首页 > 最新文献

Journal of Ecology最新文献

英文 中文
Correction to ‘Climate change and exotic pathogens shift carbon allocation in Mediterranean mixed forests’ 更正“气候变化和外来病原体改变地中海混交林的碳分配”
IF 5.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-12-31 DOI: 10.1111/1365-2745.14478

Gaytán, Á., Matías, L., Godoy, Ó., Pérez-Ramos, I. M., Homet, P., Moreira, X., & Gómez-Aparicio, L. (2024). Climate change and exotic pathogens shift carbon allocation in Mediterranean mixed forests. Journal of Ecology, 112(12), 2843–2860. https://doi.org/10.1111/1365-2745.14426.

In Figure 2, the years in the headings of Columns 3 and 4 are incorrect—they should read 2018.

The updated Figure 2 is included below.

We apologize for this error.

Gaytan,。, Matías, L., Godoy, Ó。, psamez - ramos, i.m., Homet, P., Moreira, X., &;Gómez-Aparicio, L.(2024)。气候变化和外来病原体改变了地中海混交林的碳分配。生态学报,12(12),2843-2860。https://doi.org/10.1111/1365-2745.14426.In图2,第3列和第4列标题中的年份不正确,应该是2018年。更新后的图2包含在下面。实验开始后1年(2017年)和2年(2018年)两种林型下肉桂树土壤丰度与光合速率、橡实产量和败育率、油橄榄果实产量和根系NSC的关系。线和阴影区域分别是模型预测和相关的95%置信区间。连续线表示包含在最佳模型中的效应,而不连续线表示包含在最佳模型子集中的效应(∆AIC < 2 with the best model;表1和表2)。只有当最佳模型包括降雨排除与物种的相互作用时,回归才按物种分开显示。NA表示无数据。请注意,x轴的范围因森林类型和年份而异,在封闭森林中较大,特别是在2018年。在标有星号的面板中(即2018年的橡果产量),y值应被解释为较小的数量级(y轴×10−1)。我们为这个错误道歉。
{"title":"Correction to ‘Climate change and exotic pathogens shift carbon allocation in Mediterranean mixed forests’","authors":"","doi":"10.1111/1365-2745.14478","DOIUrl":"10.1111/1365-2745.14478","url":null,"abstract":"<p>Gaytán, Á., Matías, L., Godoy, Ó., Pérez-Ramos, I. M., Homet, P., Moreira, X., &amp; Gómez-Aparicio, L. (2024). Climate change and exotic pathogens shift carbon allocation in Mediterranean mixed forests. <i>Journal of Ecology</i>, <i>112</i>(12), 2843–2860. https://doi.org/10.1111/1365-2745.14426.</p><p>In Figure 2, the years in the headings of Columns 3 and 4 are incorrect—they should read 2018.</p><p>The updated Figure 2 is included below.</p><p>We apologize for this error.</p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 2","pages":"504-505"},"PeriodicalIF":5.3,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.14478","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precipitation anomalies may affect productivity resilience by shifting plant community properties 降水异常可能通过改变植物群落特性而影响生产力恢复力
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-12-30 DOI: 10.1111/1365-2745.14471
Sierra Perez, Mark Hammond, Jennifer Lau
<h2>1 INTRODUCTION</h2><p>Climate change is disrupting historic environmental regimes, including increases in the frequency and severity of extreme climatic events, such as droughts and intense rainfall periods (IPCC, <span>2021</span>; Smith, <span>2011</span>). The impacts of droughts on plant communities and their associated ecosystem functions are well appreciated. For example, droughts can alter community composition (Gao et al., <span>2022</span>; Hoover et al., <span>2014</span>; Xu et al., <span>2021</span>) and drive significant reductions in primary productivity (Gao et al., <span>2019</span>; Liu et al., <span>2023</span>; Su et al., <span>2022</span>), and these impacts often persist post-drought (‘drought legacies’; Müller & Bahn, <span>2022</span>; Vilonen et al., <span>2022</span>). The consequences of highly wet periods, by contrast, have thus far received less attention, despite heavy rainfall events increasing over the past century throughout the contiguous United States and in many other regions worldwide (IPCC, <span>2021</span>; Jay et al., <span>2018</span>). Further, the impacts of extreme wet and dry events are often evaluated independently (although see Isbell et al., <span>2015</span>; Sala et al., <span>2012</span>; Wilcox et al., <span>2017</span>), despite both types of ‘precipitation events’ (see Box 1) increasing in many regions. Therefore, to persist and maintain critical ecosystem functions plant communities must be resilient to both of these contrasting precipitation events.