首页 > 最新文献

Nature Physics最新文献

英文 中文
Old tools, new insights 旧工具,新见解
IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-11 DOI: 10.1038/s41567-024-02682-y
Adapting an experimental tool for use in a new field can be as powerful as inventing a new technique.
将一种实验工具应用于一个新的领域,其作用不亚于发明一种新技术。
{"title":"Old tools, new insights","authors":"","doi":"10.1038/s41567-024-02682-y","DOIUrl":"10.1038/s41567-024-02682-y","url":null,"abstract":"Adapting an experimental tool for use in a new field can be as powerful as inventing a new technique.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 10","pages":"1519-1519"},"PeriodicalIF":17.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41567-024-02682-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Growing old nonlinearly 非线性变老
IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-11 DOI: 10.1038/s41567-024-02660-4
Mark Buchanan
{"title":"Growing old nonlinearly","authors":"Mark Buchanan","doi":"10.1038/s41567-024-02660-4","DOIUrl":"10.1038/s41567-024-02660-4","url":null,"abstract":"","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 10","pages":"1520-1520"},"PeriodicalIF":17.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrafast high-harmonic spectroscopy of solids 固体超快高次谐波光谱学
IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-10 DOI: 10.1038/s41567-024-02640-8
Christian Heide, Yuki Kobayashi, Sheikh Rubaiat Ul Haque, Shambhu Ghimire
High-harmonic spectroscopy, an ultrafast all-optical technique initially conceptualized in atomic and molecular systems, has now emerged as a powerful platform for studying the structure and dynamics of condensed matter. Unlike that in the gas phase, solid-state high-harmonic generation relies on the fundamental response from high atomic density and periodicity, leading to interband transitions and coherent driving of electrons and holes in their respective bands. These mechanisms make high-harmonic spectroscopy particularly sensitive to the electronic band structure, topological properties and many-body correlations in condensed media. An advantage of high-harmonic spectroscopy over other spectroscopic methods is its ability to probe ultrafast phenomena, capturing femto- to attosecond dynamics of multi-band and strongly correlated electron interactions in solids. In this Review, we discuss the latest experimental and theoretical advances in ultrafast high-harmonic spectroscopy of solids and provide perspectives for future research in this field. High-harmonic spectroscopy on solids is an ultrafast all-optical technique to study the structure and dynamics of materials. This Review discusses areas of condensed-matter physics where this technique can provide particular insight.
高次谐波光谱学是一种超快全光学技术,最初是在原子和分子系统中提出的概念,现已成为研究凝聚态物质结构和动力学的强大平台。与气相不同,固态高次谐波的产生依赖于高原子密度和周期性的基本响应,从而导致带间跃迁以及电子和空穴在各自带内的相干驱动。这些机制使得高次谐波光谱学对凝聚态介质中的电子能带结构、拓扑特性和多体相关性特别敏感。与其他光谱学方法相比,高次谐波光谱学的优势在于它能够探测超快现象,捕捉固体中多波段和强相关电子相互作用的飞秒到阿秒级动态。在这篇综述中,我们将讨论固体超快高次谐波光谱学的最新实验和理论进展,并为这一领域的未来研究提供展望。
{"title":"Ultrafast high-harmonic spectroscopy of solids","authors":"Christian Heide, Yuki Kobayashi, Sheikh Rubaiat Ul Haque, Shambhu Ghimire","doi":"10.1038/s41567-024-02640-8","DOIUrl":"10.1038/s41567-024-02640-8","url":null,"abstract":"High-harmonic spectroscopy, an ultrafast all-optical technique initially conceptualized in atomic and molecular systems, has now emerged as a powerful platform for studying the structure and dynamics of condensed matter. Unlike that in the gas phase, solid-state high-harmonic generation relies on the fundamental response from high atomic density and periodicity, leading to interband transitions and coherent driving of electrons and holes in their respective bands. These mechanisms make high-harmonic spectroscopy particularly sensitive to the electronic band structure, topological properties and many-body correlations in condensed media. An