首页 > 最新文献

Nature Physics最新文献

英文 中文
A different facet to materials design 材料设计的不同侧面
IF 19.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-12 DOI: 10.1038/s41567-024-02709-4
Jordan M. Shields, Divine P. Kumah
Complex oxides have competing phases with different spin, electronic and orbital order. Now it has been shown that growing thin films on different facets of a low-symmetry substrate can be used to control the phase of the ground state.
复杂氧化物具有不同自旋、电子和轨道顺序的竞争相。现在的研究表明,在低对称性基底的不同面上生长薄膜可用于控制基态的相位。
{"title":"A different facet to materials design","authors":"Jordan M. Shields, Divine P. Kumah","doi":"10.1038/s41567-024-02709-4","DOIUrl":"https://doi.org/10.1038/s41567-024-02709-4","url":null,"abstract":"Complex oxides have competing phases with different spin, electronic and orbital order. Now it has been shown that growing thin films on different facets of a low-symmetry substrate can be used to control the phase of the ground state.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"65 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climate record gets hot update 气候记录得到热更新
IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-11 DOI: 10.1038/s41567-024-02691-x
Mark Buchanan
{"title":"Climate record gets hot update","authors":"Mark Buchanan","doi":"10.1038/s41567-024-02691-x","DOIUrl":"10.1038/s41567-024-02691-x","url":null,"abstract":"","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 11","pages":"1690-1690"},"PeriodicalIF":17.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial boundaries 人工边界
IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-11 DOI: 10.1038/s41567-024-02717-4
The 2024 Nobel prize for Physics was awarded for foundational contributions to the development of artificial neural networks. The award reflects a shift in how we understand boundaries between scientific fields — or whether such boundaries are still useful at all.
2024 年诺贝尔物理学奖授予了对人工神经网络发展做出奠基性贡献的科学家。该奖项反映了我们对科学领域之间界限的理解发生了转变,或者说这种界限是否仍然有用。
{"title":"Artificial boundaries","authors":"","doi":"10.1038/s41567-024-02717-4","DOIUrl":"10.1038/s41567-024-02717-4","url":null,"abstract":"The 2024 Nobel prize for Physics was awarded for foundational contributions to the development of artificial neural networks. The award reflects a shift in how we understand boundaries between scientific fields — or whether such boundaries are still useful at all.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 11","pages":"1689-1689"},"PeriodicalIF":17.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41567-024-02717-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The span of space 空间的跨度
IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-11 DOI: 10.1038/s41567-024-02684-w
Richard I. Anderson
Twinkle, twinkle little star, tell me just how far you are. Richard I. Anderson discusses standard candles and their applications.
一闪一闪小星星,告诉我你还有多远。理查德-安德森(Richard I. Anderson)讨论标准蜡烛及其应用。
{"title":"The span of space","authors":"Richard I. Anderson","doi":"10.1038/s41567-024-02684-w","DOIUrl":"10.1038/s41567-024-02684-w","url":null,"abstract":"Twinkle, twinkle little star, tell me just how far you are. Richard I. Anderson discusses standard candles and their applications.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 11","pages":"1841-1841"},"PeriodicalIF":17.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orbital fails to take flight 轨道飞行失败
IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-11 DOI: 10.1038/s41567-024-02688-6
Anita Chandran, Hilary Lamb
{"title":"Orbital fails to take flight","authors":"Anita Chandran, Hilary Lamb","doi":"10.1038/s41567-024-02688-6","DOIUrl":"10.1038/s41567-024-02688-6","url":null,"abstract":"","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 11","pages":"1691-1691"},"PeriodicalIF":17.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thirty years of puzzling superconductivity in Sr2RuO4 三十年来 Sr2RuO4 中令人费解的超导现象
IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-11 DOI: 10.1038/s41567-024-02656-0
Y. Maeno, A. Ikeda, G. Mattoni
Superconductivity in Sr2RuO4 was discovered 30 years ago. Among the many intriguing aspects of this unconventional superconductor is the picture of spin-triplet superconductivity, which could potentially carry both charge and spin supercurrents. This proposal was considered for a long time but was ultimately disproven in 2019. Despite intense research over the past several years, the superconducting symmetry of the archetypal unconventional superconductor Sr2RuO4 remains unresolved. Here we highlight the recent controversies and give a perspective of how the final resolution may be reached. After 30 years of extensive research, the nature of the unconventional superconductivity in Sr2RuO4 is still not fully understood. This Perspective summarizes the controversies surrounding this and discusses future research.
Sr2RuO4 中的超导现象是 30 年前发现的。这种非常规超导体的许多引人入胜之处包括自旋三重超导性,它有可能同时携带电荷和自旋超电流。这一提议曾被考虑了很长时间,但最终在 2019 年被推翻。尽管在过去几年中进行了大量研究,但典型的非常规超导体 Sr2RuO4 的超导对称性问题仍然悬而未决。在此,我们将重点介绍最近的争议,并从一个角度探讨如何达成最终的解决方案。
{"title":"Thirty years of puzzling superconductivity in Sr2RuO4","authors":"Y. Maeno, A. Ikeda, G. Mattoni","doi":"10.1038/s41567-024-02656-0","DOIUrl":"10.1038/s41567-024-02656-0","url":null,"abstract":"Superconductivity in Sr2RuO4 was discovered 30 years ago. Among the many intriguing aspects of this unconventional superconductor is the picture of spin-triplet superconductivity, which could potentially carry both charge and spin supercurrents. This proposal was considered for a long time but was ultimately disproven in 2019. Despite intense research over the past several years, the superconducting symmetry of the archetypal unconventional superconductor Sr2RuO4 remains unresolved. Here we highlight the recent controversies and give a perspective of how the final resolution may be reached. After 30 years of extensive research, the nature of the unconventional superconductivity in Sr2RuO4 is still not fully understood. This Perspective summarizes the controversies surrounding this and discusses future research.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 11","pages":"1712-1718"},"PeriodicalIF":17.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diffusive light pipes 扩散式光导管
IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1038/s41567-024-02669-9
Michael J. Steel
Optical waveguides that route light are a core technology of modern photonics and the bedrock of the global communications network. A surprising diffusion mechanism for guiding light has now been identified, and it is strangely close to home.
光波导是现代光子学的核心技术,也是全球通信网络的基石。现在,一种令人惊讶的光导扩散机制已经被发现,而且离我们的家非常近。
{"title":"Diffusive light pipes","authors":"Michael J. Steel","doi":"10.1038/s41567-024-02669-9","DOIUrl":"10.1038/s41567-024-02669-9","url":null,"abstract":"Optical waveguides that route light are a core technology of modern photonics and the bedrock of the global communications network. A surprising diffusion mechanism for guiding light has now been identified, and it is strangely close to home.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 12","pages":"1853-1854"},"PeriodicalIF":17.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Braiding reflectionless states in non-Hermitian magnonics 非赫米提磁学中的编织无反射态
IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1038/s41567-024-02667-x
Zejin Rao, Changhao Meng, Youcai Han, Liping Zhu, Kun Ding, Zhenghua An
A thorough understanding of the topological classifications of non-Hermitian energy bands is essential for advancing non-Hermitian band theory and its applications. As evidenced in various disciplines of physics, including optics, electronics and acoustics, the process of braiding plays a crucial role in the classification of non-Hermitian bands that manifest topological characteristics. Here we demonstrate topological braiding of both reflectionless states and resonant states in non-Hermitian magnons, unveiling a reversal in their braiding handedness. Furthermore, we constitute parity–time symmetric reflectionless scattering modes, along with their degenerate exceptional points. Our results not only underscore the importance of braided scattering states, but also establish magnonics as a versatile platform for exploring non-Hermitian band theory and developing magnon-based applications, including topological energy transfer, tunable absorbers and logic circuits. Extending topological braids of complex energy bands to non-Hermitian systems of magnons—the quanta of spin waves—is a crucial step in the development of spin-based topological devices. This has now been experimentally demonstrated.
透彻理解非ermitian 能带的拓扑分类对于推进非ermitian 能带理论及其应用至关重要。正如光学、电子学和声学等物理学各学科所证明的那样,编织过程在表现拓扑特性的非ermitian 能带分类中起着至关重要的作用。在这里,我们展示了非ermitian 磁子中无反射态和共振态的拓扑辫状结构,揭示了其辫状结构手性的逆转。此外,我们还提出了奇偶时对称的无反射散射模式及其退化例外点。我们的研究结果不仅强调了编织散射态的重要性,还将磁子学确立为探索非ermitian 带理论和开发基于磁子的应用(包括拓扑能量转移、可调谐吸收器和逻辑电路)的多功能平台。
{"title":"Braiding reflectionless states in non-Hermitian magnonics","authors":"Zejin Rao, Changhao Meng, Youcai Han, Liping Zhu, Kun Ding, Zhenghua An","doi":"10.1038/s41567-024-02667-x","DOIUrl":"10.1038/s41567-024-02667-x","url":null,"abstract":"A thorough understanding of the topological classifications of non-Hermitian energy bands is essential for advancing non-Hermitian band theory and its applications. As evidenced in various disciplines of physics, including optics, electronics and acoustics, the process of braiding plays a crucial role in the classification of non-Hermitian bands that manifest topological characteristics. Here we demonstrate topological braiding of both reflectionless states and resonant states in non-Hermitian magnons, unveiling a reversal in their braiding handedness. Furthermore, we constitute parity–time symmetric reflectionless scattering modes, along with their degenerate exceptional points. Our results not only underscore the importance of braided scattering states, but also establish magnonics as a versatile platform for exploring non-Hermitian band theory and developing magnon-based applications, including topological energy transfer, tunable absorbers and logic circuits. Extending topological braids of complex energy bands to non-Hermitian systems of magnons—the quanta of spin waves—is a crucial step in the development of spin-based topological devices. This has now been experimentally demonstrated.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 12","pages":"1904-1911"},"PeriodicalIF":17.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
No heat flow in charge-neutral graphene 电荷中性石墨烯中没有热流
IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1038/s41567-024-02674-y
Haoxin Zhou
The ground state of electrons in charge-neutral graphene in a strong magnetic field has not been conclusively identified. Thermal transport measurements narrow down the possible candidates, with evidence that the ground state does not conduct heat.
电荷中性石墨烯中的电子在强磁场中的基态尚未最终确定。热传输测量缩小了可能的候选范围,有证据表明基态不传热。
{"title":"No heat flow in charge-neutral graphene","authors":"Haoxin Zhou","doi":"10.1038/s41567-024-02674-y","DOIUrl":"10.1038/s41567-024-02674-y","url":null,"abstract":"The ground state of electrons in charge-neutral graphene in a strong magnetic field has not been conclusively identified. Thermal transport measurements narrow down the possible candidates, with evidence that the ground state does not conduct heat.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 12","pages":"1849-1850"},"PeriodicalIF":17.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Is there an association between EMG activity and temporomandibular disorders during orthotic mandibular advancement in sleep apnea patients undergoing DISE? 接受 DISE 治疗的睡眠呼吸暂停患者在下颌前突矫正过程中的肌电图活动与颞下颌紊乱之间是否存在关联?
IF 2 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-01 Epub Date: 2022-03-09 DOI: 10.1080/08869634.2022.2047511
Anna Alessandri Bonetti, Patrizia Gallenzi

