Pub Date : 2025-01-22DOI: 10.1038/s41567-024-02763-y
Alexander Mietke
In a cancer mouse model, wrinkling patterns in bladder-lining tissue differ from their healthy counterparts. Changes in tissue-mechanical properties that alter elastic buckling instabilities explain this observation.
{"title":"Tissue wrinkles foreshadow cancer","authors":"Alexander Mietke","doi":"10.1038/s41567-024-02763-y","DOIUrl":"10.1038/s41567-024-02763-y","url":null,"abstract":"In a cancer mouse model, wrinkling patterns in bladder-lining tissue differ from their healthy counterparts. Changes in tissue-mechanical properties that alter elastic buckling instabilities explain this observation.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 2","pages":"183-184"},"PeriodicalIF":17.6,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.1038/s41567-024-02769-6
Nina Bielinski, Rajas Chari, Julian May-Mann, Soyeun Kim, Jack Zwettler, Yujun Deng, Anuva Aishwarya, Subhajit Roychowdhury, Chandra Shekhar, Makoto Hashimoto, Donghui Lu, Jiaqiang Yan, Claudia Felser, Vidya Madhavan, Zhi-Xun Shen, Taylor L. Hughes, Fahad Mahmood
Floquet–Bloch manipulation, achieved by driving a material periodically with a laser pulse, is a method that enables the engineering of electronic and magnetic phases in solids by effectively modifying the structure of their electronic bands. However, the application of Floquet–Bloch manipulation in topological magnetic systems, particularly those with inherent disorder, remains largely unexplored. Here we realize Floquet–Bloch manipulation of the Dirac surface-state mass of the topological antiferromagnet MnBi2Te4. Using time- and angle-resolved photoemission spectroscopy, we show that opposite helicities of mid-infrared circularly polarized light result in substantially different Dirac mass gaps in the antiferromagnetic phase, despite the equilibrium Dirac cone being massless. We explain our findings in terms of a Dirac fermion with a random mass. Our results underscore Floquet–Bloch manipulation as a powerful tool for controlling topology, even in the presence of disorder, and for uncovering properties of materials that may elude conventional probes.
{"title":"Floquet–Bloch manipulation of the Dirac gap in a topological antiferromagnet","authors":"Nina Bielinski, Rajas Chari, Julian May-Mann, Soyeun Kim, Jack Zwettler, Yujun Deng, Anuva Aishwarya, Subhajit Roychowdhury, Chandra Shekhar, Makoto Hashimoto, Donghui Lu, Jiaqiang Yan, Claudia Felser, Vidya Madhavan, Zhi-Xun Shen, Taylor L. Hughes, Fahad Mahmood","doi":"10.1038/s41567-024-02769-6","DOIUrl":"https://doi.org/10.1038/s41567-024-02769-6","url":null,"abstract":"<p>Floquet–Bloch manipulation, achieved by driving a material periodically with a laser pulse, is a method that enables the engineering of electronic and magnetic phases in solids by effectively modifying the structure of their electronic bands. However, the application of Floquet–Bloch manipulation in topological magnetic systems, particularly those with inherent disorder, remains largely unexplored. Here we realize Floquet–Bloch manipulation of the Dirac surface-state mass of the topological antiferromagnet MnBi<sub>2</sub>Te<sub>4</sub>. Using time- and angle-resolved photoemission spectroscopy, we show that opposite helicities of mid-infrared circularly polarized light result in substantially different Dirac mass gaps in the antiferromagnetic phase, despite the equilibrium Dirac cone being massless. We explain our findings in terms of a Dirac fermion with a random mass. Our results underscore Floquet–Bloch manipulation as a powerful tool for controlling topology, even in the presence of disorder, and for uncovering properties of materials that may elude conventional probes.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"46 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142990967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.1038/s41567-024-02733-4
Masaki Hori
Antihydrogen is the simplest atom of pure antimatter. Measurements of a pair of ultraviolet spectral lines with laser spectroscopy provide stringent bounds on the magnitude by which a symmetry between matter and antimatter may be violated.
