首页 > 最新文献

Nature Physics最新文献

英文 中文
Entanglement theory with limited computational resources 有限计算资源下的纠缠理论
IF 18.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-10-22 DOI: 10.1038/s41567-025-03048-8
Lorenzo Leone, Jacopo Rizzo, Jens Eisert, Sofiene Jerbi
The precise quantification of the limits to manipulating quantum resources lies at the core of quantum information theory. However, standard information-theoretic analyses do not consider the actual computational complexity involved in performing certain tasks. Here we address this issue within the realm of entanglement theory, finding that accounting for computational efficiency substantially changes what can be achieved using entangled resources. We consider two key figures of merit: the computational distillable entanglement and the computational entanglement cost. These measures quantify the optimal rates of entangled bits that can be extracted from or used to dilute many identical copies of n-qubit bipartite pure states, using computationally efficient local operations and classical communication. We demonstrate that computational entanglement measures diverge considerably from their information-theoretic counterparts. Whereas the information-theoretic distillable entanglement is determined by the von Neumann entropy of the reduced state, we show that the min-entropy governs the computationally efficient setting. On the other hand, computationally efficient entanglement dilution requires maximal consumption of entangled bits, even for nearly unentangled states. Furthermore, in the worst-case scenario, even when an efficient description of the state exists and is fully known, one gains no advantage over state-agnostic protocols. Our findings establish sample-complexity bounds for measuring and testing the von Neumann entropy, fundamental limitations on efficient state compression and efficient local tomography protocols. Previous work on the limits of quantum information processing has often assumed access to unlimited computational resources. Imposing a requirement for computational efficiency on entanglement theory substantially changes what is possible.
量子信息理论的核心是精确量化对量子资源的控制。然而,标准的信息论分析并没有考虑执行某些任务所涉及的实际计算复杂性。在这里,我们在纠缠理论领域内解决这个问题,发现计算效率的计算实质上改变了使用纠缠资源可以实现的目标。我们考虑了两个关键的优点:计算可蒸馏纠缠和计算纠缠成本。这些措施量化了纠缠比特的最佳速率,这些纠缠比特可以从n量子位二元纯态的许多相同副本中提取或用于稀释,使用计算效率高的局部操作和经典通信。我们证明了计算纠缠度量与它们的信息论对应度量有很大的不同。而信息论的可蒸馏纠缠是由约化态的冯·诺依曼熵决定的,我们表明最小熵控制计算效率设置。另一方面,计算效率高的纠缠稀释要求最大限度地消耗纠缠比特,即使是在几乎没有纠缠的状态下。此外,在最坏的情况下,即使存在对状态的有效描述并且完全已知,也不会比状态不可知协议获得任何优势。我们的发现为测量和测试冯·诺依曼熵建立了样本复杂度界限,有效状态压缩和有效局部断层扫描协议的基本限制。
{"title":"Entanglement theory with limited computational resources","authors":"Lorenzo Leone, Jacopo Rizzo, Jens Eisert, Sofiene Jerbi","doi":"10.1038/s41567-025-03048-8","DOIUrl":"10.1038/s41567-025-03048-8","url":null,"abstract":"The precise quantification of the limits to manipulating quantum resources lies at the core of quantum information theory. However, standard information-theoretic analyses do not consider the actual computational complexity involved in performing certain tasks. Here we address this issue within the realm of entanglement theory, finding that accounting for computational efficiency substantially changes what can be achieved using entangled resources. We consider two key figures of merit: the computational distillable entanglement and the computational entanglement cost. These measures quantify the optimal rates of entangled bits that can be extracted from or used to dilute many identical copies of n-qubit bipartite pure states, using computationally efficient local operations and classical communication. We demonstrate that computational entanglement measures diverge considerably from their information-theoretic counterparts. Whereas the information-theoretic distillable entanglement is determined by the von Neumann entropy of the reduced state, we show that the min-entropy governs the computationally efficient setting. On the other hand, computationally efficient entanglement dilution requires maximal consumption of entangled bits, even for nearly unentangled states. Furthermore, in the worst-case scenario, even when an efficient description of the state exists and is fully known, one gains no advantage over state-agnostic protocols. Our findings establish sample-complexity bounds for measuring and testing the von Neumann entropy, fundamental limitations on efficient state compression and efficient local tomography protocols. Previous work on the limits of quantum information processing has often assumed access to unlimited computational resources. Imposing a requirement for computational efficiency on entanglement theory substantially changes what is possible.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 11","pages":"1847-1854"},"PeriodicalIF":18.4,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41567-025-03048-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145381919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Individual solid-state nuclear spin qubits with coherence exceeding seconds 相干度超过秒的单个固态核自旋量子位
IF 18.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-10-22 DOI: 10.1038/s41567-025-03049-7
James O’Sullivan, Jaime Travesedo, Louis Pallegoix, Zhiyuan W. Huang, Patrick Hogan, Alexandre S. May, Boris Yavkin, Sen Lin, Ren-Bao Liu, Thierry Chaneliere, Sylvain Bertaina, Philippe Goldner, Daniel Estève, Denis Vion, Patrick Abgrall, Patrice Bertet, Emmanuel Flurin
The ability to coherently control and read out qubits is a crucial requirement for any quantum processor. Individual nuclear spins in solid-state systems have been used as long-lived qubits with control and readout performed using individual electron spin ancilla qubits that can be addressed either electrically or optically. Here we present a platform for quantum information processing, consisting of 183W nuclear spin qubits adjacent to an Er3+ impurity in a CaWO4 crystal coupled to a superconducting resonator. We study two nuclear spin qubits with $${T}_{2}^{* }$$ of 0.8(2) s and 1.2(3) s, and T2 of 3.4(4) s and 4.4(6) s, respectively. The nuclear spin state influences the number of photons emitted after repeated excitation of the Er3+ electron ancilla spin qubit, enabling quantum non-demolition readout using a single microwave photon detector. Using stimulated Raman driving on the coupled electron–nuclear-spin system, we implement all-microwave one- and two-qubit gates on a timescale of a few milliseconds, and prepare a decoherence-protected Bell state. Our results position this platform as a potential route towards quantum processing using nuclear spins. Nuclear spins in solid-state systems can have very long coherence times, which makes them attractive for use as qubits. Now a nuclear spin qubit device has been developed with all-microwave two-qubit control that has important performance benefits.
