s42255-024-01079-8
Ophélia Le Thuc, Cristina García-Cáceres
Obesity is often associated with a chronic, low-grade inflammatory state affecting the entire body. This sustained inflammatory state disrupts the coordinated communication between the periphery and the brain, which has a crucial role in maintaining homeostasis through humoural, nutrient-mediated, immune and nervous signalling pathways. The inflammatory changes induced by obesity specifically affect communication interfaces, including the blood–brain barrier, glymphatic system and meninges. Consequently, brain areas near the third ventricle, including the hypothalamus and other cognition-relevant regions, become susceptible to impairments, resulting in energy homeostasis dysregulation and an elevated risk of cognitive impairments such as Alzheimer’s disease and dementia. This Review explores the intricate communication between the brain and the periphery, highlighting the effect of obesity-induced inflammation on brain function. Le Thuc and García-Cáceres discuss the effect of obesity-induced systemic inflammation on the brain, including hypothalamic circuits for whole-body energy homeostasis as well as cognitive function.
肥胖通常与影响全身的慢性、低度炎症状态有关。这种持续的炎症状态破坏了外周与大脑之间的协调沟通,而大脑在通过体液、营养介导、免疫和神经信号途径维持体内平衡方面起着至关重要的作用。肥胖引发的炎症性变化会特别影响沟通界面,包括血脑屏障、淋巴系统和脑膜。因此,第三脑室附近的脑区,包括下丘脑和其他与认知相关的区域,容易受到损伤,导致能量平衡失调和认知障碍(如阿尔茨海默病和痴呆症)风险升高。这篇综述探讨了大脑与外周之间错综复杂的交流,强调了肥胖引发的炎症对大脑功能的影响。
{"title":"Obesity-induced inflammation: connecting the periphery to the brain","authors":"Ophélia Le Thuc, Cristina García-Cáceres","doi":"10.1038/s42255-024-01079-8","DOIUrl":"10.1038/s42255-024-01079-8","url":null,"abstract":"Obesity is often associated with a chronic, low-grade inflammatory state affecting the entire body. This sustained inflammatory state disrupts the coordinated communication between the periphery and the brain, which has a crucial role in maintaining homeostasis through humoural, nutrient-mediated, immune and nervous signalling pathways. The inflammatory changes induced by obesity specifically affect communication interfaces, including the blood–brain barrier, glymphatic system and meninges. Consequently, brain areas near the third ventricle, including the hypothalamus and other cognition-relevant regions, become susceptible to impairments, resulting in energy homeostasis dysregulation and an elevated risk of cognitive impairments such as Alzheimer’s disease and dementia. This Review explores the intricate communication between the brain and the periphery, highlighting the effect of obesity-induced inflammation on brain function. Le Thuc and García-Cáceres discuss the effect of obesity-induced systemic inflammation on the brain, including hypothalamic circuits for whole-body energy homeostasis as well as cognitive function.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":null,"pages":null},"PeriodicalIF":18.9,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141597346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Adipose tissue macrophages secrete small extracellular vesicles that mediate rosiglitazone-induced insulin sensitization 作者更正:脂肪组织巨噬细胞分泌的小细胞外囊泡介导罗格列酮诱导的胰岛素敏感化。
IF 18.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-05 DOI: 10.1038/s42255-024-01094-9
Theresa V. Rohm, Felipe Castellani Gomes Dos Reis, Roi Isaac, Cairo Murphy, Karina Cunha e Rocha, Gautam Bandyopadhyay, Hong Gao, Avraham M. Libster, Rizaldy C. Zapata, Yun Sok Lee, Wei Ying, Charlene Miciano, Allen Wang, Jerrold M. Olefsky
{"title":"Author Correction: Adipose tissue macrophages secrete small extracellular vesicles that mediate rosiglitazone-induced insulin sensitization","authors":"Theresa V. Rohm, Felipe Castellani Gomes Dos Reis, Roi Isaac, Cairo Murphy, Karina Cunha e Rocha, Gautam Bandyopadhyay, Hong Gao, Avraham M. Libster, Rizaldy C. Zapata, Yun Sok Lee, Wei Ying, Charlene Miciano, Allen Wang, Jerrold M. Olefsky","doi":"10.1038/s42255-024-01094-9","DOIUrl":"10.1038/s42255-024-01094-9","url":null,"abstract":"","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":null,"pages":null},"PeriodicalIF":18.9,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42255-024-01094-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141538243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: ASS1 metabolically contributes to the nuclear and cytosolic p53-mediated DNA damage response 作者更正:ASS1 在代谢上有助于核和细胞质 p53 介导的 DNA 损伤反应。
IF 18.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-04 DOI: 10.1038/s42255-024-01090-z