</p><div><h3><span>BOX 1. </span>Key terms and definitions</h3><p></p><div><div tabindex="0"><table><tbody><tr><td><i>Precipitation event</i>: Periods when water availability is outside ‘normal’; a drought (SPEI < −1) or wet event (SPEI > 1)</td></tr><tr><td><i>Standardized precipitation–evapotranspiration index (SPEI)</i>: Measure of an ecosystem's water availability resulting from the difference between inputs from precipitation and outputs from potential evapotranspiration</td></tr><tr><td><i>Resilience</i>: A multi-dimensional quality that describes an ecosystem's capacity to absorb perturbations and persist in a reference state</td></tr><tr><td style="padding-left:2em;"><i>Resistance</i>: The degree to which an ecosystem function (e.g. productivity) changes in response to a perturbation</td></tr><tr><td style="padding-left:2em;"><i>Recovery</i>: The rate at which an ecosystem function returns to pre-perturbation conditions in the year after a perturbation; sometimes called ‘resilience’ (e.g. Pimm, <span>1984</span>)</td></tr><tr><td style="padding-left:2em;"><i>Invariability</i>: The degree to which an ecosystem function varies through time. Often used synonymously with ‘stability’</td></tr></tbody></table></div><div></div></div><p></p></div><p>Resilience is a multi-dimensional quality that describes an ecosystem's capacity to absorb perturbations and persist in a reference state (Box 1; Van Mee
气候变化正在破坏历史环境制度,包括极端气候事件的频率和严重程度的增加,如干旱和强降雨期(IPCC, 2021;史密斯,2011)。干旱对植物群落及其相关生态系统功能的影响已得到充分认识。例如,干旱可以改变群落组成(Gao et al., 2022;Hoover et al., 2014;Xu et al., 2021),并推动初级生产力显著降低(Gao et al., 2019;Liu et al., 2023;Su et al., 2022),而这些影响往往在干旱后持续存在(“干旱遗产”;穆勒,铁路,2022;Vilonen et al., 2022)。相比之下,尽管在过去一个世纪里,美国周边地区和全球许多其他地区的强降雨事件有所增加,但高湿期的后果迄今受到的关注较少(IPCC, 2021;Jay et al., 2018)。此外,极端干湿事件的影响通常是独立评估的(尽管见Isbell等人,2015;Sala et al., 2012;Wilcox et al., 2017),尽管这两种类型的“降水事件”(见框1)在许多地区都在增加。因此,为了维持和维持关键的生态系统功能,植物群落必须对这两种不同的降水事件具有弹性。框1。关键术语和定义降水事件:可用水量超出“正常”的时期;干旱(SPEI &lt;−1)或潮湿事件(SPEI &gt; 1)标准化降水蒸散发指数(SPEI):由降水输入和潜在蒸散发输出之间的差异引起的生态系统水分有效性的度量。恢复力:描述生态系统吸收扰动并保持参考状态的能力的多维质量。生态系统功能(如生产力)响应扰动而变化的程度。恢复:扰动后一年内生态系统功能恢复到扰动前状态的速率;不变性:生态系统功能随时间变化的程度。弹性通常与“稳定性”同义。弹性是一种多维度的品质,描述了生态系统吸收扰动并维持在参考状态的能力(框1;Van Meerbeek et al., 2021)。虽然弹性概念的关键假设因学科而异(即“生态弹性”霍林(Holling, 1973)与“工程弹性”皮姆(Pimm, 1984),但该框架广泛地捕捉了系统对扰动事件和长期模式的反应。我们可以通过量化复原力的各个方面——抵抗、恢复和不变性——并将它们与社区属性联系起来,开始解释不同社区和生态系统的复原力差异。抵抗力是生态系统功能(如生产力)响应扰动而发生变化的程度。恢复(Pimm, 1984年称之为“恢复力”)是指生态系统功能恢复到扰动前状态的速率。不变性(通常称为“稳定性”)表示生态系统功能如何随时间变化。虽然复原力通常被认为是有益的,但复原力并不一定会增加生态系统的功能。例如,潮湿事件可以提高生产力(Wilcox等人,2017),因此,在这种情况下,弹性会降低生产力效益。植物群落特性,包括物种丰富度、均匀度和优势度,可以影响对环境扰动(包括降水事件)的恢复力。然而,促进抗旱能力的特性可能不同于那些促进抗旱能力的特性。物种丰富度通过功能多样性和冗余(即多样性-稳定性关系;艾夫斯,木匠,2007;Tilman et al., 1996)。考虑到物种群落应该表现出更大的响应多样性——物种对环境变化的响应范围(Elmqvist等人,2003)——多样性群落在压力下维持关键功能的平均概率应该更高(即生物保险理论;Yachi,Loreau, 1999)。先前的工作利用了46个草原多样性操纵实验的数据,发现物种丰富度增加了对降水事件(湿事件和干事件)的生产力抵抗能力,以及长期生产力不变性,但没有事件后恢复(Isbell等人,2015)。多样性的其他方面,如均匀性和优势性,可以通过影响功能性状分布进一步调节弹性(Hillebrand et al., 2008)。虽然通常被认为是相互对立的,但均匀性和优势性都可能决定非单优势群落的特征分布。
{"title":"Precipitation anomalies may affect productivity resilience by shifting plant community properties","authors":"Sierra Perez, Mark Hammond, Jennifer Lau","doi":"10.1111/1365-2745.14471","DOIUrl":"https://doi.org/10.1111/1365-2745.14471","url":null,"abstract":"&lt;h2&gt;1 INTRODUCTION&lt;/h2&gt;\u0000&lt;p&gt;Climate change is disrupting historic environmental regimes, including increases in the frequency and severity of extreme climatic events, such as droughts and intense rainfall periods (IPCC, &lt;span&gt;2021&lt;/span&gt;; Smith, &lt;span&gt;2011&lt;/span&gt;). The impacts of droughts on plant communities and their associated ecosystem functions are well appreciated. For