advantage of high-harmonic spectroscopy over other spectroscopic methods is its ability to probe ultrafast phenomena, capturing femto- to attosecond dynamics of multi-band and strongly correlated electron interactions in solids. In this Review, we discuss the latest experimental and theoretical advances in ultrafast high-harmonic spectroscopy of solids and provide perspectives for future research in this field. High-harmonic spectroscopy on solids is an ultrafast all-optical technique to study the structure and dynamics of materials. This Review discusses areas of condensed-matter physics where this technique can provide particular insight.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 10","pages":"1546-1557"},"PeriodicalIF":17.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Intervalley coherence and intrinsic spin–orbit coupling in rhombohedral trilayer graphene 作者更正:斜方三层石墨烯中的间隙相干性和内在自旋轨道耦合
IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-08 DOI: 10.1038/s41567-024-02689-5
Trevor Arp, Owen Sheekey, Haoxin Zhou, C. L. Tschirhart, Caitlin L. Patterson, H. M. Yoo, Ludwig Holleis, Evgeny Redekop, Grigory Babikyan, Tian Xie, Jiewen Xiao, Yaar Vituri, Tobias Holder, Takashi Taniguchi, Kenji Watanabe, Martin E. Huber, Erez Berg, Andrea F. Young
{"title":"Author Correction: Intervalley coherence and intrinsic spin–orbit coupling in rhombohedral trilayer graphene","authors":"Trevor Arp, Owen Sheekey, Haoxin Zhou, C. L. Tschirhart, Caitlin L. Patterson, H. M. Yoo, Ludwig Holleis, Evgeny Redekop, Grigory Babikyan, Tian Xie, Jiewen Xiao, Yaar Vituri, Tobias Holder, Takashi Taniguchi, Kenji Watanabe, Martin E. Huber, Erez Berg, Andrea F. Young","doi":"10.1038/s41567-024-02689-5","DOIUrl":"10.1038/s41567-024-02689-5","url":null,"abstract":"","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 11","pages":"1840-1840"},"PeriodicalIF":17.6,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41567-024-02689-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photon-mediated long-range coupling of two Andreev pair qubits 两个安德烈耶夫对量子比特的光子介导长程耦合
IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-03 DOI: 10.1038/s41567-024-02630-w
L. Y. Cheung, R. Haller, A. Kononov, C. Ciaccia, J. H. Ungerer, T. Kanne, J. Nygård, P. Winkel, T. Reisinger, I. M. Pop, A. Baumgartner, C. Schönenberger
When two superconductors are separated by a weak link, a supercurrent is carried by Andreev bound states formed by the phase-coherent reflection of electrons and their time-reversed partners. The two levels associated with a single, highly transmissive Andreev bound state can serve as a qubit due to the potentially large energy difference with the next bound state. Although coherent manipulation of these so-called Andreev pair qubits has been demonstrated, long-range qubit–qubit coupling, which is necessary for advanced quantum computing architectures, has not yet been achieved. Here, we demonstrate coherent remote coupling between two Andreev pair qubits mediated by a microwave photon in a superconducting cavity coupler. The latter hosts two modes that are engineered to have very different coupling rates to an external port. The strongly coupled mode can be used to perform a fast read-out of each qubit, while we use the weakly coupled mode to mediate the coupling between the qubits. When both qubits are tuned into resonance with the latter mode, we find excitation spectra with characteristic avoided crossings. We identify two-qubit states that are entangled over a distance of 6 mm. This work establishes Andreev pair qubits as a compact and scalable approach to developing quantum computers. Qubits formed from Andreev bound states in a Josephson junction could have performance advantages over existing superconducting qubits. Here proof-of-principle experiments demonstrate long-range coupling between Andreev-level qubits.