Lisha Qiu Jin Lim, Lital Adler, Emma Hajaj, Leandro R. Soria, Rotem Ben-Tov Perry, Naama Darzi, Ruchama Brody, Noa Furth, Michal Lichtenstein, Elizabeta Bab-Dinitz, Ziv Porat, Tevie Melman, Alexander Brandis, Sergey Malitsky, Maxim Itkin, Yael Aylon, Shifra Ben-Dor, Irit Orr, Amir Pri-Or, Rony Seger, Yoav Shaul, Eytan Ruppin, Moshe Oren, Minervo Perez, Jordan Meier, Nicola Brunetti-Pierri, Efrat Shema, Igor Ulitsky, Ayelet Erez
{"title":"Author Correction: ASS1 metabolically contributes to the nuclear and cytosolic p53-mediated DNA damage response","authors":"Lisha Qiu Jin Lim, Lital Adler, Emma Hajaj, Leandro R. Soria, Rotem Ben-Tov Perry, Naama Darzi, Ruchama Brody, Noa Furth, Michal Lichtenstein, Elizabeta Bab-Dinitz, Ziv Porat, Tevie Melman, Alexander Brandis, Sergey Malitsky, Maxim Itkin, Yael Aylon, Shifra Ben-Dor, Irit Orr, Amir Pri-Or, Rony Seger, Yoav Shaul, Eytan Ruppin, Moshe Oren, Minervo Perez, Jordan Meier, Nicola Brunetti-Pierri, Efrat Shema, Igor Ulitsky, Ayelet Erez","doi":"10.1038/s42255-024-01090-z","DOIUrl":"10.1038/s42255-024-01090-z","url":null,"abstract":"","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":null,"pages":null},"PeriodicalIF":18.9,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272571/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141534786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging tools and best practices for studying gut microbial community metabolism 研究肠道微生物群落代谢的新兴工具和最佳实践
IF 18.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-03 DOI: 10.1038/s42255-024-01074-z
Cecilia Noecker, Peter J. Turnbaugh
The human gut microbiome vastly extends the set of metabolic reactions catalysed by our own cells, with far-reaching consequences for host health and disease. However, our knowledge of gut microbial metabolism relies on a handful of model organisms, limiting our ability to interpret and predict the metabolism of complex microbial communities. In this Perspective, we discuss emerging tools for analysing and modelling the metabolism of gut microorganisms and for linking microorganisms, pathways and metabolites at the ecosystem level, highlighting promising best practices for researchers. Continued progress in this area will also require infrastructure development to facilitate cross-disciplinary synthesis of scientific findings. Collectively, these efforts can enable a broader and deeper understanding of the workings of the gut ecosystem and open new possibilities for microbiome manipulation and therapy. In this Perspective, Noecker and Turnbaugh provide a detailed guide for studying microbial community metabolism and discuss the best practices in the field.
人类肠道微生物群极大地扩展了我们自身细胞催化的一系列代谢反应,对宿主的健康和疾病有着深远的影响。然而,我们对肠道微生物代谢的了解仅限于少数模式生物,这限制了我们解释和预测复杂微生物群落代谢的能力。在本《视角》中,我们将讨论分析和模拟肠道微生物代谢以及在生态系统水平上将微生物、途径和代谢物联系起来的新兴工具,并重点介绍研究人员有望采用的最佳做法。要在这一领域继续取得进展,还需要发展基础设施,以促进科学发现的跨学科综合。总之,这些努力可以让人们更广泛、更深入地了解肠道生态系统的运作,并为微生物组的操作和治疗开辟新的可能性。
{"title":"Emerging tools and best practices for studying gut microbial community metabolism","authors":"Cecilia Noecker, Peter J. Turnbaugh","doi":"10.1038/s42255-024-01074-z","DOIUrl":"10.1038/s42255-024-01074-z","url":null,"abstract":"The human gut microbiome vastly extends the set of metabolic reactions catalysed by our own cells, with far-reaching consequences for host health and disease. However, our knowledge of gut microbial metabolism relies on a handful of model organisms, limiting our ability to interpret and predict the metabolism of complex microbial communities. In this Perspective, we discuss emerging tools for analysing and modelling the metabolism of gut microorganisms and for linking microorganisms, pathways and metabolites at the ecosystem level, highlighting promising best practices for researchers. Continued progress in this area will also require infrastructure development to facilitate cross-disciplinary synthesis of scientific findings. Collectively, these efforts can enable a broader and deeper understanding of the workings of the gut ecosystem and open new possibilities for microbiome manipulation and therapy. In this Perspective, Noecker and Turnbaugh provide a detailed guide for studying microbial community metabolism and discuss the best practices in the field.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":null,"pages":null},"PeriodicalIF":18.9,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141495904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1