Objective: To detect whether myotatic reflex activation of masticatory muscles during drug-induced sleep endoscopy (DISE) can be an indirect marker for temporomandibular disorder (TMD) in patients suffering from obstructive sleep apnea (OSA).

Methods: OSA patients were prospectively recruited and underwent a complete TMD examination prior to undergoing DISE with the addition of electrodes applied over masticatory muscles. A positive activation of myotatic reflex was considered in case of an increase in muscle tone of at least 50%.

Results: Of the 41 patients included, 48.8% presented activation of myotatic reflex. Of these patients, 45% presented a TMD diagnosis, 40% presented pain at masticatory muscles palpation, and 15% did not report pain during clinical examination.

Conclusion: An increase in EMG activity during mandibular advancement is not associated with TMD presence, but it can be an indirect marker of pain in the orofacial area in OSA patients.

目的检测药物诱导睡眠内窥镜检查(DISE)期间咀嚼肌的肌反射激活是否可作为阻塞性睡眠呼吸暂停(OSA)患者颞下颌关节紊乱(TMD)的间接标记:方法:前瞻性招募 OSA 患者,在进行 DISE 之前对其进行全面的 TMD 检查,并在咀嚼肌上加装电极。如果肌张力增加至少 50%,则视为肌反射阳性激活:在纳入的 41 名患者中,48.8% 出现肌反射激活。其中 45% 的患者被诊断为 TMD,40% 的患者在触诊咀嚼肌时出现疼痛,15% 的患者在临床检查时未报告疼痛:结论:下颌前突时EMG活动的增加与TMD的存在无关,但它可以作为OSA患者口面部疼痛的间接标志。
{"title":"Is there an association between EMG activity and temporomandibular disorders during orthotic mandibular advancement in sleep apnea patients undergoing DISE?","authors":"Anna Alessandri Bonetti, Patrizia Gallenzi","doi":"10.1080/08869634.2022.2047511","DOIUrl":"10.1080/08869634.2022.2047511","url":null,"abstract":"<p><strong>Objective: </strong>To detect whether myotatic reflex activation of masticatory muscles during drug-induced sleep endoscopy (DISE) can be an indirect marker for temporomandibular disorder (TMD) in patients suffering from obstructive sleep apnea (OSA).</p><p><strong>Methods: </strong>OSA patients were prospectively recruited and underwent a complete TMD examination prior to undergoing DISE with the addition of electrodes applied over masticatory muscles. A positive activation of myotatic reflex was considered in case of an increase in muscle tone of at least 50%.</p><p><strong>Results: </strong>Of the 41 patients included, 48.8% presented activation of myotatic reflex. Of these patients, 45% presented a TMD diagnosis, 40% presented pain at masticatory muscles palpation, and 15% did not report pain during clinical examination.</p><p><strong>Conclusion: </strong>An increase in EMG activity during mandibular advancement is not associated with TMD presence, but it can be an indirect marker of pain in the orofacial area in OSA patients.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"17 1","pages":"730-735"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79528793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1