当两个超导体被薄弱环节隔开时,电子及其时间反转伙伴的相位相干反射形成的安德烈耶夫束缚态会携带超电流。由于与下一个束缚态之间可能存在巨大的能量差,与单个高穿透性安德列夫束缚态相关的两个电平可以作为一个量子比特。虽然这些所谓的安德烈夫对量子比特的相干操纵已经得到证实,但先进量子计算架构所必需的远距离量子比特-量子比特耦合尚未实现。在这里,我们展示了由超导腔耦合器中的微波光子介导的两个安德烈夫对量子比特之间的相干远程耦合。超导腔耦合器包含两种模式,它们与外部端口的耦合率截然不同。强耦合模式可用于快速读出每个量子比特,而我们则使用弱耦合模式来调解量子比特之间的耦合。当两个量子比特都被调谐到与后一种模式共振时,我们发现激发光谱具有避免交叉的特征。我们确定了纠缠距离为 6 毫米的双量子比特态。这项工作将安德烈耶夫对量子比特确立为开发量子计算机的一种紧凑、可扩展的方法。
{"title":"Photon-mediated long-range coupling of two Andreev pair qubits","authors":"L. Y. Cheung, R. Haller, A. Kononov, C. Ciaccia, J. H. Ungerer, T. Kanne, J. Nygård, P. Winkel, T. Reisinger, I. M. Pop, A. Baumgartner, C. Schönenberger","doi":"10.1038/s41567-024-02630-w","DOIUrl":"10.1038/s41567-024-02630-w","url":null,"abstract":"When two superconductors are separated by a weak link, a supercurrent is carried by Andreev bound states formed by the phase-coherent reflection of electrons and their time-reversed partners. The two levels associated with a single, highly transmissive Andreev bound state can serve as a qubit due to the potentially large energy difference with the next bound state. Although coherent manipulation of these so-called Andreev pair qubits has been demonstrated, long-range qubit–qubit coupling, which is necessary for advanced quantum computing architectures, has not yet been achieved. Here, we demonstrate coherent remote coupling between two Andreev pair qubits mediated by a microwave photon in a superconducting cavity coupler. The latter hosts two modes that are engineered to have very different coupling rates to an external port. The strongly coupled mode can be used to perform a fast read-out of each qubit, while we use the weakly coupled mode to mediate the coupling between the qubits. When both qubits are tuned into resonance with the latter mode, we find excitation spectra with characteristic avoided crossings. We identify two-qubit states that are entangled over a distance of 6 mm. This work establishes Andreev pair qubits as a compact and scalable approach to developing quantum computers. Qubits formed from Andreev bound states in a Josephson junction could have performance advantages over existing superconducting qubits. Here proof-of-principle experiments demonstrate long-range coupling between Andreev-level qubits.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 11","pages":"1793-1797"},"PeriodicalIF":17.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142369011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Qubits inside junctions get joined up 结内的质子被连接起来
IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-03 DOI: 10.1038/s41567-024-02639-1
Max Hays, Valla Fatemi
Semiconductor spin qubits are usually highly localized, which makes it difficult to engineer long-range interactions. Two recent experiments demonstrate that adding superconductivity makes supercurrent-based long-range coupling possible.
半导体自旋量子比特通常是高度局部化的,因此很难设计长程相互作用。最近的两项实验证明,增加超导性使基于超电流的长程耦合成为可能。
{"title":"Qubits inside junctions get joined up","authors":"Max Hays, Valla Fatemi","doi":"10.1038/s41567-024-02639-1","DOIUrl":"10.1038/s41567-024-02639-1","url":null,"abstract":"Semiconductor spin qubits are usually highly localized, which makes it difficult to engineer long-range interactions. Two recent experiments demonstrate that adding superconductivity makes supercurrent-based long-range coupling possible.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 11","pages":"1698-1699"},"PeriodicalIF":17.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electromagnetic properties of indium isotopes illuminate the doubly magic character of 100Sn 铟同位素的电磁特性揭示了 100Sn 的双重魔法特性
IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-09-30 DOI: 10.1038/s41567-024-02612-y
J. Karthein, C. M. Ricketts, R. F. Garcia Ruiz, J. Billowes, C. L. Binnersley, T. E. Cocolios, J. Dobaczewski, G. J. Farooq-Smith, K. T. Flanagan, G. Georgiev, W. Gins, R. P. de Groote, F. P. Gustafsson, J. D. Holt, A. Kanellakopoulos, Á. Koszorús, D. Leimbach, K. M. Lynch, T. Miyagi, W. Nazarewicz, G. Neyens, P.-G. Reinhard, B. K. Sahoo, A. R. Vernon, S. G. Wilkins, X. F. Yang, D. T. Yordanov
Understanding the nuclear properties in the vicinity of 100Sn, which has been suggested to be the heaviest doubly magic nucleus with proton number Z equal to neutron number N, has been a long-standing challenge for experimental and theoretical nuclear physics. In particular, contradictory experimental evidence exists regarding the role of nuclear collectivity in this region of the nuclear chart. Here, we provide further evidence for the doubly magic character of 100Sn by measuring the ground-state electromagnetic moments and nuclear charge radii of indium (Z = 49) isotopes as N approaches 50 from above using precision laser spectroscopy. Our results span almost the complete range between the two major closed neutron shells at N = 50 and N = 82 and reveal parabolic trends as a function of the neutron number, with a clear reduction towards these two closed neutron shells. A detailed comparison between our experimental results and numerical results from two complementary nuclear many-body frameworks (density functional theory and ab initio methods) exposes deficiencies in nuclear models and establishes a benchmark for future theoretical developments. Precision laser spectroscopy of ground-state electromagnetic moments and nuclear charge radii of indium shows that 100Sn has closed proton and neutron shells. The results serve as a benchmark for future theoretical models.
