Pub Date : 2024-12-09DOI: 10.1038/s41567-024-02706-7
In a device comprising two double quantum dots separated by a 250-μm-long superconducting resonator, virtual photons in the resonator are shown to mediate the coupling of electron spins between the quantum dots. When the spin–spin coupling is activated for a controlled duration, oscillations between the spins are observed.
{"title":"Time-domain oscillations between distant spin qubits coupled via virtual photons","authors":"","doi":"10.1038/s41567-024-02706-7","DOIUrl":"10.1038/s41567-024-02706-7","url":null,"abstract":"In a device comprising two double quantum dots separated by a 250-μm-long superconducting resonator, virtual photons in the resonator are shown to mediate the coupling of electron spins between the quantum dots. When the spin–spin coupling is activated for a controlled duration, oscillations between the spins are observed.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 1","pages":"23-24"},"PeriodicalIF":17.6,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-09DOI: 10.1038/s41567-024-02694-8
Jurgen Dijkema, Xiao Xue, Patrick Harvey-Collard, Maximilian Rimbach-Russ, Sander L. de Snoo, Guoji Zheng, Amir Sammak, Giordano Scappucci, Lieven M. K. Vandersypen
Direct interactions between quantum particles naturally fall off with distance. However, future quantum computing architectures are likely to require interaction mechanisms between qubits across a range of length scales. In this work, we demonstrate a coherent interaction between two semiconductor spin qubits 250 μm apart using a superconducting resonator. This separation is several orders of magnitude larger than for the commonly used direct interaction mechanisms in this platform. We operate the system in a regime in which the resonator mediates a spin–spin coupling through virtual photons. We report the anti-phase oscillations of the populations of the two spins with controllable frequency. The observations are consistent with iSWAP oscillations of the spin qubits, and suggest that entangling operations are possible in 10 ns. These results hold promise for scalable networks of spin qubit modules on a chip. Coupling semiconductor spin qubits over long distances using a superconducting resonator makes different quantum architectures possible. Now, the coherent swapping of quantum states has been observed between qubits coupled using this design.
{"title":"Cavity-mediated iSWAP oscillations between distant spins","authors":"Jurgen Dijkema, Xiao Xue, Patrick Harvey-Collard, Maximilian Rimbach-Russ, Sander L. de Snoo, Guoji Zheng, Amir Sammak, Giordano Scappucci, Lieven M. K. Vandersypen","doi":"10.1038/s41567-024-02694-8","DOIUrl":"10.1038/s41567-024-02694-8","url":null,"abstract":"Direct interactions between quantum particles naturally fall off with distance. However, future quantum computing architectures are likely to require interaction mechanisms between qubits across a range of length scales. In this work, we demonstrate a coherent interaction between two semiconductor spin qubits 250 μm apart using a superconducting resonator. This separation is several orders of magnitude larger than for the commonly used direct interaction mechanisms in this platform. We operate the system in a regime in which the resonator mediates a spin–spin coupling through virtual photons. We report the anti-phase oscillations of the populations of the two spins with controllable frequency. The observations are consistent with iSWAP oscillations of the spin qubits, and suggest that entangling operations are possible in 10 ns. These results hold promise for scalable networks of spin qubit modules on a chip. Coupling semiconductor spin qubits over long distances using a superconducting resonator makes different quantum architectures possible. Now, the coherent swapping of quantum states has been observed between qubits coupled using this design.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 1","pages":"168-174"},"PeriodicalIF":17.6,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41567-024-02694-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-05DOI: 10.1038/s41567-024-02692-w
Rui Zhou, Igor Vinograd, Michihiro Hirata, Tao Wu, Hadrien Mayaffre, Steffen Krämer, W. N. Hardy, Ruixing Liang, D. A. Bonn, Toshinao Loew, Juan Porras, Bernhard Keimer, Marc-Henri Julien
A fundamental obstacle to understanding high-temperature superconducting cuprates is that the occurrence of superconductivity hinders the observation of the normal-state properties at low temperature. One important property illustrating this issue is the spin susceptibility: its decrease upon cooling in the normal state is considered as evidence of pseudogap behaviour. However, unambiguous interpretation of this decrease has been impossible, as the crucial low-temperature data inevitably reflect the superconducting pairing rather than the normal state. Here we measure the spin susceptibility of YBa2Cu3Oy at low temperature while suppressing superconductivity in high magnetic field. We found that there are two thermally activated contributions, each of which comes from a different gap, alongside a residual component due to gapless excitations. We relate these two distinct gaps to short-range charge density waves and to the formation of singlets, as occurs in certain quantum spin systems. Both phenomena contribute to the pseudogap at low temperature, supplementing the short-lived antiferromagnetism that initiates pseudogap behaviour at high temperatures. We, therefore, propose that the pseudogap should be regarded as a composite property and that, when not undergoing spin-stripe ordering, underdoped cuprates tend to form short-range spin singlets. Measurements of the spin susceptibility in a model cuprate reveal the presence of two distinct gaps underlying the pseudogap behaviour. One gap is attributed to charge density waves and the other to the predicted formation of spin singlets.