相干控制和读出量子位的能力是任何量子处理器的关键要求。固态系统中的单个核自旋已被用作长寿命量子比特,其控制和读出使用单个电子自旋辅助量子比特进行,这些量子比特可以电或光学寻址。在这里,我们提出了一个量子信息处理平台,由183W的核自旋量子比特组成,该量子比特靠近CaWO4晶体中的Er3+杂质,并与超导谐振器耦合。我们研究了两个核自旋量子比特,$${T}_{2}^{* }$$分别为0.8(2)s和1.2(3)s, T2分别为3.4(4)s和4.4(6)s。核自旋状态影响Er3+电子辅助自旋量子位元重复激发后发射的光子数,从而实现使用单个微波光子探测器进行量子非拆除读出。利用受激拉曼驱动耦合电子-核-自旋系统,我们在几毫秒的时间尺度上实现了全微波的一个和两个量子比特门,并制备了退相干保护的贝尔态。我们的研究结果将这个平台定位为利用核自旋进行量子处理的潜在途径。固态系统中的核自旋可以有很长的相干时间,这使得它们被用作量子比特很有吸引力。现在已经开发出一种具有全微波双量子比特控制的核自旋量子比特装置,具有重要的性能优势。
{"title":"Individual solid-state nuclear spin qubits with coherence exceeding seconds","authors":"James O’Sullivan, Jaime Travesedo, Louis Pallegoix, Zhiyuan W. Huang, Patrick Hogan, Alexandre S. May, Boris Yavkin, Sen Lin, Ren-Bao Liu, Thierry Chaneliere, Sylvain Bertaina, Philippe Goldner, Daniel Estève, Denis Vion, Patrick Abgrall, Patrice Bertet, Emmanuel Flurin","doi":"10.1038/s41567-025-03049-7","DOIUrl":"10.1038/s41567-025-03049-7","url":null,"abstract":"The ability to coherently control and read out qubits is a crucial requirement for any quantum processor. Individual nuclear spins in solid-state systems have been used as long-lived qubits with control and readout performed using individual electron spin ancilla qubits that can be addressed either electrically or optically. Here we present a platform for quantum information processing, consisting of 183W nuclear spin qubits adjacent to an Er3+ impurity in a CaWO4 crystal coupled to a superconducting resonator. We study two nuclear spin qubits with $${T}_{2}^{* }$$ of 0.8(2) s and 1.2(3) s, and T2 of 3.4(4) s and 4.4(6) s, respectively. The nuclear spin state influences the number of photons emitted after repeated excitation of the Er3+ electron ancilla spin qubit, enabling quantum non-demolition readout using a single microwave photon detector. Using stimulated Raman driving on the coupled electron–nuclear-spin system, we implement all-microwave one- and two-qubit gates on a timescale of a few milliseconds, and prepare a decoherence-protected Bell state. Our results position this platform as a potential route towards quantum processing using nuclear spins. Nuclear spins in solid-state systems can have very long coherence times, which makes them attractive for use as qubits. Now a nuclear spin qubit device has been developed with all-microwave two-qubit control that has important performance benefits.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 11","pages":"1794-1800"},"PeriodicalIF":18.4,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145382026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Practical limits on entanglement manipulation 纠缠操作的实际限制
IF 18.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-10-22 DOI: 10.1038/s41567-025-03046-w
Kun Fang
Entanglement is a powerful resource for quantum technologies but real-world computation limits can drastically change what is achievable. Now research reveals that computational constraints reshape our understanding of entanglement manipulation.