{"title":"Antihydrogen’s more than fine spectrum","authors":"Masaki Hori","doi":"10.1038/s41567-024-02733-4","DOIUrl":"10.1038/s41567-024-02733-4","url":null,"abstract":"Antihydrogen is the simplest atom of pure antimatter. Measurements of a pair of ultraviolet spectral lines with laser spectroscopy provide stringent bounds on the magnitude by which a symmetry between matter and antimatter may be violated.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 2","pages":"179-180"},"PeriodicalIF":17.6,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142990964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-20DOI: 10.1038/s41567-024-02759-8
Jiho Sung, Jue Wang, Ilya Esterlis, Pavel A. Volkov, Giovanni Scuri, You Zhou, Elise Brutschea, Takashi Taniguchi, Kenji Watanabe, Yubo Yang, Miguel A. Morales, Shiwei Zhang, Andrew J. Millis, Mikhail D. Lukin, Philip Kim, Eugene Demler, Hongkun Park
Strongly interacting electronic systems often exhibit a complicated phase diagram that results from the competition between different quantum ground states. One feature of these phase diagrams is the emergence of microemulsion phases, where regions of different phases self-organize across multiple length scales. The experimental characterization of these microemulsions can pose considerable challenges, as the long-range Coulomb interaction microscopically mingles with the competing states. Here we observe the signatures of the microemulsion between an electronic Wigner crystal and an electron liquid in a MoSe2 monolayer using cryogenic reflectance and magneto-optical spectroscopy. We find that the transition into this microemulsion state is marked by anomalies in exciton reflectance, spin susceptibility and umklapp scattering, establishing it as a distinct phase of electronic matter.
{"title":"An electronic microemulsion phase emerging from a quantum crystal-to-liquid transition","authors":"Jiho Sung, Jue Wang, Ilya Esterlis, Pavel A. Volkov, Giovanni Scuri, You Zhou, Elise Brutschea, Takashi Taniguchi, Kenji Watanabe, Yubo Yang, Miguel A. Morales, Shiwei Zhang, Andrew J. Millis, Mikhail D. Lukin, Philip Kim, Eugene Demler, Hongkun Park","doi":"10.1038/s41567-024-02759-8","DOIUrl":"https://doi.org/10.1038/s41567-024-02759-8","url":null,"abstract":"<p>Strongly interacting electronic systems often exhibit a complicated phase diagram that results from the competition between different quantum ground states. One feature of these phase diagrams is the emergence of microemulsion phases, where regions of different phases self-organize across multiple length scales. The experimental characterization of these microemulsions can pose considerable challenges, as the long-range Coulomb interaction microscopically mingles with the competing states. Here we observe the signatures of the microemulsion between an electronic Wigner crystal and an electron liquid in a MoSe<sub>2</sub> monolayer using cryogenic reflectance and magneto-optical spectroscopy. We find that the transition into this microemulsion state is marked by anomalies in exciton reflectance, spin susceptibility and umklapp scattering, establishing it as a distinct phase of electronic matter.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"66 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-17DOI: 10.1038/s41567-024-02751-2
Alexander Schuckert, Or Katz, Lei Feng, Eleanor Crane, Arinjoy De, Mohammad Hafezi, Alexey V. Gorshkov, Christopher Monroe
Equilibrium phase transitions in many-body systems have been predicted and observed in two and three spatial dimensions but have long been thought not to exist in one-dimensional systems. It was suggested that a phase transition in one dimension can occur in the presence of long-range interactions. However, an experimental realization has so far not been achieved due to the requirement to both realize interactions over sufficiently long distances and to prepare equilibrium states. Here we demonstrate a finite-energy phase transition in one dimension by implementing a long-range interacting model in a trapped-ion quantum simulator. We show that finite-energy states can be generated by time-evolving initial product states and letting them thermalize under the dynamics of a many-body Hamiltonian. By preparing initial states with different energies, we study the finite-energy phase diagram of a long-range interacting quantum system. We observe a ferromagnetic equilibrium phase transition as well as a crossover from a low-energy polarized paramagnet to a high-energy unpolarized paramagnet, in agreement with numerical simulations. Our work presents a scheme for preparing finite-energy states in quantum simulation platforms, enabling access to phases at finite energy density.