{"title":"Signatures of two gaps in the spin susceptibility of a cuprate superconductor","authors":"Rui Zhou, Igor Vinograd, Michihiro Hirata, Tao Wu, Hadrien Mayaffre, Steffen Krämer, W. N. Hardy, Ruixing Liang, D. A. Bonn, Toshinao Loew, Juan Porras, Bernhard Keimer, Marc-Henri Julien","doi":"10.1038/s41567-024-02692-w","DOIUrl":"10.1038/s41567-024-02692-w","url":null,"abstract":"A fundamental obstacle to understanding high-temperature superconducting cuprates is that the occurrence of superconductivity hinders the observation of the normal-state properties at low temperature. One important property illustrating this issue is the spin susceptibility: its decrease upon cooling in the normal state is considered as evidence of pseudogap behaviour. However, unambiguous interpretation of this decrease has been impossible, as the crucial low-temperature data inevitably reflect the superconducting pairing rather than the normal state. Here we measure the spin susceptibility of YBa2Cu3Oy at low temperature while suppressing superconductivity in high magnetic field. We found that there are two thermally activated contributions, each of which comes from a different gap, alongside a residual component due to gapless excitations. We relate these two distinct gaps to short-range charge density waves and to the formation of singlets, as occurs in certain quantum spin systems. Both phenomena contribute to the pseudogap at low temperature, supplementing the short-lived antiferromagnetism that initiates pseudogap behaviour at high temperatures. We, therefore, propose that the pseudogap should be regarded as a composite property and that, when not undergoing spin-stripe ordering, underdoped cuprates tend to form short-range spin singlets. Measurements of the spin susceptibility in a model cuprate reveal the presence of two distinct gaps underlying the pseudogap behaviour. One gap is attributed to charge density waves and the other to the predicted formation of spin singlets.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 1","pages":"97-103"},"PeriodicalIF":17.6,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1038/s41567-024-02695-7
Roman Kuzmin, Nitish Mehta, Nicholas Grabon, Raymond A. Mencia, Amir Burshtein, Moshe Goldstein, Vladimir E. Manucharyan
A classical particle moving in a periodic potential can localize inside a single potential minimum, but a quantum particle forms extended states by tunnelling to neighbouring minima. These two limits are separated by a quantum Schmid–Bulgadaev phase transition driven by a viscous friction force. This physics has implications for Josephson junction devices, which feature superconducting phase dynamics that can be modelled by a fictitious particle in a periodic potential. As a result, it has been anticipated that any junction of two superconductors connected to a resistor can undergo a Schmid–Bulgadaev transition when the value of the resistor exceeds a threshold. Here we observe this transition by implementing the ohmic environment as a massively multimode cavity and probing the effect of the junction on the standing-wave mode spectrum of the cavity. We find that, depending on the characteristic impedance of the cavity, sufficiently weak junctions scatter cavity photons as either inductors or capacitors. These regimes correspond to the superconducting and insulating phases, respectively, and the critical impedance matches the expected value. At the phase boundary, quantum fluctuations boost the junction nonlinearity so that the junction behaves as a resistor. This loss mechanism reconciles the superconducting and insulating phases and provides a possibly useful indication of quantum-critical dynamics. Josephson junctions are expected to transition from superconducting to insulating behaviour depending on the impedance of their environment. This Schmid–Bulgadaev transition has now been observed by probing the effect of a junction on its environment.