纠缠是量子技术的强大资源,但现实世界的计算限制可能会极大地改变可实现的目标。现在的研究表明,计算约束重塑了我们对纠缠操纵的理解。
{"title":"Practical limits on entanglement manipulation","authors":"Kun Fang","doi":"10.1038/s41567-025-03046-w","DOIUrl":"10.1038/s41567-025-03046-w","url":null,"abstract":"Entanglement is a powerful resource for quantum technologies but real-world computation limits can drastically change what is achievable. Now research reveals that computational constraints reshape our understanding of entanglement manipulation.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 11","pages":"1694-1695"},"PeriodicalIF":18.4,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145381917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic Hofstadter cascade in a twisted semiconductor homobilayer 扭曲半导体均匀层中的磁霍夫施塔特级联
IF 18.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-10-21 DOI: 10.1038/s41567-025-03083-5
Benjamin A. Foutty, Aidan P. Reddy, Carlos R. Kometter, Kenji Watanabe, Takashi Taniguchi, Trithep Devakul, Benjamin E. Feldman
Transition metal dichalcogenide moiré homobilayers have emerged as a platform in which magnetism, strong correlations and topology are intertwined. In a large magnetic field, the energetic alignment of states with different spin in these systems is dictated by both strong Zeeman splitting and the structure of the Hofstadter’s butterfly spectrum, yet the latter has been difficult to probe experimentally. Here we observe a cascade of magnetic phase transitions in a twisted WSe2 homobilayer using local thermodynamic measurements. We interpret these transitions as the filling of individual Hofstadter subbands, enabling us to extract the structure and connectivity of the Hofstadter spectrum for a single spin. The onset of magnetic transitions is independent of twist angle, indicating that the exchange interactions of the component layers are only weakly modified by the moiré potential. By contrast, the magnetic transitions are associated with changes in the insulating states at commensurate filling. Our work achieves a spin-resolved measurement of Hofstadter’s butterfly despite overlapping states and disentangles the role of material properties and moiré superlattices in stabilizing the correlated ground states. Exploring the spin-resolved Hofstadter spectrum in the presence of interactions is challenging. Now, a series of magnetic phase transitions are observed as individual Hofstadter bands are filled, allowing the exchange interactions to be mapped out.
过渡金属二硫系莫尔纳米层已经成为一个磁性、强相关性和拓扑结构交织在一起的平台。在大磁场中,这些系统中具有不同自旋的态的能量排列是由强塞曼分裂和霍夫施塔特蝴蝶光谱结构决定的,但后者很难通过实验来探测。在这里,我们使用局部热力学测量观察到扭曲的WSe2均匀层中的磁相变级联。我们将这些跃迁解释为单个霍夫施塔特子带的填充,使我们能够提取单个自旋霍夫施塔特谱的结构和连通性。磁跃迁的开始与扭转角无关,表明组分层的交换相互作用仅受莫尔阱势的微弱改变。相反,磁跃迁与相应填充时绝缘状态的变化有关。我们的工作实现了霍夫施塔特蝴蝶在重叠状态下的自旋分辨测量,并解开了材料特性和莫尔超晶格在稳定相关基态中的作用。探索相互作用下的自旋分辨霍夫施塔特谱是具有挑战性的。现在,当单个霍夫施塔特带被填充时,可以观察到一系列的磁相变,从而可以绘制出交换相互作用。
{"title":"Magnetic Hofstadter cascade in a twisted semiconductor homobilayer","authors":"Benjamin A. Foutty, Aidan P. Reddy, Carlos R. Kometter, Kenji Watanabe, Takashi Taniguchi, Trithep Devakul, Benjamin E. Feldman","doi":"10.1038/s41567-025-03083-5","DOIUrl":"10.1038/s41567-025-03083-5","url":null,"abstract":"Transition metal dichalcogenide moiré homobilayers have emerged as a platform in which magnetism, strong correlations and topology are intertwined. In a large magnetic field, the energetic alignment of states with different spin in these systems is dictated by both strong Zeeman splitting and the structure of the Hofstadter’s butterfly spectrum, yet the latter has been difficult to probe experimentally. Here we observe a cascade of magnetic phase transitions in a twisted WSe2 homobilayer using local thermodynamic measurements. We interpret these transitions as the filling of individual Hofstadter subbands, enabling us to extract the structure and connectivity of the Hofstadter spectrum for a single spin. The onset of magnetic transitions is independent of twist angle, indicating that the exchange interactions of the component layers are only weakly modified by the moiré potential. By contrast, the magnetic transitions are associated with changes in the insulating states at commensurate filling. Our work achieves a spin-resolved measurement of Hofstadter’s butterfly despite overlapping states and disentangles the role of material properties and moiré superlattices in stabilizing the correlated ground states. Exploring the spin-resolved Hofstadter spectrum in the presence of interactions is challenging. Now, a series of magnetic phase transitions are observed as individual Hofstadter bands are filled, allowing the exchange interactions to be mapped out.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 12","pages":"1942-1948"},"PeriodicalIF":18.4,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145381918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reply to: Inadequacy of the Casimir force for explaining a strong attractive force in a micrometre-sized narrow-gap re-entrant cavity 卡西米尔力不足以解释微米大小的窄间隙重入腔中的强引力