{"title":"Observation of a finite-energy phase transition in a one-dimensional quantum simulator","authors":"Alexander Schuckert, Or Katz, Lei Feng, Eleanor Crane, Arinjoy De, Mohammad Hafezi, Alexey V. Gorshkov, Christopher Monroe","doi":"10.1038/s41567-024-02751-2","DOIUrl":"https://doi.org/10.1038/s41567-024-02751-2","url":null,"abstract":"<p>Equilibrium phase transitions in many-body systems have been predicted and observed in two and three spatial dimensions but have long been thought not to exist in one-dimensional systems. It was suggested that a phase transition in one dimension can occur in the presence of long-range interactions. However, an experimental realization has so far not been achieved due to the requirement to both realize interactions over sufficiently long distances and to prepare equilibrium states. Here we demonstrate a finite-energy phase transition in one dimension by implementing a long-range interacting model in a trapped-ion quantum simulator. We show that finite-energy states can be generated by time-evolving initial product states and letting them thermalize under the dynamics of a many-body Hamiltonian. By preparing initial states with different energies, we study the finite-energy phase diagram of a long-range interacting quantum system. We observe a ferromagnetic equilibrium phase transition as well as a crossover from a low-energy polarized paramagnet to a high-energy unpolarized paramagnet, in agreement with numerical simulations. Our work presents a scheme for preparing finite-energy states in quantum simulation platforms, enabling access to phases at finite energy density.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"42 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-17DOI: 10.1038/s41567-024-02712-9
C. J. Baker, W. Bertsche, A. Capra, C. Carruth, C. L. Cesar, M. Charlton, A. Christensen, R. Collister, A. Cridland Mathad, S. Eriksson, A. Evans, N. Evetts, J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, P. Grandemange, P. Granum, J. S. Hangst, W. N. Hardy, M. E. Hayden, D. Hodgkinson, E. Hunter, C. A. Isaac, M. A. Johnson, J. M. Jones, S. A. Jones, S. Jonsell, A. Khramov, L. Kurchaninov, N. Madsen, D. Maxwell, J. T. K. McKenna, S. Menary, T. Momose, P. S. Mullan, J. J. Munich, K. Olchanski, A. Olin, J. Peszka, A. Powell, P. Pusa, C. Ø. Rasmussen, F. Robicheaux, R. L. Sacramento, M. Sameed, E. Sarid, D. M. Silveira, C. So, G. Stutter, T. D. Tharp, R. I. Thompson, D. P. van der Werf, J. S. Wurtele, G. M. Shore
The antimatter equivalent of atomic hydrogen—antihydrogen—is an outstanding testbed for precision studies of matter–antimatter symmetry. Here we report on the simultaneous observation of both accessible hyperfine components of the 1S–2S transition in trapped antihydrogen. We determine the 2S hyperfine splitting in antihydrogen and—by comparing our results with those obtained in hydrogen—constrain the charge–parity–time-reversal symmetry-violating coefficients in the standard model extension framework. Our experimental protocol allows the characterization of the relevant spectral lines in 1 day, representing a 70-fold improvement in the data-taking rate. We show that the spectroscopy is applicable to laser-cooled antihydrogen with important implications for future tests of fundamental symmetries. The ALPHA Collaboration reports measurements of the hyperfine components of the 1S–2S transition in trapped antihydrogen. They interpret the results as a test of the invariance of charge–parity–time-reversal symmetry.