100Sn 被认为是质子数 Z 等于中子数 N 的最重的双魔核,了解 100Sn 附近的核特性一直是实验和理论核物理面临的长期挑战。特别是关于核集合性在核图这一区域的作用,存在着相互矛盾的实验证据。在这里,我们利用精密激光光谱法测量了铟同位素(Z = 49)在 N 从上往下接近 50 时的基态电磁矩和核电荷半径,从而为 100Sn 的双魔力特性提供了进一步的证据。我们的结果几乎涵盖了 N = 50 和 N = 82 时两个主要封闭中子壳之间的全部范围,并揭示了与中子数函数相关的抛物线趋势,以及向这两个封闭中子壳方向的明显减弱。我们的实验结果与两个互补的核多体框架(密度泛函理论和 ab initio 方法)的数值结果之间的详细比较揭示了核模型的缺陷,并为未来的理论发展确立了基准。
{"title":"Electromagnetic properties of indium isotopes illuminate the doubly magic character of 100Sn","authors":"J. Karthein, C. M. Ricketts, R. F. Garcia Ruiz, J. Billowes, C. L. Binnersley, T. E. Cocolios, J. Dobaczewski, G. J. Farooq-Smith, K. T. Flanagan, G. Georgiev, W. Gins, R. P. de Groote, F. P. Gustafsson, J. D. Holt, A. Kanellakopoulos, Á. Koszorús, D. Leimbach, K. M. Lynch, T. Miyagi, W. Nazarewicz, G. Neyens, P.-G. Reinhard, B. K. Sahoo, A. R. Vernon, S. G. Wilkins, X. F. Yang, D. T. Yordanov","doi":"10.1038/s41567-024-02612-y","DOIUrl":"10.1038/s41567-024-02612-y","url":null,"abstract":"Understanding the nuclear properties in the vicinity of 100Sn, which has been suggested to be the heaviest doubly magic nucleus with proton number Z equal to neutron number N, has been a long-standing challenge for experimental and theoretical nuclear physics. In particular, contradictory experimental evidence exists regarding the role of nuclear collectivity in this region of the nuclear chart. Here, we provide further evidence for the doubly magic character of 100Sn by measuring the ground-state electromagnetic moments and nuclear charge radii of indium (Z = 49) isotopes as N approaches 50 from above using precision laser spectroscopy. Our results span almost the complete range between the two major closed neutron shells at N = 50 and N = 82 and reveal parabolic trends as a function of the neutron number, with a clear reduction towards these two closed neutron shells. A detailed comparison between our experimental results and numerical results from two complementary nuclear many-body frameworks (density functional theory and ab initio methods) exposes deficiencies in nuclear models and establishes a benchmark for future theoretical developments. Precision laser spectroscopy of ground-state electromagnetic moments and nuclear charge radii of indium shows that 100Sn has closed proton and neutron shells. The results serve as a benchmark for future theoretical models.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 11","pages":"1719-1725"},"PeriodicalIF":17.6,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic traction force measurements of migrating immune cells in 3D biopolymer matrices 对三维生物聚合物基质中迁移的免疫细胞进行动态牵引力测量
IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-09-24 DOI: 10.1038/s41567-024-02632-8
David Böhringer, Mar Cóndor, Lars Bischof, Tina Czerwinski, Niklas Gampl, Phuong Anh Ngo, Andreas Bauer, Caroline Voskens, Rocío López-Posadas, Kristian Franze, Silvia Budday, Christoph Mark, Ben Fabry, Richard Gerum
Immune cells, such as natural killer cells, migrate with high speeds of several micrometres per minute through dense tissue. However, the magnitude of the traction forces during this migration is unknown. Here we present a method to measure dynamic traction forces of fast migrating cells in biopolymer matrices from the observed matrix deformations. Our method accounts for the mechanical nonlinearity of the three-dimensional tissue matrix and can be applied to time series of confocal or bright-field image stacks. It allows for precise force reconstruction over a wide range of force magnitudes and object sizes—even when the imaged volume captures only a small part of the matrix deformation field. We demonstrate the broad applicability of our method by measuring forces from around 1 nN for axon growth cones up to around 10 μN for mouse intestinal organoids. We find that natural killer cells show bursts of large traction forces around 50 nN that increase with matrix stiffness. These force bursts are driven by myosin II contractility, mediated by integrin β1 adhesions, focal adhesion kinase and Rho-kinase activity, and occur predominantly when the cells migrate through narrow matrix pores. Immune cells are believed not to generate large traction forces during migration. Now, measurements of natural killer cells in dense tissue reveal bursts of large traction forces as they move through narrow pores.