IF 18.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-10-21 DOI: 10.1038/s41567-025-03063-9
J. M. Pate, M. Goryachev, R. Y. Chiao, J. E. Sharping, M. E. Tobar
{"title":"Reply to: Inadequacy of the Casimir force for explaining a strong attractive force in a micrometre-sized narrow-gap re-entrant cavity","authors":"J. M. Pate, M. Goryachev, R. Y. Chiao, J. E. Sharping, M. E. Tobar","doi":"10.1038/s41567-025-03063-9","DOIUrl":"10.1038/s41567-025-03063-9","url":null,"abstract":"","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 11","pages":"1717-1718"},"PeriodicalIF":18.4,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145381920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inadequacy of the Casimir force for explaining a strong attractive force in a micrometre-sized narrow-gap re-entrant cavity 卡西米尔力不足以解释微米大小的窄间隙重入腔中的强吸引力
IF 18.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-10-21 DOI: 10.1038/s41567-025-03062-w
Giuseppe Bimonte
{"title":"Inadequacy of the Casimir force for explaining a strong attractive force in a micrometre-sized narrow-gap re-entrant cavity","authors":"Giuseppe Bimonte","doi":"10.1038/s41567-025-03062-w","DOIUrl":"10.1038/s41567-025-03062-w","url":null,"abstract":"","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 11","pages":"1714-1716"},"PeriodicalIF":18.4,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145381921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cavity electrodynamics of van der Waals heterostructures 范德华异质结构的腔电动力学
IF 18.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-10-20 DOI: 10.1038/s41567-025-03064-8
Gunda Kipp, Hope M. Bretscher, Benedikt Schulte, Dorothee Herrmann, Kateryna Kusyak, Matthew W. Day, Sivasruthi Kesavan, Toru Matsuyama, Xinyu Li, Sara Maria Langner, Jesse Hagelstein, Felix Sturm, Alexander M. Potts, Christian J. Eckhardt, Yunfei Huang, Kenji Watanabe, Takashi Taniguchi, Angel Rubio, Dante M. Kennes, Michael A. Sentef, Emmanuel Baudin, Guido Meier, Marios H. Michael, James W. McIver
Van der Waals heterostructures host many-body quantum phenomena that are tunable in situ using electrostatic gates. Their constituent two-dimensional materials and gates can naturally form plasmonic self-cavities, confining light in standing waves of current density due to finite-size effects. The plasmonic resonances of typical graphite gates fall in the gigahertz to terahertz range, corresponding to the same microelectronvolt to millielectronvolt energy scale as the phenomena in van der Waals heterostructures that they electrically control. This raises the possibility that the built-in cavity modes of graphite gates are relevant for shaping the low-energy physics of these heterostructures. However, probing these cavity-coupled electrodynamics is challenging as devices are notably smaller than the diffraction limit at the relevant wavelengths. Here we report on the intrinsic cavity conductivity of gate-tunable graphene heterostructures. As the carrier density is tuned, we observe coupling and spectral weight transfer between graphene and graphite plasmonic cavity modes in the ultrastrong coupling regime. We present an analytical model to describe the results and provide general principles for cavity design. Our findings show that intrinsic cavity effects are important for understanding the low-energy electrodynamics of van der Waals heterostructures and open a pathway for useful functionality through cavity control. Integrating an electronic device with a cavity can cause the electrons to couple to photons strongly enough to form hybrid modes. Now, the cavity effects induced by intrinsic graphite gates are shown to modify the low-energy properties of graphene.
范德华异质结构承载多体量子现象,可使用静电门在原位调谐。它们的二维材料和栅极可以自然地形成等离子体自腔,由于有限尺寸的影响,将光限制在电流密度的驻波中。典型石墨门的等离子共振落在千兆赫到太赫兹的范围内,与它们控制的范德华异质结构中的现象对应相同的微电子伏到毫电子伏的能量尺度。这提出了石墨栅的内置腔模式与形成这些异质结构的低能物理有关的可能性。然而,探测这些腔耦合电动力学是具有挑战性的,因为器件明显小于相关波长的衍射极限。在这里,我们报告了门可调谐石墨烯异质结构的固有腔电导率。随着载流子密度的调整,我们观察到石墨烯和石墨等离子体腔模式在超强耦合状态下的耦合和谱重转移。我们提出了一个解析模型来描述结果,并为腔体设计提供了一般原则。我们的研究结果表明,固有腔效应对于理解范德华异质结构的低能电动力学非常重要,并为通过腔控制实现有用的功能开辟了一条途径。