example, droughts can alter community composition (Gao et al., &lt;span&gt;2022&lt;/span&gt;; Hoover et al., &lt;span&gt;2014&lt;/span&gt;; Xu et al., &lt;span&gt;2021&lt;/span&gt;) and drive significant reductions in primary productivity (Gao et al., &lt;span&gt;2019&lt;/span&gt;; Liu et al., &lt;span&gt;2023&lt;/span&gt;; Su et al., &lt;span&gt;2022&lt;/span&gt;), and these impacts often persist post-drought (‘drought legacies’; Müller &amp; Bahn, &lt;span&gt;2022&lt;/span&gt;; Vilonen et al., &lt;span&gt;2022&lt;/span&gt;). The consequences of highly wet periods, by contrast, have thus far received less attention, despite heavy rainfall events increasing over the past century throughout the contiguous United States and in many other regions worldwide (IPCC, &lt;span&gt;2021&lt;/span&gt;; Jay et al., &lt;span&gt;2018&lt;/span&gt;). Further, the impacts of extreme wet and dry events are often evaluated independently (although see Isbell et al., &lt;span&gt;2015&lt;/span&gt;; Sala et al., &lt;span&gt;2012&lt;/span&gt;; Wilcox et al., &lt;span&gt;2017&lt;/span&gt;), despite both types of ‘precipitation events’ (see Box 1) increasing in many regions. Therefore, to persist and maintain critical ecosystem functions plant communities must be resilient to both of these contrasting precipitation events.&lt;/p&gt;\u0000&lt;div&gt;\u0000&lt;h3&gt;&lt;span&gt;BOX 1. &lt;/span&gt;Key terms and definitions&lt;/h3&gt;\u0000&lt;p&gt;\u0000&lt;/p&gt;&lt;div&gt;\u0000&lt;div tabindex=\"0\"&gt;\u0000&lt;table&gt;\u0000&lt;tbody&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;i&gt;Precipitation event&lt;/i&gt;: Periods when water availability is outside ‘normal’; a drought (SPEI &lt; −1) or wet event (SPEI &gt; 1)&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;i&gt;Standardized precipitation–evapotranspiration index (SPEI)&lt;/i&gt;: Measure of an ecosystem's water availability resulting from the difference between inputs from precipitation and outputs from potential evapotranspiration&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;i&gt;Resilience&lt;/i&gt;: A multi-dimensional quality that describes an ecosystem's capacity to absorb perturbations and persist in a reference state&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td style=\"padding-left:2em;\"&gt;&lt;i&gt;Resistance&lt;/i&gt;: The degree to which an ecosystem function (e.g. productivity) changes in response to a perturbation&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td style=\"padding-left:2em;\"&gt;&lt;i&gt;Recovery&lt;/i&gt;: The rate at which an ecosystem function returns to pre-perturbation conditions in the year after a perturbation; sometimes called ‘resilience’ (e.g. Pimm, &lt;span&gt;1984&lt;/span&gt;)&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td style=\"padding-left:2em;\"&gt;&lt;i&gt;Invariability&lt;/i&gt;: The degree to which an ecosystem function varies through time. Often used synonymously with ‘stability’&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;/tbody&gt;\u0000&lt;/table&gt;\u0000&lt;/div&gt;\u0000&lt;div&gt;&lt;/div&gt;\u0000&lt;/div&gt;\u0000&lt;p&gt;&lt;/p&gt;\u0000&lt;/div&gt;\u0000&lt;p&gt;Resilience is a multi-dimensional quality that describes an ecosystem's capacity to absorb perturbations and persist in a reference state (Box 1; Van Mee","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"46 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142902232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Testing the biogeochemical niche hypothesis using leaves, stems and roots of 62 Artemisia species across China 利用中国62种青蒿的叶、茎、根对生物地球化学生态位假说进行检验
IF 5.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-12-27 DOI: 10.1111/1365-2745.14469
Rong Liu, Xuejun Yang, Ruiru Gao, Bohan Jiao, Zhenying Huang, Johannes H. C. Cornelissen