{"title":"Observation of the Schmid–Bulgadaev dissipative quantum phase transition","authors":"Roman Kuzmin, Nitish Mehta, Nicholas Grabon, Raymond A. Mencia, Amir Burshtein, Moshe Goldstein, Vladimir E. Manucharyan","doi":"10.1038/s41567-024-02695-7","DOIUrl":"10.1038/s41567-024-02695-7","url":null,"abstract":"A classical particle moving in a periodic potential can localize inside a single potential minimum, but a quantum particle forms extended states by tunnelling to neighbouring minima. These two limits are separated by a quantum Schmid–Bulgadaev phase transition driven by a viscous friction force. This physics has implications for Josephson junction devices, which feature superconducting phase dynamics that can be modelled by a fictitious particle in a periodic potential. As a result, it has been anticipated that any junction of two superconductors connected to a resistor can undergo a Schmid–Bulgadaev transition when the value of the resistor exceeds a threshold. Here we observe this transition by implementing the ohmic environment as a massively multimode cavity and probing the effect of the junction on the standing-wave mode spectrum of the cavity. We find that, depending on the characteristic impedance of the cavity, sufficiently weak junctions scatter cavity photons as either inductors or capacitors. These regimes correspond to the superconducting and insulating phases, respectively, and the critical impedance matches the expected value. At the phase boundary, quantum fluctuations boost the junction nonlinearity so that the junction behaves as a resistor. This loss mechanism reconciles the superconducting and insulating phases and provides a possibly useful indication of quantum-critical dynamics. Josephson junctions are expected to transition from superconducting to insulating behaviour depending on the impedance of their environment. This Schmid–Bulgadaev transition has now been observed by probing the effect of a junction on its environment.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 1","pages":"132-136"},"PeriodicalIF":17.6,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142758269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1038/s41567-024-02703-w
Yi-Ping Chang, Tadas Balciunas, Zhong Yin, Marin Sapunar, Bruno N. C. Tenorio, Alexander C. Paul, Shota Tsuru, Henrik Koch, Jean-Pierre Wolf, Sonia Coriani, Hans Jakob Wörner
A dynamical rearrangement in the electronic structure of a molecule can be driven by different phenomena, including nuclear motion, electronic coherence or electron correlation. Recording such electronic dynamics and identifying its fate in an aqueous solution has remained a challenge. Here, we reveal the electronic dynamics induced by electronic relaxation through conical intersections in both isolated and solvated pyrazine molecules using X-ray spectroscopy. We show that the ensuing created dynamics corresponds to a cyclic rearrangement of the electronic structure around the aromatic ring. Furthermore, we found that such electronic dynamics were entirely suppressed when pyrazine was dissolved in water. Our observations confirm that conical intersections can create electronic dynamics that are not directly excited by the pump pulse and that aqueous solvation can dephase them in less than 40 fs. These results have implications for the investigation of electronic dynamics created during light-induced molecular dynamics and shed light on their susceptibility to aqueous solvation. Tracking ultrafast electronic changes in molecules is challenging, especially in liquids. An X-ray spectroscopy study in pyrazine now shows electronic dynamics created at conical intersections that are rapidly suppressed when the molecule is in water.
分子电子结构的动态重排可以由不同的现象驱动,包括核运动、电子相干性或电子相关性。记录这种电子动力学并确定其在水溶液中的命运一直是一个挑战。在这里,我们利用 X 射线光谱揭示了孤立的吡嗪分子和溶解的吡嗪分子中通过锥形交叉点的电子弛豫引起的电子动力学。我们发现,随之产生的动态与围绕芳香环的电子结构的循环重排相对应。此外,我们还发现,当吡嗪溶于水时,这种电子动力学完全被抑制。我们的观察结果证实,锥形交叉点可以产生不被泵脉冲直接激发的电子动力学,而水溶解可以在不到 40 fs 的时间内消除这些电子动力学。这些结果对研究光诱导分子动力学过程中产生的电子动力学具有重要意义,并揭示了它们对水溶解的敏感性。
