首页 > 最新文献

Netsu Sokutei最新文献

英文 中文
Microscopic Two-Dimensional Thermal Analysis by a High-Speed Infrared Focal Plane Array 高速红外焦平面阵列显微二维热分析
Pub Date : 2006-03-31 DOI: 10.11311/JSCTA1974.33.58
T. Hashimoto, J. Morikawa
熱分析法は,温度プログラムやセンシング方法で数多く の方法が考案され,特にDSCは高い感度や操作性の良さか ら生産現場の品質管理にまで普及してきた。一方で,近年 の材料開発の進歩のなかで,熱測定への要求がより高いレ ベルになってきたことも見逃すわけにはいかない。熱分析 では温度計測が基本であるが,従来型の熱分析に使われる 温度センサーは,安定性の観点から熱電対,白金抵抗体, サーミスターなど接触型のセンサーが用いられてきた。セ ンサーの熱容量の影響がない非接触型である赤外線温度セ ンサーは,輻射率や反射率が決定できないと正確な温度が 決まらないという難点がある一方で,高速であること,空 間的な温度分布が同時に取得できることなど特有の利点は 熱分析にとって魅力的である。 本解説では,最近進歩の著しい高速赤外線カメラを用い て,筆者らが開発した熱物性測定装置について概説する。1-12) 特に各種物質を昇降温し,融解・結晶化過程で生じる潜熱 を画像として観測する二次元DTAの可能性と,外部から変 調温度波を与えたときの試料内の各部分の温度変化を時間 の関数として捉える熱拡散観測装置としての両面から考察 した。通常のバルクサンプルの平均データが得られる従来 型熱分析法とは異なった視点からの考察が期待できる。
热分析法在温度程序和感测方法中被设计出了多种方法,特别是DSC因其高灵敏度和操作性的优点已普及到生产现场的质量管理中。另一方面,近年来随着材料开发的进步,对热测量的要求也越来越高,这一点也不容忽视。热分析的基础是温度计测,但传统热分析所使用的温度传感器从稳定性的角度考虑,一直采用热电偶、白金电阻、thermister等接触型传感器。红外温度传感器是不受传感器热容量影响的非接触式传感器,如果不能确定辐射率和反射率,就无法确定准确的温度,这是其最大的难点。可以同时获取间温度分布等特有的优点对于热分析来说是有吸引力的。在本解说中,将概述笔者等人利用最近进步显著的高速红外相机开发的热物性测定装置。1-12)特别是对各种物质进行升降加热,将熔化、结晶过程中产生的潜热作为图像进行观测的二维DTA的可能性,以及从外部施加变调温波时样品内各部分的温度变化的时间。作为热扩散观测装置的函数从两方面进行了考察。可以期待从不同于获得普通散装样本平均数据的传统热分析法的视角进行考察。
{"title":"Microscopic Two-Dimensional Thermal Analysis by a High-Speed Infrared Focal Plane Array","authors":"T. Hashimoto, J. Morikawa","doi":"10.11311/JSCTA1974.33.58","DOIUrl":"https://doi.org/10.11311/JSCTA1974.33.58","url":null,"abstract":"熱分析法は,温度プログラムやセンシング方法で数多く の方法が考案され,特にDSCは高い感度や操作性の良さか ら生産現場の品質管理にまで普及してきた。一方で,近年 の材料開発の進歩のなかで,熱測定への要求がより高いレ ベルになってきたことも見逃すわけにはいかない。熱分析 では温度計測が基本であるが,従来型の熱分析に使われる 温度センサーは,安定性の観点から熱電対,白金抵抗体, サーミスターなど接触型のセンサーが用いられてきた。セ ンサーの熱容量の影響がない非接触型である赤外線温度セ ンサーは,輻射率や反射率が決定できないと正確な温度が 決まらないという難点がある一方で,高速であること,空 間的な温度分布が同時に取得できることなど特有の利点は 熱分析にとって魅力的である。 本解説では,最近進歩の著しい高速赤外線カメラを用い て,筆者らが開発した熱物性測定装置について概説する。1-12) 特に各種物質を昇降温し,融解・結晶化過程で生じる潜熱 を画像として観測する二次元DTAの可能性と,外部から変 調温度波を与えたときの試料内の各部分の温度変化を時間 の関数として捉える熱拡散観測装置としての両面から考察 した。通常のバルクサンプルの平均データが得られる従来 型熱分析法とは異なった視点からの考察が期待できる。","PeriodicalId":19096,"journal":{"name":"Netsu Sokutei","volume":"2012 1","pages":"58-65"},"PeriodicalIF":0.0,"publicationDate":"2006-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86387690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamics of Bilayer Phase Transitions of Phospholipids 磷脂双层相变热力学
Pub Date : 2006-03-31 DOI: 10.11311/JSCTA1974.33.74
H. Matsuki, S. Kaneshina