{"title":"Cavity electrodynamics of van der Waals heterostructures","authors":"Gunda Kipp, Hope M. Bretscher, Benedikt Schulte, Dorothee Herrmann, Kateryna Kusyak, Matthew W. Day, Sivasruthi Kesavan, Toru Matsuyama, Xinyu Li, Sara Maria Langner, Jesse Hagelstein, Felix Sturm, Alexander M. Potts, Christian J. Eckhardt, Yunfei Huang, Kenji Watanabe, Takashi Taniguchi, Angel Rubio, Dante M. Kennes, Michael A. Sentef, Emmanuel Baudin, Guido Meier, Marios H. Michael, James W. McIver","doi":"10.1038/s41567-025-03064-8","DOIUrl":"10.1038/s41567-025-03064-8","url":null,"abstract":"Van der Waals heterostructures host many-body quantum phenomena that are tunable in situ using electrostatic gates. Their constituent two-dimensional materials and gates can naturally form plasmonic self-cavities, confining light in standing waves of current density due to finite-size effects. The plasmonic resonances of typical graphite gates fall in the gigahertz to terahertz range, corresponding to the same microelectronvolt to millielectronvolt energy scale as the phenomena in van der Waals heterostructures that they electrically control. This raises the possibility that the built-in cavity modes of graphite gates are relevant for shaping the low-energy physics of these heterostructures. However, probing these cavity-coupled electrodynamics is challenging as devices are notably smaller than the diffraction limit at the relevant wavelengths. Here we report on the intrinsic cavity conductivity of gate-tunable graphene heterostructures. As the carrier density is tuned, we observe coupling and spectral weight transfer between graphene and graphite plasmonic cavity modes in the ultrastrong coupling regime. We present an analytical model to describe the results and provide general principles for cavity design. Our findings show that intrinsic cavity effects are important for understanding the low-energy electrodynamics of van der Waals heterostructures and open a pathway for useful functionality through cavity control. Integrating an electronic device with a cavity can cause the electrons to couple to photons strongly enough to form hybrid modes. Now, the cavity effects induced by intrinsic graphite gates are shown to modify the low-energy properties of graphene.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 12","pages":"1926-1933"},"PeriodicalIF":18.4,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41567-025-03064-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145382368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Demonstration of dynamic surface codes 演示动态表面代码
IF 18.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-10-17 DOI: 10.1038/s41567-025-03070-w
Alec Eickbusch, Matt McEwen, Volodymyr Sivak, Alexandre Bourassa, Juan Atalaya, Jahan Claes, Dvir Kafri, Craig Gidney, Christopher W. Warren, Jonathan Gross, Alex Opremcak, Nicholas Zobrist, Kevin C. Miao, Gabrielle Roberts, Kevin J. Satzinger, Andreas Bengtsson, Matthew Neeley, William P. Livingston, Alex Greene, Rajeev Acharya, Laleh Aghababaie Beni, Georg Aigeldinger, Ross Alcaraz, Trond I. Andersen, Markus Ansmann, Frank Arute, Kunal Arya, Abraham Asfaw, Ryan Babbush, Brian Ballard, Joseph C. Bardin, Alexander Bilmes, Jenna Bovaird, Dylan Bowers, Leon Brill, Michael Broughton, David A. Browne, Brett Buchea, Bob B. Buckley, Tim Burger, Brian Burkett, Nicholas Bushnell, Anthony Cabrera, Juan Campero, Hung-Shen Chang, Ben Chiaro, Liang-Ying Chih, Agnetta Y. Cleland, Josh Cogan, Roberto Collins, Paul Conner, William Courtney, Alexander L. Crook, Ben Curtin, Sayan Das, Alexander Del Toro Barba, Sean Demura, Laura De Lorenzo, Agustin Di Paolo, Paul Donohoe, Ilya K. Drozdov, Andrew Dunsworth, Aviv Moshe Elbag, Mahmoud Elzouka, Catherine Erickson, Vinicius S. Ferreira, Leslie Flores Burgos, Ebrahim Forati, Austin G. Fowler, Brooks Foxen, Suhas Ganjam, Gonzalo Garcia, Robert Gasca, Élie Genois, William Giang, Dar Gilboa, Raja Gosula, Alejandro Grajales Dau, Dietrich Graumann, Tan Ha, Steve Habegger, Michael C. Hamilton, Monica Hansen, Matthew P. Harrigan, Sean D. Harrington, Stephen Heslin, Paula Heu, Oscar Higgott, Reno Hiltermann, Jeremy Hilton, Hsin-Yuan Huang, Ashley Huff, William J. Huggins, Evan Jeffrey, Zhang Jiang, Xiaoxuan Jin, Cody Jones, Chaitali Joshi, Pavol Juhas, Andreas Kabel, Hui Kang, Amir H. Karamlou, Kostyantyn Kechedzhi, Trupti Khaire, Tanuj Khattar, Mostafa Khezri, Seon Kim, Bryce Kobrin, Alexander N. Korotkov, Fedor Kostritsa, John Mark Kreikebaum, Vladislav D. Kurilovich, David Landhuis, Tiano Lange-Dei, Brandon W. Langley, Kim-Ming Lau, Justin Ledford, Kenny Lee, Brian J. Lester, Loïck Le Guevel, Wing Yan Li, Alexander T. Lill, Aditya Locharla, Erik