{"title":"Electronic dynamics created at conical intersections and its dephasing in aqueous solution","authors":"Yi-Ping Chang, Tadas Balciunas, Zhong Yin, Marin Sapunar, Bruno N. C. Tenorio, Alexander C. Paul, Shota Tsuru, Henrik Koch, Jean-Pierre Wolf, Sonia Coriani, Hans Jakob Wörner","doi":"10.1038/s41567-024-02703-w","DOIUrl":"10.1038/s41567-024-02703-w","url":null,"abstract":"A dynamical rearrangement in the electronic structure of a molecule can be driven by different phenomena, including nuclear motion, electronic coherence or electron correlation. Recording such electronic dynamics and identifying its fate in an aqueous solution has remained a challenge. Here, we reveal the electronic dynamics induced by electronic relaxation through conical intersections in both isolated and solvated pyrazine molecules using X-ray spectroscopy. We show that the ensuing created dynamics corresponds to a cyclic rearrangement of the electronic structure around the aromatic ring. Furthermore, we found that such electronic dynamics were entirely suppressed when pyrazine was dissolved in water. Our observations confirm that conical intersections can create electronic dynamics that are not directly excited by the pump pulse and that aqueous solvation can dephase them in less than 40 fs. These results have implications for the investigation of electronic dynamics created during light-induced molecular dynamics and shed light on their susceptibility to aqueous solvation. Tracking ultrafast electronic changes in molecules is challenging, especially in liquids. An X-ray spectroscopy study in pyrazine now shows electronic dynamics created at conical intersections that are rapidly suppressed when the molecule is in water.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 1","pages":"137-145"},"PeriodicalIF":17.6,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41567-024-02703-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142718391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1038/s41567-024-02681-z
Quantum geometry gives rise to many fascinating phenomena in solids that go beyond Landau theory. A general framework is now introduced to measure the quantum geometric tensor in solids — a fundamental physical quantity that encodes the complete geometric information of the Bloch state.
{"title":"Quantum geometry in solids measured using photo-emitted electrons","authors":"","doi":"10.1038/s41567-024-02681-z","DOIUrl":"10.1038/s41567-024-02681-z","url":null,"abstract":"Quantum geometry gives rise to many fascinating phenomena in solids that go beyond Landau theory. A general framework is now introduced to measure the quantum geometric tensor in solids — a fundamental physical quantity that encodes the complete geometric information of the Bloch state.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 1","pages":"21-22"},"PeriodicalIF":17.6,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142696883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1038/s41567-024-02678-8
Mingu Kang, Sunje Kim, Yuting Qian, Paul M. Neves, Linda Ye, Junseo Jung, Denny Puntel, Federico Mazzola, Shiang Fang, Chris Jozwiak, Aaron Bostwick, Eli Rotenberg, Jun Fuji, Ivana Vobornik, Jae-Hoon Park, Joseph G. Checkelsky, Bohm-Jung Yang, Riccardo Comin
Understanding the geometric properties of quantum states and their implications in fundamental physical phenomena is a core aspect of contemporary physics. The quantum geometric tensor (QGT) is a central physical object in this regard, encoding complete information about the geometry of the quantum state. The imaginary part of the QGT is the well-known Berry curvature, which plays an integral role in the topological magnetoelectric and optoelectronic phenomena. The real part of the QGT is the quantum metric, whose importance has come to prominence recently, giving rise to a new set of quantum geometric phenomena such as anomalous Landau levels, flat band superfluidity, excitonic Lamb shifts and nonlinear Hall effect. Despite the central importance of the QGT, its experimental measurements have been restricted only to artificial two-level systems. Here, we develop a framework to measure the QGT in crystalline solids using polarization-, spin- and angle-resolved photoemission spectroscopy. Using this framework, we demonstrate the effective reconstruction of the QGT in the kagome metal CoSn, which hosts topological flat bands. Establishing this momentum- and energy-resolved spectroscopic probe of the QGT is poised to significantly advance our understanding of quantum geometric responses in a wide range of crystalline systems. Experiments that directly probe the quantum geometric tensor in solids have not been reported. Now, the quantum metric and spin Berry curvature—dual components of the quantum geometric tensor—have been simultaneously measured in reciprocal space.