生物の構成単位である細胞は細胞膜により外部と隔離さ れている。細胞膜の主構成成分はリン脂質であり,リン脂 質を水中に分散すると自発的に自己組織化し,ベシクルあ るいはリポソームと呼ばれる二分子膜構造の閉鎖型小胞体 を構築する。このため,リン脂質二分子膜構造体は生体膜 モデル系として幅広く利用されている。脂質二分子膜の最 も大きな特徴は,その周囲の環境変化(温度,圧力,塩濃 度,溶媒置換など)に鋭敏に応答し,その集合体構造を変 化させ相転移を起こすことである。脂質二分子膜相転移の 検出は様々な物理化学的手法で行われているが,中でも特 に有効なのは示差走査熱量(DSC)測定である。1,2) これま でに多数のリン脂質が形成する二分子膜の相転移がDSC測 定により調べられ,脂質二分子膜の温度感受性が明らかに されている。他方,温度と並んで重要な熱力学変数に圧力 がある。近年,麻酔作用の圧拮抗,深海生物の高圧力環境 適応,食品加工における高圧力殺菌などのような圧力変化 による膜物性変化への注目が高まってきている3,4)が,これ まで圧力を変数として脂質二分子膜の状態を解析した研究 は非常に少ない。 脂質二分子膜の圧力感受性を調べ,温度感受性と組み合 わせることにより,以下のことが可能となる。5,6) (1) DSC 測定から得られる相転移温度および相転移に伴う熱力学量 変化(相転移エンタルピーおよび相転移エントロピー)に 相転移圧力,相転移温度の圧力依存性および相転移に伴う リン脂質二分子膜相転移の熱力学
作为生物构成单位的细胞被细胞膜与外部隔离。细胞膜的主要构成成分是磷脂质,当磷脂质分散在水中时,细胞膜就会自发地自组装,贝西库尔类构建被称为脂质体的双分子膜结构的封闭型内质网。因此,磷脂双分子膜结构体作为生物膜模型系统被广泛应用。脂质双分子膜的最大特点是对其周围的环境变化(温度、压力、盐浓度、溶剂置换等)能灵敏响应,使其集合体结构发生变化,发生相变。脂质双分子膜相变的检测通过各种物理化学方法进行,其中最有效的是示差扫描热(DSC)测定。1,2)到目前为止,已经通过DSC测量调查了大量磷脂形成的双分子膜的相变,明确了脂质双分子膜的温度感受性。另一方面,与温度一样重要的热力学变量是压力。近年来,麻醉作用的压力拮抗、深海生物对高压力环境的适应性、食品加工中的高压力杀菌等压力变化引起的膜物性变化受到了越来越多的关注。以压力为变量分析脂质双分子膜状态的研究非常少。通过调查脂质双分子膜的压力感受性,并结合温度感受性,可实现以下目标。5,6)(1)从DSC测量得到的相变温度和相变伴随热力学量变化(相变焓和相变熵)与相变压力、相变温度的压力依赖性以及相变伴随磷脂双分子膜相变热力学
{"title":"Thermodynamics of Bilayer Phase Transitions of Phospholipids","authors":"H. Matsuki, S. Kaneshina","doi":"10.11311/JSCTA1974.33.74","DOIUrl":"https://doi.org/10.11311/JSCTA1974.33.74","url":null,"abstract":"生物の構成単位である細胞は細胞膜により外部と隔離さ れている。細胞膜の主構成成分はリン脂質であり,リン脂 質を水中に分散すると自発的に自己組織化し,ベシクルあ るいはリポソームと呼ばれる二分子膜構造の閉鎖型小胞体 を構築する。このため,リン脂質二分子膜構造体は生体膜 モデル系として幅広く利用されている。脂質二分子膜の最 も大きな特徴は,その周囲の環境変化(温度,圧力,塩濃 度,溶媒置換など)に鋭敏に応答し,その集合体構造を変 化させ相転移を起こすことである。脂質二分子膜相転移の 検出は様々な物理化学的手法で行われているが,中でも特 に有効なのは示差走査熱量(DSC)測定である。1,2) これま でに多数のリン脂質が形成する二分子膜の相転移がDSC測 定により調べられ,脂質二分子膜の温度感受性が明らかに されている。他方,温度と並んで重要な熱力学変数に圧力 がある。近年,麻酔作用の圧拮抗,深海生物の高圧力環境 適応,食品加工における高圧力殺菌などのような圧力変化 による膜物性変化への注目が高まってきている3,4)が,これ まで圧力を変数として脂質二分子膜の状態を解析した研究 は非常に少ない。 脂質二分子膜の圧力感受性を調べ,温度感受性と組み合 わせることにより,以下のことが可能となる。5,6) (1) DSC 測定から得られる相転移温度および相転移に伴う熱力学量 変化(相転移エンタルピーおよび相転移エントロピー)に 相転移圧力,相転移温度の圧力依存性および相転移に伴う リン脂質二分子膜相転移の熱力学","PeriodicalId":19096,"journal":{"name":"Netsu Sokutei","volume":"1 1","pages":"74-82"},"PeriodicalIF":0.0,"publicationDate":"2006-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90465175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Calorimetric Analysis of the Formation and the Thermal Response of β2 Microglobulin Amyloid Fibril β2微球蛋白淀粉样纤维形成及热响应的量热分析
Pub Date : 2006-03-31 DOI: 10.11311/JSCTA1974.33.83
K. Sasahara, Y. Goto
蛋白質は,それぞれ特有の立体構造(天然構造)に折り たたまれてその機能を担う。天然構造は,熱力学的に最も 安定な状態であり,蛋白質の唯一規則的立体構造と考えら れてきた。このような立場からは,機能をもたない凝集体 は研究の対象外であった。ところが近年,蛋白質の天然構 造が壊れたり,間違ってフォールディング(ミスフォール ディング)をすることが原因で凝集体を形成し,病気の引 き起こされる例が多く見つかってきた。このような病気は, 蛋白質の立体構造(コンフォメーション)変化によって引 き起こされるので,フォールディング病あるいはコンフォ メーション病として注目されている。1,2) これらの凝集体の 中には,蛋白質がコンゴーレッド色素で橙赤色に染色され, 偏光顕微鏡下で緑色偏光を呈する幅約10 nmで枝分かれの ない線維構造をつくって体内に沈着している例が多くある (Fig.1)。