免疫细胞(如自然杀伤细胞)会以每分钟几微米的速度在致密组织中高速迁移。然而,这种迁移过程中的牵引力大小尚不清楚。在此,我们提出了一种方法,通过观察基质变形来测量生物聚合物基质中快速迁移细胞的动态牵引力。我们的方法考虑了三维组织基质的机械非线性,可应用于共聚焦或明视场图像的时间序列。即使成像体积只捕捉到基质变形场的一小部分,它也能在很大的力大小和物体尺寸范围内进行精确的力重建。我们通过测量从轴突生长锥的约 1 nN 到小鼠肠有机体的约 10 μN 的力,证明了我们的方法具有广泛的适用性。我们发现,自然杀伤细胞会爆发出 50 nN 左右的巨大牵引力,并随着基质硬度的增加而增大。这些牵引力爆发由肌球蛋白II收缩力驱动,由整合素β1粘附、局灶性粘附激酶和Rho-激酶活性介导,主要发生在细胞迁移穿过狭窄的基质孔时。
{"title":"Dynamic traction force measurements of migrating immune cells in 3D biopolymer matrices","authors":"David Böhringer, Mar Cóndor, Lars Bischof, Tina Czerwinski, Niklas Gampl, Phuong Anh Ngo, Andreas Bauer, Caroline Voskens, Rocío López-Posadas, Kristian Franze, Silvia Budday, Christoph Mark, Ben Fabry, Richard Gerum","doi":"10.1038/s41567-024-02632-8","DOIUrl":"10.1038/s41567-024-02632-8","url":null,"abstract":"Immune cells, such as natural killer cells, migrate with high speeds of several micrometres per minute through dense tissue. However, the magnitude of the traction forces during this migration is unknown. Here we present a method to measure dynamic traction forces of fast migrating cells in biopolymer matrices from the observed matrix deformations. Our method accounts for the mechanical nonlinearity of the three-dimensional tissue matrix and can be applied to time series of confocal or bright-field image stacks. It allows for precise force reconstruction over a wide range of force magnitudes and object sizes—even when the imaged volume captures only a small part of the matrix deformation field. We demonstrate the broad applicability of our method by measuring forces from around 1 nN for axon growth cones up to around 10 μN for mouse intestinal organoids. We find that natural killer cells show bursts of large traction forces around 50 nN that increase with matrix stiffness. These force bursts are driven by myosin II contractility, mediated by integrin β1 adhesions, focal adhesion kinase and Rho-kinase activity, and occur predominantly when the cells migrate through narrow matrix pores. Immune cells are believed not to generate large traction forces during migration. Now, measurements of natural killer cells in dense tissue reveal bursts of large traction forces as they move through narrow pores.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 11","pages":"1816-1823"},"PeriodicalIF":17.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the right track 走上正轨
IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-09-24 DOI: 10.1038/s41567-024-02647-1
Jennifer Patten, Karin Wang
A platform for imaging traction forces exerted by moving cells overcomes current reconstruction limitations. This technique has identified unknown migration dynamics of immune cells and resolved traction forces of single and multicellular systems.