{"title":"Precision spectroscopy of the hyperfine components of the 1S–2S transition in antihydrogen","authors":"C. J. Baker, W. Bertsche, A. Capra, C. Carruth, C. L. Cesar, M. Charlton, A. Christensen, R. Collister, A. Cridland Mathad, S. Eriksson, A. Evans, N. Evetts, J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, P. Grandemange, P. Granum, J. S. Hangst, W. N. Hardy, M. E. Hayden, D. Hodgkinson, E. Hunter, C. A. Isaac, M. A. Johnson, J. M. Jones, S. A. Jones, S. Jonsell, A. Khramov, L. Kurchaninov, N. Madsen, D. Maxwell, J. T. K. McKenna, S. Menary, T. Momose, P. S. Mullan, J. J. Munich, K. Olchanski, A. Olin, J. Peszka, A. Powell, P. Pusa, C. Ø. Rasmussen, F. Robicheaux, R. L. Sacramento, M. Sameed, E. Sarid, D. M. Silveira, C. So, G. Stutter, T. D. Tharp, R. I. Thompson, D. P. van der Werf, J. S. Wurtele, G. M. Shore","doi":"10.1038/s41567-024-02712-9","DOIUrl":"10.1038/s41567-024-02712-9","url":null,"abstract":"The antimatter equivalent of atomic hydrogen—antihydrogen—is an outstanding testbed for precision studies of matter–antimatter symmetry. Here we report on the simultaneous observation of both accessible hyperfine components of the 1S–2S transition in trapped antihydrogen. We determine the 2S hyperfine splitting in antihydrogen and—by comparing our results with those obtained in hydrogen—constrain the charge–parity–time-reversal symmetry-violating coefficients in the standard model extension framework. Our experimental protocol allows the characterization of the relevant spectral lines in 1 day, representing a 70-fold improvement in the data-taking rate. We show that the spectroscopy is applicable to laser-cooled antihydrogen with important implications for future tests of fundamental symmetries. The ALPHA Collaboration reports measurements of the hyperfine components of the 1S–2S transition in trapped antihydrogen. They interpret the results as a test of the invariance of charge–parity–time-reversal symmetry.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 2","pages":"201-207"},"PeriodicalIF":17.6,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41567-024-02712-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-16DOI: 10.1038/s41567-024-02734-3
Pavao Andričević, Hüsnü Aslan
Living organisms and soft materials pose specific challenges to metrology, as Pavao Andričević and Hüsnü Aslan explain.
Pavao andri evovic和Hüsnü Aslan解释说,生物体和软材料对计量学构成了特殊的挑战。
{"title":"Biological and soft matter matter","authors":"Pavao Andričević, Hüsnü Aslan","doi":"10.1038/s41567-024-02734-3","DOIUrl":"10.1038/s41567-024-02734-3","url":null,"abstract":"Living organisms and soft materials pose specific challenges to metrology, as Pavao Andričević and Hüsnü Aslan explain.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 1","pages":"175-175"},"PeriodicalIF":17.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-16DOI: 10.1038/s41567-024-02749-w
Mark Buchanan
{"title":"Autonomous cars and the long road ahead","authors":"Mark Buchanan","doi":"10.1038/s41567-024-02749-w","DOIUrl":"10.1038/s41567-024-02749-w","url":null,"abstract":"","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 1","pages":"2-2"},"PeriodicalIF":17.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-16DOI: 10.1038/s41567-024-02771-y
To kick off the International Year of Quantum Science and Technology, we highlight recent progress in the use of quantum simulators to tackle problems in high-energy physics and cosmology.
为了拉开国际量子科技年的序幕,我们重点介绍了利用量子模拟器解决高能物理和宇宙学问题的最新进展。
{"title":"Tabletop wonders","authors":"","doi":"10.1038/s41567-024-02771-y","DOIUrl":"10.1038/s41567-024-02771-y","url":null,"abstract":"To kick off the International Year of Quantum Science and Technology, we highlight recent progress in the use of quantum simulators to tackle problems in high-energy physics and cosmology.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 1","pages":"1-1"},"PeriodicalIF":17.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41567-024-02771-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}