これをアミロイド線維(医学用語として繊維では なく線維をもちいる)とよび,アミロイド線維の沈着する 疾患をアミロイド病(あるいはアミロイドーシス)と総称 する。1-3) 約20種類のアミロイド病と,その原因となる蛋白質ある いはペプチドが知られている。アルツハイマー病(Aβペプ チド),透析アミロイドーシス(β 2ミクログロブリン),AL アミロイドーシス(免疫グロブリンL鎖),家族性アミロイ ドポリニューロパチー(トランスサイレチン)などのほか, 狂牛病やクロイツフェルト・ヤコブ病などのプリオン病も アミロイド病と考えられている。カッコ内は原因蛋白質で あり,それらの多くは生命機能を支える重要な蛋白質であ ることがわかる。さらには,アミロイド線維はアミロイド ーシスにかかわる蛋白質だけでなく,疾病と関係しないさ まざまな蛋白質やポリアミノ酸によっても形成されること がわかってきている。4) このことは蛋白質が天然構造を形成
蛋白质通过折叠形成各自特有的立体结构(天然结构)来发挥其功能。天然结构在热力学上是最稳定的状态,被认为是蛋白质唯一有规则的立体结构。从这种立场出发,没有功能的凝聚体不在研究对象之内。但是近年来,发现了很多由于蛋白质的天然构造被破坏,错误地变形而形成凝聚体,引起疾病的例子。这种疾病是由蛋白质的立体结构(构象)变化引起的,所以作为构象病或构象病受到关注。在这些凝聚体中,蛋白质被桔红色色素染色为橙红色,在偏振光显微镜下呈绿色偏振光,宽度约10nm,形成没有分枝的纤维结构沉积在体内的例子很多(Fig.1)。这被称为淀粉样纤维(作为医学术语,使用纤维而不是纤维),淀粉样纤维沉积的疾病被统称为淀粉样病(或淀粉样中毒)。1-3)已知约20种淀粉样蛋白病和其原因的蛋白质或肽。阿尔茨海默病(Aβ -肽),透析淀粉样蛋白(β - 2小球蛋白),AL淀粉样蛋白(免疫球蛋白L链),家族性淀粉样蛋白多neuroparchy(转细胞蛋白)等,疯牛病和克罗兹菲尔德-雅各布氏病等朊病毒病也被认为是淀粉样病。括号内为致病蛋白质,可见它们大多是支持生命功能的重要蛋白质。进一步研究发现,淀粉样纤维不仅由与淀粉样蛋白有关的蛋白质形成,还由与疾病无关的各种蛋白质和多氨基酸形成。4)这是因为蛋白质形成了天然结构
{"title":"Calorimetric Analysis of the Formation and the Thermal Response of β2 Microglobulin Amyloid Fibril","authors":"K. Sasahara, Y. Goto","doi":"10.11311/JSCTA1974.33.83","DOIUrl":"https://doi.org/10.11311/JSCTA1974.33.83","url":null,"abstract":"蛋白質は,それぞれ特有の立体構造(天然構造)に折り たたまれてその機能を担う。天然構造は,熱力学的に最も 安定な状態であり,蛋白質の唯一規則的立体構造と考えら れてきた。このような立場からは,機能をもたない凝集体 は研究の対象外であった。ところが近年,蛋白質の天然構 造が壊れたり,間違ってフォールディング(ミスフォール ディング)をすることが原因で凝集体を形成し,病気の引 き起こされる例が多く見つかってきた。このような病気は, 蛋白質の立体構造(コンフォメーション)変化によって引 き起こされるので,フォールディング病あるいはコンフォ メーション病として注目されている。1,2) これらの凝集体の 中には,蛋白質がコンゴーレッド色素で橙赤色に染色され, 偏光顕微鏡下で緑色偏光を呈する幅約10 nmで枝分かれの ない線維構造をつくって体内に沈着している例が多くある (Fig.1)。これをアミロイド線維(医学用語として繊維では なく線維をもちいる)とよび,アミロイド線維の沈着する 疾患をアミロイド病(あるいはアミロイドーシス)と総称 する。1-3) 約20種類のアミロイド病と,その原因となる蛋白質ある いはペプチドが知られている。アルツハイマー病(Aβペプ チド),透析アミロイドーシス(β 2ミクログロブリン),AL アミロイドーシス(免疫グロブリンL鎖),家族性アミロイ ドポリニューロパチー(トランスサイレチン)などのほか, 狂牛病やクロイツフェルト・ヤコブ病などのプリオン病も アミロイド病と考えられている。カッコ内は原因蛋白質で あり,それらの多くは生命機能を支える重要な蛋白質であ ることがわかる。さらには,アミロイド線維はアミロイド ーシスにかかわる蛋白質だけでなく,疾病と関係しないさ まざまな蛋白質やポリアミノ酸によっても形成されること がわかってきている。4) このことは蛋白質が天然構造を形成","PeriodicalId":19096,"journal":{"name":"Netsu Sokutei","volume":"33 1","pages":"83-88"},"PeriodicalIF":0.0,"publicationDate":"2006-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81632681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trehalose: a Molecule Responsible for Desiccation Tolerance in the Sleeping Chironomid, Polypedilum Vanderplanki 海藻糖:一种在睡眠中对干燥耐受性负责的分子
Pub Date : 2006-01-31 DOI: 10.11311/JSCTA1974.33.20
T. Okuda