Lucero, Daniel Lundahl, Aaron Lunt, Sid Madhuk, Ashley Maloney, Salvatore Mandrà, Leigh S. Martin, Orion Martin, Cameron Maxfield, Jarrod R. McClean, Seneca Meeks, Anthony Megrant, Reza Molavi, Sebastian Molina, Shirin Montazeri, Ramis Movassagh, Michael Newman, Anthony Nguyen, Murray Nguyen, Chia-Hung Ni, Logan Oas, Raymond Orosco, Kristoffer Ottosson, Alex Pizzuto, Rebecca Potter, Orion Pritchard, Chris Quintana, Ganesh Ramachandran, Matthew J. Reagor, David M. Rhodes, Eliott Rosenberg, Elizabeth Rossi, Kannan Sankaragomathi, Henry F. Schurkus, Michael J. Shearn, Aaron Shorter, Noah Shutty, Vladimir Shvarts, Spencer Small, W. Clarke Smith, Sofia Springer, George Sterling, Jordan Suchard, Aaron Szasz, Alex Sztein, Douglas Thor, Eifu Tomita, Alfredo Torres, M. Mert Torunbalci, Abeer Vaishnav, Justin Vargas, Sergey Vdovichev, Guifre Vidal, Catherine Vollgraff Heidweiller, Steven Waltman, Jonathan Waltz, Shannon X. Wang, Brayden Ware, Travis Weidel, Theodore White, Kristi Wong, Bryan W. K. Woo, Maddy Woodson, Cheng Xing, Z. Jamie Yao, Ping Yeh, Bicheng Ying, Juhwan Yoo, Noureldin Yosri, Grayson Young, Adam Zalcman, Yaxing Zhang, Ningfeng Zhu, Sergio Boixo, Julian Kelly, Vadim Smelyanskiy, Hartmut Neven, Dave Bacon, Zijun Chen, Paul V. Klimov, Pedram Roushan, Charles Neill, Yu Chen, Alexis Morvan
A remarkable characteristic of quantum computing is the potential for reliable computation despite faulty qubits. This can be achieved through quantum error correction, which is typically implemented by repeatedly applying static syndrome checks, permitting correction of logical information. Recently, the development of time-dynamic approaches to error correction has enabled different codes and implementations that do not rely on static syndrome measurements. Here we experimentally demonstrate three time-dynamic implementations of the surface code, each offering a distinct solution to hardware design challenges faced by surface code realizations. First, we embed the surface code on a hexagonal lattice, reducing the necessary couplings per qubit from four to three. Second, we walk a surface code, swapping the role of data and measure qubits each round, achieving error correction with built-in removal of accumulated non-computational errors. Finally, we realize the surface code using iSWAP gates instead of the traditional CNOT, extending the set of viable gates for error correction without additional overhead. We measure the error suppression factor when scaling from distance-3 to distance-5 codes of Λ35,hex = 2.15(2), Λ35,walk = 1.69(6) and Λ35,iSWAP = 1.56(2), achieving state-of-the-art error suppression for each. Our work demonstrates that dynamic circuit approaches meet the demands for fault tolerance and enable alternative strategies for scalable hardware design. Typical quantum error correcting codes assign fixed roles to the underlying physical qubits. Now the performance benefits of alternative, dynamic error correction schemes have been demonstrated on a superconducting quantum processor.
量子计算的一个显著特征是,即使有错误的量子比特,也有可能实现可靠的计算。这可以通过量子纠错来实现,量子纠错通常通过重复应用静态综合症检查来实现,允许对逻辑信息进行纠错。最近,时间动态纠错方法的发展使得不依赖于静态综合征测量的不同代码和实现成为可能。在这里,我们通过实验演示了表面代码的三种时间动态实现,每种实现都为表面代码实现所面临的硬件设计挑战提供了独特的解决方案。首先,我们将表面代码嵌入到六边形晶格上,将每个量子比特所需的耦合从4个减少到3个。其次,我们遍历表面代码,每轮交换数据的角色并测量量子位,通过内置的去除累积的非计算错误来实现纠错。最后,我们使用iSWAP门来代替传统的CNOT来实现表面码,在不增加额外开销的情况下扩展了可行的纠错门集。我们测量了从距离-3到距离-5代码Λ35,hex = 2.15(2), Λ35,walk = 1.69(6)和Λ35,iSWAP = 1.56(2)的误差抑制因子,实现了最先进的误差抑制。我们的工作表明,动态电路方法满足了容错的要求,并为可扩展的硬件设计提供了替代策略。典型的量子纠错码为底层物理量子位分配固定的角色。现在,动态纠错方案的性能优势已经在超导量子处理器上得到了证明。
{"title":"Demonstration of dynamic surface codes","authors":"Alec Eickbusch, Matt McEwen, Volodymyr Sivak, Alexandre Bourassa, Juan Atalaya, Jahan Claes, Dvir Kafri, Craig Gidney, Christopher W. Warren, Jonathan Gross, Alex Opremcak, Nicholas Zobrist, Kevin C. Miao, Gabrielle Roberts, Kevin J. Satzinger, Andreas Bengtsson, Matthew Neeley, William P. Livingston, Alex Greene, Rajeev Acharya, Laleh Aghababaie Beni, Georg Aigeldinger, Ross Alcaraz, Trond I. Andersen, Markus Ansmann, Frank Arute, Kunal Arya, Abraham Asfaw, Ryan Babbush, Brian Ballard, Joseph C. Bardin, Alexander Bilmes, Jenna Bovaird, Dylan Bowers, Leon Brill, Michael Broughton, David A. Browne, Brett Buchea, Bob B. Buckley, Tim Burger, Brian Burkett, Nicholas Bushnell, Anthony Cabrera, Juan Campero, Hung-Shen Chang, Ben Chiaro, Liang-Ying Chih, Agnetta Y. Cleland, Josh Cogan, Roberto Collins, Paul Conner, William Courtney, Alexander L. Crook, Ben Curtin, Sayan Das, Alexander Del Toro Barba, Sean Demura, Laura De Lorenzo, Agustin Di Paolo, Paul Donohoe, Ilya