{"title":"Measurements of the quantum geometric tensor in solids","authors":"Mingu Kang, Sunje Kim, Yuting Qian, Paul M. Neves, Linda Ye, Junseo Jung, Denny Puntel, Federico Mazzola, Shiang Fang, Chris Jozwiak, Aaron Bostwick, Eli Rotenberg, Jun Fuji, Ivana Vobornik, Jae-Hoon Park, Joseph G. Checkelsky, Bohm-Jung Yang, Riccardo Comin","doi":"10.1038/s41567-024-02678-8","DOIUrl":"10.1038/s41567-024-02678-8","url":null,"abstract":"Understanding the geometric properties of quantum states and their implications in fundamental physical phenomena is a core aspect of contemporary physics. The quantum geometric tensor (QGT) is a central physical object in this regard, encoding complete information about the geometry of the quantum state. The imaginary part of the QGT is the well-known Berry curvature, which plays an integral role in the topological magnetoelectric and optoelectronic phenomena. The real part of the QGT is the quantum metric, whose importance has come to prominence recently, giving rise to a new set of quantum geometric phenomena such as anomalous Landau levels, flat band superfluidity, excitonic Lamb shifts and nonlinear Hall effect. Despite the central importance of the QGT, its experimental measurements have been restricted only to artificial two-level systems. Here, we develop a framework to measure the QGT in crystalline solids using polarization-, spin- and angle-resolved photoemission spectroscopy. Using this framework, we demonstrate the effective reconstruction of the QGT in the kagome metal CoSn, which hosts topological flat bands. Establishing this momentum- and energy-resolved spectroscopic probe of the QGT is poised to significantly advance our understanding of quantum geometric responses in a wide range of crystalline systems. Experiments that directly probe the quantum geometric tensor in solids have not been reported. Now, the quantum metric and spin Berry curvature—dual components of the quantum geometric tensor—have been simultaneously measured in reciprocal space.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 1","pages":"110-117"},"PeriodicalIF":17.6,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142696884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1038/s41567-024-02676-w
Youngshin Kim, Alfonso Lanuza, Dominik Schneble
The cooperative modification of spontaneous radiative decay exemplifies a many-emitter effect in quantum optics. So far, its experimental realizations have relied on interactions mediated by rapidly escaping photons, which do not play an active role in the emitter dynamics. Here we use a platform of ultracold atoms in a one-dimensional optical lattice geometry to explore cooperative non-Markovian dynamics of synthetic quantum emitters that decay by radiating slow atomic matter waves. By preparing and manipulating arrays of emitters hosting weakly and strongly interacting many-body phases of excitations, we demonstrate directional collective emission and study the interplay between retardation and super- and subradiant dynamics. Moreover, we directly observe the spontaneous buildup of coherence among emitters. Our results on collective radiative dynamics establish ultracold matter waves as a versatile tool for studying many-body quantum optics in spatially extended and ordered systems. Experiments on cooperative radiative decay typically involve rapidly escaping photons. Collective emission dynamics have now been studied in an array of quantum emitters interacting via atomic matter waves in a novel regime of slow propagation.
{"title":"Super- and subradiant dynamics of quantum emitters mediated by atomic matter waves","authors":"Youngshin Kim, Alfonso Lanuza, Dominik Schneble","doi":"10.1038/s41567-024-02676-w","DOIUrl":"10.1038/s41567-024-02676-w","url":null,"abstract":"The cooperative modification of spontaneous radiative decay exemplifies a many-emitter effect in quantum optics. So far, its experimental realizations have relied on interactions mediated by rapidly escaping photons, which do not play an active role in the emitter dynamics. Here we use a platform of ultracold atoms in a one-dimensional optical lattice geometry to explore cooperative non-Markovian dynamics of synthetic quantum emitters that decay by radiating slow atomic matter waves. By preparing and manipulating arrays of emitters hosting weakly and strongly interacting many-body phases of excitations, we demonstrate directional collective emission and study the interplay between retardation and super- and subradiant dynamics. Moreover, we directly observe the spontaneous buildup of coherence among emitters. Our results on collective radiative dynamics establish ultracold matter waves as a versatile tool for studying many-body quantum optics in spatially extended and ordered systems. Experiments on cooperative radiative decay typically involve rapidly escaping photons. Collective emission dynamics have now been studied in an array of quantum emitters interacting via atomic matter waves in a novel regime of slow propagation.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 1","pages":"70-76"},"PeriodicalIF":17.6,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1038/s41567-024-02693-9
Lingyuan Kong
Experimental evidence of nematic-fluctuation-mediated superconductivity has been observed in an iron-based superconductor near the quantum critical point.
在一种接近量子临界点的铁基超导体中观察到了由向列波动介导的超导现象的实验证据。
{"title":"Nematic fluctuations shape Cooper pairs","authors":"Lingyuan Kong","doi":"10.1038/s41567-024-02693-9","DOIUrl":"10.1038/s41567-024-02693-9","url":null,"abstract":"Experimental evidence of nematic-fluctuation-mediated superconductivity has been observed in an iron-based superconductor near the quantum critical point.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 1","pages":"9-10"},"PeriodicalIF":17.6,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}