Life and death are mutually exclusive states. But some organisms showing no sign of living due to complete desiccation are nevertheless able to resume active life after rehydration. This peculiar biological state of organisms is referred to as cryptobiosis. Larvae of an insect species, the African chironomid Polypedilum vanderplanki, live in temporary rock pools in semi-arid areas and are able to achieve cryptobiosis. P. vanderplanki larvae accumulate trehalose to levels of
生与死是相互排斥的状态。但是,一些由于完全干燥而没有生命迹象的生物,在补液后仍能恢复活跃的生命。这种特殊的生物状态被称为隐生。一种昆虫的幼虫,非洲chironomid Polypedilum vanderplanki,生活在半干旱地区的临时岩石池中,能够实现隐生。范氏假单胞菌幼虫积累海藻糖的水平
{"title":"Trehalose: a Molecule Responsible for Desiccation Tolerance in the Sleeping Chironomid, Polypedilum Vanderplanki","authors":"T. Okuda","doi":"10.11311/JSCTA1974.33.20","DOIUrl":"https://doi.org/10.11311/JSCTA1974.33.20","url":null,"abstract":"Life and death are mutually exclusive states. But some organisms showing no sign of living due to complete desiccation are nevertheless able to resume active life after rehydration. This peculiar biological state of organisms is referred to as cryptobiosis. Larvae of an insect species, the African chironomid Polypedilum vanderplanki, live in temporary rock pools in semi-arid areas and are able to achieve cryptobiosis. P. vanderplanki larvae accumulate trehalose to levels of","PeriodicalId":19096,"journal":{"name":"Netsu Sokutei","volume":"12 3 1","pages":"20-26"},"PeriodicalIF":0.0,"publicationDate":"2006-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78268402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Cold Adaptation and Molecular Evolution of Enzyme 冷适应与酶的分子进化
Pub Date : 2006-01-31 DOI: 10.11311/JSCTA1974.33.2
A. Yamagishi
There are many cold places around the Earth. From the psychrophiles isolated from those environments, cold-adapted enzymes have been isolated. Cold-adapted enzymes have sufficient activity and sufficient substrate-affinity to support the growth, and show low thermo-stability. Artificially cold-adapted enzymes have been obtained by evolutionary engineering from thermophile enzymes. The analysis revealed one of the cold-adaptation mechanisms: the cold-adapted enzymes showed lower enthalpy of substrate-binding thus providing lower activation enthalpy for high activity at low temperature. Some of the cold-adapted enzymes retained high thermal stability of the original thermophile enzyme. The results suggest that it is possible to reconcile high stability with high activity at low temperature. However, the issue needs further investigation. It has been elucidated that life evolved from the hyperthermophilic common ancestor (Commonote). Accordingly, the in vitro evolution experiments for obtaining cold-adapted enzymes from thermophile enzyme are, in a sense, reproducing the evolution of life.