K. Drozdov, Andrew Dunsworth, Aviv Moshe Elbag, Mahmoud Elzouka, Catherine Erickson, Vinicius S. Ferreira, Leslie Flores Burgos, Ebrahim Forati, Austin G. Fowler, Brooks Foxen, Suhas Ganjam, Gonzalo Garcia, Robert Gasca, Élie Genois, William Giang, Dar Gilboa, Raja Gosula, Alejandro Grajales Dau, Dietrich Graumann, Tan Ha, Steve Habegger, Michael C. Hamilton, Monica Hansen, Matthew P. Harrigan, Sean D. Harrington, Stephen Heslin, Paula Heu, Oscar Higgott, Reno Hiltermann, Jeremy Hilton, Hsin-Yuan Huang, Ashley Huff, William J. Huggins, Evan Jeffrey, Zhang Jiang, Xiaoxuan Jin, Cody Jones, Chaitali Joshi, Pavol Juhas, Andreas Kabel, Hui Kang, Amir H. Karamlou, Kostyantyn Kechedzhi, Trupti Khaire, Tanuj Khattar, Mostafa Khezri, Seon Kim, Bryce Kobrin, Alexander N. Korotkov, Fedor Kostritsa, John Mark Kreikebaum, Vladislav D. Kurilovich, David Landhuis, Tiano Lange-Dei, Brandon W. Langley, Kim-Ming Lau, Justin Ledford, Kenny Lee, Brian J. Lester, Loïck Le Guevel, Wing Yan Li, Alexander T. Lill, Aditya Locharla, Erik Lucero, Daniel Lundahl, Aaron Lunt, Sid Madhuk, Ashley Maloney, Salvatore Mandrà, Leigh S. Martin, Orion Martin, Cameron Maxfield, Jarrod R. McClean, Seneca Meeks, Anthony Megrant, Reza Molavi, Sebastian Molina, Shirin Montazeri, Ramis Movassagh, Michael Newman, Anthony Nguyen, Murray Nguyen, Chia-Hung Ni, Logan Oas, Raymond Orosco, Kristoffer Ottosson, Alex Pizzuto, Rebecca Potter, Orion Pritchard, Chris Quintana, Ganesh Ramachandran, Matthew J. Reagor, David M. Rhodes, Eliott Rosenberg, Elizabeth Rossi, Kannan Sankaragomathi, Henry F. Schurkus, Michael J. Shearn, Aaron Shorter, Noah Shutty, Vladimir Shvarts, Spencer Small, W. Clarke Smith, Sofia Springer, George Sterling, Jordan Suchard, Aaron Szasz, Alex Sztein, Douglas Thor, Eifu Tomita, Alfredo Torres, M. Mert Torunbalci, Abeer Vaishnav, Justin Vargas, Sergey Vdovichev, Guifre Vidal, Catherine Vollgraff Heidweiller, Steven Waltman, Jonathan Waltz, Shannon X. Wang, Brayden Ware, Travis Weidel, Theodore White, Kristi Wong, Bryan W. K. Woo, Maddy Woodson, Cheng Xing, Z. Jamie Yao, Ping Yeh, Bicheng Ying, Juhwan Yoo, Noureldin Yosri, Grayson Young, Adam Zalcman, Yaxing Zhang, Ningfeng Zhu, Sergio Boixo, Julian Kelly, Vadim Smelyanskiy, Hartmut Neven, Dave Bacon, Zijun Chen, Paul V. Klimov, Pedram Roushan, Charles Neill, Yu Chen, Alexis Morvan","doi":"10.1038/s41567-025-03070-w","DOIUrl":"10.1038/s41567-025-03070-w","url":null,"abstract":"A remarkable characteristic of quantum computing is the potential for reliable computation despite faulty qubits. This can be achieved through quantum error correction, which is typically implemented by repeatedly applying static syndrome checks, permitting correction of logical information. Recently, the development of time-dynamic approaches to error correction has enabled different codes and implementations that do not rely on static syndrome measurements. Here we experimentally demonstrate three time-dynamic implementations of the surface code, each offering a distinct solution to hardware design challenges faced by surface code realizations. First, we embed the surface code on a hexagonal lattice, reducing the necessary couplings per qubit from four to three. Second, we walk a surface code, swapping the role of data and measure qubits each round, achieving error correction with built-in removal of accumulated non-computational errors. Finally, we realize the surface code using iSWAP gates instead of the traditional CNOT, extending the set of viable gates for error correction without additional overhead. We measure the error suppression factor when scaling from distance-3 to distance-5 codes of Λ35,hex = 2.15(2), Λ35,walk = 1.69(6) and Λ35,iSWAP = 1.56(2), achieving state-of-the-art error suppression for each. Our work demonstrates that dynamic circuit approaches meet the demands for fault tolerance and enable alternative strategies for scalable hardware design. Typical quantum error correcting codes assign fixed roles to the underlying physical qubits. Now the performance benefits of alternative, dynamic error correction schemes have been demonstrated on a superconducting quantum processor.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 12","pages":"1994-2001"},"PeriodicalIF":18.4,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41567-025-03070-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145381922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrons herald non-classical light 电子预示着非经典光
IF 18.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-10-16 DOI: 10.1038/s41567-025-03033-1