对移动细胞施加的牵引力进行成像的平台克服了目前重建的局限性。这项技术已经确定了免疫细胞未知的迁移动态,并解析了单细胞和多细胞系统的牵引力。
{"title":"On the right track","authors":"Jennifer Patten, Karin Wang","doi":"10.1038/s41567-024-02647-1","DOIUrl":"10.1038/s41567-024-02647-1","url":null,"abstract":"A platform for imaging traction forces exerted by moving cells overcomes current reconstruction limitations. This technique has identified unknown migration dynamics of immune cells and resolved traction forces of single and multicellular systems.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 11","pages":"1702-1703"},"PeriodicalIF":17.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronic response of a Mott insulator at a current-induced insulator-to-metal transition 电流诱导绝缘体向金属转变时莫特绝缘体的电子响应
IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-09-24 DOI: 10.1038/s41567-024-02629-3
C. T. Suen, I. Marković, M. Zonno, N. Heinsdorf, S. Zhdanovich, N. H. Jo, M. Schmid, P. Hansmann, P. Puphal, K. Fürsich, S. Smit, C. Au-Yeung, V. Zimmermann, B. Zwartsenberg, M. Krautloher, I. S. Elfimov, R. Koch, S. Gorovikov, C. Jozwiak, A. Bostwick, M. Franz, Eli Rotenberg, B. Keimer, A. Damascelli
The Mott insulator Ca2RuO4 exhibits an insulator-to-metal transition induced by d.c. current. Despite the thorough examination of the structural changes associated with this transition, a comprehensive knowledge of the response of electronic degrees of freedom is still lacking. Here we demonstrate current-induced modifications of the electronic states of Ca2RuO4. Angle-resolved photoemission spectroscopy in conjunction with four-probe electrical transport (transport-ARPES) measurements reveal a clear reduction of the Mott gap and a modification in the dispersion of the Ru bands. Based on a free-energy analysis, we show that the current-induced phase is electronically distinct from the high-temperature zero-current metallic phase. Our results highlight strong interplay of lattice- and orbital-dependent electronic responses in the current-driven insulator-to-metal transition. Ca2RuO4 is a Mott insulator that becomes a metal when a current is passed through it. Now, the changes in its electronic structure are revealed as this transition takes place.
莫特绝缘体 Ca2RuO4 在直流电流的诱导下表现出绝缘体到金属的转变。尽管对与这种转变相关的结构变化进行了深入研究,但对电子自由度的反应仍然缺乏全面的了解。在这里,我们展示了电流诱导的 Ca2RuO4 电子状态的改变。角度分辨光发射光谱与四探针电输运(transport-ARPES)测量相结合,揭示了莫特隙的明显减小和 Ru 带色散的改变。基于自由能分析,我们发现电流诱导相在电子学上与高温零电流金属相截然不同。我们的研究结果凸显了在电流驱动的绝缘体向金属转变过程中,晶格和轨道依赖性电子响应的强烈相互作用。
{"title":"Electronic response of a Mott insulator at a current-induced insulator-to-metal transition","authors":"C. T. Suen, I. Marković, M. Zonno, N. Heinsdorf, S. Zhdanovich, N. H. Jo, M. Schmid, P. Hansmann, P. Puphal, K. Fürsich, S. Smit, C. Au-Yeung, V. Zimmermann, B. Zwartsenberg, M. Krautloher, I. S. Elfimov, R. Koch, S. Gorovikov, C. Jozwiak, A. Bostwick, M. Franz, Eli Rotenberg, B. Keimer, A. Damascelli","doi":"10.1038/s41567-024-02629-3","DOIUrl":"10.1038/s41567-024-02629-3","url":null,"abstract":"The Mott insulator Ca2RuO4 exhibits an insulator-to-metal transition induced by d.c. current. Despite the thorough examination of the structural changes associated with this transition, a comprehensive knowledge of the response of electronic degrees of freedom is still lacking. Here we demonstrate current-induced modifications of the electronic states of Ca2RuO4. Angle-resolved photoemission spectroscopy in conjunction with four-probe electrical transport (transport-ARPES) measurements reveal a clear reduction of the Mott gap and a modification in the dispersion of the Ru bands. Based on a free-energy analysis, we show that the current-induced phase is electronically distinct from the high-temperature zero-current metallic phase. Our results highlight strong interplay of lattice- and orbital-dependent electronic responses in the current-driven insulator-to-metal transition. Ca2RuO4 is a Mott insulator that becomes a metal when a current is passed through it. Now, the changes in its electronic structure are revealed as this transition takes place.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 11","pages":"1757-1763"},"PeriodicalIF":17.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41567-024-02629-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1