地球上有许多寒冷的地方。从这些环境中分离出来的嗜冷菌中,分离出了适应冷的酶。冷适应酶具有足够的活性和足够的底物亲和力来支持生长,并表现出较低的热稳定性。从嗜热酶的基础上,通过进化工程获得了人工冷适应酶。分析揭示了冷适应的机制之一:冷适应酶具有较低的底物结合焓,从而为低温下的高活性提供了较低的激活焓。一些冷适应酶保留了原嗜热酶的高热稳定性。结果表明,在低温下,高稳定性和高活性是可以调和的。然而,这个问题需要进一步调查。生命是从嗜热的共同祖先(Commonote)进化而来的。因此,从嗜热酶获得冷适应酶的体外进化实验,在某种意义上是在再现生命的进化。
{"title":"Cold Adaptation and Molecular Evolution of Enzyme","authors":"A. Yamagishi","doi":"10.11311/JSCTA1974.33.2","DOIUrl":"https://doi.org/10.11311/JSCTA1974.33.2","url":null,"abstract":"There are many cold places around the Earth. From the psychrophiles isolated from those environments, cold-adapted enzymes have been isolated. Cold-adapted enzymes have sufficient activity and sufficient substrate-affinity to support the growth, and show low thermo-stability. Artificially cold-adapted enzymes have been obtained by evolutionary engineering from thermophile enzymes. The analysis revealed one of the cold-adaptation mechanisms: the cold-adapted enzymes showed lower enthalpy of substrate-binding thus providing lower activation enthalpy for high activity at low temperature. Some of the cold-adapted enzymes retained high thermal stability of the original thermophile enzyme. The results suggest that it is possible to reconcile high stability with high activity at low temperature. However, the issue needs further investigation. It has been elucidated that life evolved from the hyperthermophilic common ancestor (Commonote). Accordingly, the in vitro evolution experiments for obtaining cold-adapted enzymes from thermophile enzyme are, in a sense, reproducing the evolution of life.","PeriodicalId":19096,"journal":{"name":"Netsu Sokutei","volume":"44 1","pages":"2-9"},"PeriodicalIF":0.0,"publicationDate":"2006-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87532684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Phase Transition of Lipids in Overwintering Insects 越冬昆虫体内脂质的相变
Pub Date : 2006-01-31 DOI: 10.11311/JSCTA1974.33.10
C. Katagiri
Lipid is one of the major components in organisms; that is, triacyiglycerols and phospholipids are known as an energy source and the major constituent of the membrane, respectively. Their transition between liquid and solid occurs often under the biological environments. Insects are ectotherm of tropical origin. They, however, flourish everywhere on the earth except ocean. We have investigated how they can survive during the cold winter. Insects sometimes avoid and sometimes utilise the thermal transition of the lipids above and hydrocarbons that cover the body surface against dehydration.
脂质是生物体的主要成分之一;也就是说,甘油三酯和磷脂分别被称为膜的能量来源和主要成分。它们在液体和固体之间的转变经常发生在生物环境下。昆虫是热带的变温动物。然而,除了海洋,它们在地球上的任何地方都能茁壮成长。我们调查了它们如何在寒冷的冬天生存。昆虫有时会避开,有时会利用上面的脂质和碳氢化合物的热转变,这些碳氢化合物覆盖在身体表面以防止脱水。
{"title":"Phase Transition of Lipids in Overwintering Insects","authors":"C. Katagiri","doi":"10.11311/JSCTA1974.33.10","DOIUrl":"https://doi.org/10.11311/JSCTA1974.33.10","url":null,"abstract":"Lipid is one of the major components in organisms; that is, triacyiglycerols and phospholipids are known as an energy source and the major constituent of the membrane, respectively. Their transition between liquid and solid occurs often under the biological environments. Insects are ectotherm of tropical origin. They, however, flourish everywhere on the earth except ocean. We have investigated how they can survive during the cold winter. Insects sometimes avoid and sometimes utilise the thermal transition of the lipids above and hydrocarbons that cover the body surface against dehydration.","PeriodicalId":19096,"journal":{"name":"Netsu Sokutei","volume":"1 1","pages":"10-19"},"PeriodicalIF":0.0,"publicationDate":"2006-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84655114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precise Evaluation of Enzyme Activity using Isothermal Titration Calorimetry 等温滴定量热法精确评价酶活性
Pub Date : 2006-01-31 DOI: 10.11311/JSCTA1974.33.27
Nurul Karim, S. Kidokoro