Germaine Arend, Guanhao Huang, Armin Feist, Yujia Yang, Jan-Wilke Henke, Zheru Qiu, Hao Jeng, Arslan Sajid Raja, Rudolf Haindl, Rui Ning Wang, Tobias J. Kippenberg, Claus Ropers
Free electrons are a universal source of electromagnetic fields, and fundamentally their quantized energy exchange may facilitate generating tunable quantum light. Because the quantum features of the emitted radiation are encoded in the joint electronic and photonic state, they can only be revealed by a measurement accessing both subsystems. Here we demonstrate the coherent parametric generation of such non-classical states of light by free electrons. Investigating electron–photon correlations, we show that the quantized electron energy loss heralds the number of photons generated in a dielectric waveguide. In Hanbury Brown–Twiss measurements, we observe an electron-heralded single-photon state using antibunching intensity correlation, whereas two-quantum energy losses of individual electrons yield pronounced two-photon coincidences. Our results will enable the tailored preparation of higher-number Fock and other optical quantum states on the basis of controlled interactions with free-electron beams. When free electrons emit light, an entangled electron–photon state is created. Here measurements of the correlated multiparticle system have been used to produce non-classical photonic states.
自由电子是电磁场的普遍来源,从根本上说,它们的量子化能量交换可能有助于产生可调谐的量子光。由于发射辐射的量子特征是在联合电子和光子状态下编码的,因此它们只能通过访问两个子系统的测量来揭示。在这里,我们证明了由自由电子产生这种非经典光态的相干参数。通过研究电子-光子的相关性,我们发现量子化的电子能量损失预示着介电波导中产生的光子数量。在Hanbury Brown-Twiss测量中,我们使用反聚束强度相关观察到电子预示的单光子态,而单个电子的双量子能量损失产生明显的双光子巧合。我们的研究结果将能够在与自由电子束的受控相互作用的基础上,定制地制备更高数量的Fock和其他光学量子态。
{"title":"Electrons herald non-classical light","authors":"Germaine Arend, Guanhao Huang, Armin Feist, Yujia Yang, Jan-Wilke Henke, Zheru Qiu, Hao Jeng, Arslan Sajid Raja, Rudolf Haindl, Rui Ning Wang, Tobias J. Kippenberg, Claus Ropers","doi":"10.1038/s41567-025-03033-1","DOIUrl":"10.1038/s41567-025-03033-1","url":null,"abstract":"Free electrons are a universal source of electromagnetic fields, and fundamentally their quantized energy exchange may facilitate generating tunable quantum light. Because the quantum features of the emitted radiation are encoded in the joint electronic and photonic state, they can only be revealed by a measurement accessing both subsystems. Here we demonstrate the coherent parametric generation of such non-classical states of light by free electrons. Investigating electron–photon correlations, we show that the quantized electron energy loss heralds the number of photons generated in a dielectric waveguide. In Hanbury Brown–Twiss measurements, we observe an electron-heralded single-photon state using antibunching intensity correlation, whereas two-quantum energy losses of individual electrons yield pronounced two-photon coincidences. Our results will enable the tailored preparation of higher-number Fock and other optical quantum states on the basis of controlled interactions with free-electron beams. When free electrons emit light, an entangled electron–photon state is created. Here measurements of the correlated multiparticle system have been used to produce non-classical photonic states.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 11","pages":"1855-1862"},"PeriodicalIF":18.4,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41567-025-03033-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145381771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vibrational responses of polar skyrmions 极地天空的振动响应
IF 18.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-10-15 DOI: 10.1038/s41567-025-03068-4
C. Paillard, B. Dkhil
Controlling polar skyrmions — topological textures of electric dipoles — is crucial for modern optoelectronic applications. Terahertz excitation is shown to govern ultrafast manipulation of polar skyrmions featuring signature vibrational modes.
控制极性天子-电偶极子的拓扑结构-对现代光电应用至关重要。太赫兹激发被证明可以控制具有特征振动模式的极天空粒子的超快操纵。
{"title":"Vibrational responses of polar skyrmions","authors":"C. Paillard, B. Dkhil","doi":"10.1038/s41567-025-03068-4","DOIUrl":"10.1038/s41567-025-03068-4","url":null,"abstract":"Controlling polar skyrmions — topological textures of electric dipoles — is crucial for modern optoelectronic applications. Terahertz excitation is shown to govern ultrafast manipulation of polar skyrmions featuring signature vibrational modes.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 12","pages":"1877-1878"},"PeriodicalIF":18.4,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145381770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1