Enzymes, the catalysts of biological systems, are remarkable molecular devices that determine the patterns of chemical transformations. For many decades, a great deal of pure and applied studies have been devoted to enzyme reactions, as the mechanisms underlying the special characteristics of the reactions, such as high specificity and high efficiency, have not only attracted scientific interest but also indicated the possibility of employing enzymes as highly useful catalysts in many application fields. Quantitative evaluation of the catalytic activity of enzymes is inevitably important to reveal the enzymes' reaction mechanisms and to use the catalysts most effectively. To evaluate enzyme kinetics, it is necessary that the transformation of a substrate into a product is accompanied with an observable event. Since the change in enthalpy is one of a reaction's general features, several approaches have been employed to monitor enzyme-catalyzed reactions using calorimetry.1-17) The heat generated as the reaction proceeds is a direct and sensitive observable quantity. Because it allows the direct determination of the reaction rate, which indicates the enzyme activity itself, calorimetry is expected to provide a general and effective way to evaluate enzyme activity. ITC provides one possibility for detecting the catalytic reaction heat as a function of time with high sensitivity and reproducibility. Two calorimetric variables, the compensation power and its integral, can be determined directly and precisely by this method.13-15) Under hydrolytic conditions, the combination of a calorimetric LineweaverBurk plot with these two variables and the non-linear least-squares method was found to be effective for determining enzymatic parameters precisely.13-15) The kinetic parameters, kcat and KM, obtained from calorimetric observables, clearly indicated that the enzyme-catalyzed hydrolysis reaction is well approximated by a simple Michaelis-Menten equation.13-15) Tradit ionally, ITC analysis has used data obtained only after the enzyme solution has been fully titrated.13, 14) However, since the enzyme reaction occurs in the cell even during titration, and since the precise total enzyme concentration in the cell is determined by the titration program, it is possible to use the experimental data gathered during titration for the analysis. To determine the reaction heat and enzyme parameters more precisely, the traditional method has been modified to treat all of the hydrolysis data observed by ITC.15) In addition to activity measurement, inhibition studies of different enzyme-catalyzed hydrolysis reactions have used ITC with great success.8-11,14,15) In most models of
酶是生物系统的催化剂,是决定化学转化模式的重要分子装置。几十年来,人们对酶的反应进行了大量的纯粹和应用研究,因为酶的反应具有高特异性和高效率等特点,其机理不仅引起了科学研究的兴趣,而且表明酶作为催化剂在许多应用领域具有很高的用途。酶的催化活性的定量评价对于揭示酶的反应机理和最有效地利用催化剂具有重要意义。为了评价酶动力学,底物向产物的转化必须伴随着一个可观察到的事件。由于焓的变化是反应的一般特征之一,因此有几种方法被用来用量热法来监测酶催化的反应。1)反应进行时产生的热是一个直接而敏感的可观察的量。由于量热法可以直接测定反应速率,而反应速率本身就表明酶的活性,因此量热法有望为评价酶的活性提供一种通用而有效的方法。ITC提供了一种检测催化反应热作为时间函数的可能性,具有高灵敏度和可重复性。该方法可以直接精确地确定两个量热变量,即补偿功率及其积分。13-15)在水解条件下,将量热LineweaverBurk图与非线性最小二乘法相结合,可以精确地确定酶的参数。13-15)动力学参数kcat和KM由量热观测得到。清楚地表明,酶催化的水解反应可以用一个简单的Michaelis-Menten方程很好地近似。13-15)传统上,ITC分析只使用酶溶液完全滴定后获得的数据。13,14)然而,由于酶反应即使在滴定过程中也会在细胞中发生,并且由于细胞中精确的总酶浓度是由滴定程序确定的,因此可以使用在滴定过程中收集的实验数据进行分析。为了更精确地确定反应热和酶参数,传统的方法已经被修改,以处理ITC观察到的所有水解数据。15)除了活性测量,不同酶催化的水解反应的抑制研究已经使用ITC取得了巨大的成功
{"title":"Precise Evaluation of Enzyme Activity using Isothermal Titration Calorimetry","authors":"Nurul Karim, S. Kidokoro","doi":"10.11311/JSCTA1974.33.27","DOIUrl":"https://doi.org/10.11311/JSCTA1974.33.27","url":null,"abstract":"Enzymes, the catalysts of biological systems, are remarkable molecular devices that determine the patterns of chemical transformations. For many decades, a great deal of pure and applied studies have been devoted to enzyme reactions, as the mechanisms underlying the special characteristics of the reactions, such as high specificity and high efficiency, have not only attracted scientific interest but also indicated the possibility of employing enzymes as highly useful catalysts in many application fields. Quantitative evaluation of the catalytic activity of enzymes is inevitably important to reveal the enzymes' reaction mechanisms and to use the catalysts most effectively. To evaluate enzyme kinetics, it is necessary that the transformation of a substrate into a product is accompanied with an observable event. Since the change in enthalpy is one of a reaction's general features, several approaches have been employed to monitor enzyme-catalyzed reactions using calorimetry.1-17) The heat generated as the reaction proceeds is a direct and sensitive observable quantity. Because it allows the direct determination of the reaction rate, which indicates the enzyme activity itself, calorimetry is expected to provide a general and effective way to evaluate enzyme activity. ITC provides one possibility for detecting the catalytic reaction heat as a function of time with high sensitivity and reproducibility. Two calorimetric variables, the compensation power and its integral, can be determined directly and precisely by this method.13-15) Under hydrolytic conditions, the combination of a calorimetric LineweaverBurk plot with these two variables and the non-linear least-squares method was found to be effective for determining enzymatic parameters precisely.13-15) The kinetic parameters, kcat and KM, obtained from calorimetric observables, clearly indicated that the enzyme-catalyzed hydrolysis reaction is well approximated by a simple Michaelis-Menten equation.13-15) Tradit ionally, ITC analysis has used data obtained only after the enzyme solution has been fully titrated.13, 14) However, since the enzyme reaction occurs in the cell even during titration, and since the precise total enzyme concentration in the cell is determined by the titration program, it is possible to use the experimental data gathered during titration for the analysis. To determine the reaction heat and enzyme parameters more precisely, the traditional method has been modified to treat all of the hydrolysis data observed by ITC.15) In addition to activity measurement, inhibition studies of different enzyme-catalyzed hydrolysis reactions have used ITC with great success.8-11,14,15) In most models of","PeriodicalId":19096,"journal":{"name":"Netsu Sokutei","volume":"31 1","pages":"27-35"},"PeriodicalIF":0.0,"publicationDate":"2006-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79262519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On the Unusual Thermal Conductivity of Ices at Elevated Pressures 论高压下冰的异常导热性
Pub Date : 2005-11-30 DOI: 10.11311/JSCTA1974.32.232
O. Andersson, H. Suga
There are numerous forms of ice including 13 crystalline phases,1) several distinctly different amorphous solid states and various clathrate hydrates. Ten of the crystalline phases, namely, ices II, III, IV, V, VI, VII, VIII, IX, X and XII, are produced at high pressures and three, hexagonal (Ih) and cubic (Ic) ices and ice XI, are produced at ambient pressure. The amorphous forms of solid water are: (i) amorphous solid water formed by hyperquenching micron-sized droplets (HQW) and by vapor-deposition on a cold plate (ASW),1) (ii) high-density amorphous ice,2) (iii) low-density amorphous ice3) and (iv) very high-density amorphous ice.4) While all the crystalline phases of water have been unequivocally established and the similarity between ASW and HQW is reasonably well established, the distinction between the amorphous states produced at high pressures and their relation to ASW is not. One of these amorphous states is formed by subjecting ice
冰有多种形式,包括13种结晶相,1)几种截然不同的非晶态固体和各种笼形水合物。固体水的无定形形态有:(i)由超淬火微米级液滴(HQW)和在冷板上气相沉积(ASW)形成的非晶态固体水,1)(ii)高密度非晶态冰,2)(iii)低密度非晶态冰,3)和(iv)高密度非晶态冰。4)虽然水的所有晶相都已明确确立,ASW和HQW之间的相似性也相当好地确立了,但高压下产生的非晶态之间的区别及其与ASW的关系还没有。其中一种无定形状态是由冰形成的
{"title":"On the Unusual Thermal Conductivity of Ices at Elevated Pressures","authors":"O. Andersson, H. Suga","doi":"10.11311/JSCTA1974.32.232","DOIUrl":"https://doi.org/10.11311/JSCTA1974.32.232","url":null,"abstract":"There are numerous forms of ice including 13 crystalline phases,1) several distinctly different amorphous solid states and various clathrate hydrates. Ten of the crystalline phases, namely, ices II, III, IV, V, VI, VII, VIII, IX, X and XII, are produced at high pressures and three, hexagonal (Ih) and cubic (Ic) ices and ice XI, are produced at ambient pressure. The amorphous forms of solid water are: (i) amorphous solid water formed by hyperquenching micron-sized droplets (HQW) and by vapor-deposition on a cold plate (ASW),1) (ii) high-density amorphous ice,2) (iii) low-density amorphous ice3) and (iv) very high-density amorphous ice.4) While all the crystalline phases of water have been unequivocally established and the similarity between ASW and HQW is reasonably well established, the distinction between the amorphous states produced at high pressures and their relation to ASW is not. One of these amorphous states is formed by subjecting ice","PeriodicalId":19096,"journal":{"name":"Netsu Sokutei","volume":"86 1","pages":"232-240"},"PeriodicalIF":0.0,"publicationDate":"2005-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86053929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Thermophysical Properties of Materials for Solid Oxide Fuel Cells (SOFC) 固体氧化物燃料电池(SOFC)材料的热物理性质
Pub Date : 2005-11-30 DOI: 10.11311/JSCTA1974.32.226
N. Sakai
The data of heat capacity, thermal conductivity, and thermal expansion behavior for materials in solid oxide fuel cells (SOFCs) are reviewed. Most of the SOFC materials are complex metal oxides and their thermal conductivities are generally low, that causes a large temperature distribution during the operation. Since the SOFC consists of metal oxides and composites, a good thermal expansion matching is the most important point in order to fabricate durable cells and stacks. The electrolytes and interconnects are exposed in a large gradient of oxygen partial pressure at a high temperature, and isothermal expansion is observed for rare earth substituted ceria and alkaline earth substituted lanthanum chromites. Although the isothermal expansion in lanthanum chromites can be alleviated by substituting the transition metals, it can not in rare earth substituted ceria. 解 説
综述了固体氧化物燃料电池(SOFCs)材料的热容、导热系数和热膨胀性能的相关数据。SOFC材料大多为复杂的金属氧化物,其导热系数普遍较低,导致在操作过程中温度分布较大。由于SOFC由金属氧化物和复合材料组成,因此为了制造耐用的电池和电池组,良好的热膨胀匹配是最重要的一点。在较大的氧分压梯度下,电解液和互连体在高温下暴露,稀土取代的氧化铈和碱土取代的镧铬铁矿均观察到等温膨胀。虽然用过渡金属取代镧铬铁矿可以缓解等温膨胀,但用稀土取代铈却不能缓解等温膨胀。解 説
{"title":"Thermophysical Properties of Materials for Solid Oxide Fuel Cells (SOFC)","authors":"N. Sakai","doi":"10.11311/JSCTA1974.32.226","DOIUrl":"https://doi.org/10.11311/JSCTA1974.32.226","url":null,"abstract":"The data of heat capacity, thermal conductivity, and thermal expansion behavior for materials in solid oxide fuel cells (SOFCs) are reviewed. Most of the SOFC materials are complex metal oxides and their thermal conductivities are generally low, that causes a large temperature distribution during the operation. Since the SOFC consists of metal oxides and composites, a good thermal expansion matching is the most important point in order to fabricate durable cells and stacks. The electrolytes and interconnects are exposed in a large gradient of oxygen partial pressure at a high temperature, and isothermal expansion is observed for rare earth substituted ceria and alkaline earth substituted lanthanum chromites. Although the isothermal expansion in lanthanum chromites can be alleviated by substituting the transition metals, it can not in rare earth substituted ceria. 解 説","PeriodicalId":19096,"journal":{"name":"Netsu Sokutei","volume":"25 1","pages":"226-231"},"PeriodicalIF":0.0,"publicationDate":"2005-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72846216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Scanning Probe Microscopic Measurements at Low Temperatures 低温扫描探针显微测量
Pub Date : 2005-11-30 DOI: 10.11311/JSCTA1974.32.218
Tetsuya Hasegawa, S. Okazaki
@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@ @?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@? @@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@? @?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@? @?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@? @?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@? @@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?
@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@ @ @ @ f@ ? ? f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ @ @ f@ ? ? ?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@ e@ ? @ @ @ e@ ? ? @ e@ ? @ @ @ e@ ? ? @ e@ ? @ @ @ e@ ? ? @ e@ ? @ @ @ e@ ? ? @ e@ ? @ @ @ e@ ? ? @ e@ ? @ @ @ e@ ? ? @ e@ ? @ @ @ e@ ? ? @ e@ ? @ @ @ e@ ? ? @ e@ ? @ @ @ e@ ? ? @ e@ ? @ @ @ e@ ? ? @ e@ ? @ @ @ e@ ? ? @ e@ ? @ @ @ e@ ? ? @ e@ ? @ @ @ e@ ? ?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ? @ f@ ?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?
{"title":"Scanning Probe Microscopic Measurements at Low Temperatures","authors":"Tetsuya Hasegawa, S. Okazaki","doi":"10.11311/JSCTA1974.32.218","DOIUrl":"https://doi.org/10.11311/JSCTA1974.32.218","url":null,"abstract":"@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@ @?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@? @@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@? @?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@?@?e@?@? @?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@? @?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@? @@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?@@@@@@@?","PeriodicalId":19096,"journal":{"name":"Netsu Sokutei","volume":"61 1","pages":"218-225"},"PeriodicalIF":0.0,"publicationDate":"2005-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89448977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Netsu Sokutei
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1