生物地球化学生态位(BN)假说是基于特定生物的主要元素的浓度在化学计量上匹配,以使其充分发挥作用。然而,目前尚不清楚不同的植物器官是如何表现BN的,以及环境或进化在多大程度上影响BN。本研究测量了中国62种青蒿1022株的叶片、茎和根中C、N、P、K、Ca和Mg的浓度,以量化这三个器官的生物量。叶片的氮化硼与茎和根的氮化硼相抵消,且体积较小。3个器官的生物量对环境梯度的敏感性存在差异,在生物量和位置上,叶片对环境变化的响应均低于茎和根。环境梯度对三个器官BN位置的影响大于对BN体积的影响。叶片和根的BN体积和位置不具有系统发育信号,而茎BN具有较弱的系统发育信号,即来自不同分支的重复物种分化解释了三个器官的大部分BN变异。由于不同的生理机制和不同器官对氮化硼的反应不同,单器官的元素组成不能完全检验氮化硼假说。至少在蒿属植物中,叶片被强烈地限制在一个有限的元素生态位空间中,以支持叶片功能,特别是光合作用的相对稳定的元素供应。相比之下,茎和根发育出更大的元素体积,也代表营养储存和其他功能。在不同的环境条件下,蒿属植物的生物量和位置表现出不同的环境响应,使这些物种能够调节元素浓度,同时保持整体元素组成的稳定。合成。综上所述,现存青蒿种群的生物多样性主要由对当前环境条件的短期表型反应和/或基因型变异决定,而最近进化的物种多样性主要来自物种特异性和器官特异性对营养物质的利用,很少受系统发育早期分化的影响。
{"title":"Testing the biogeochemical niche hypothesis using leaves, stems and roots of 62 Artemisia species across China","authors":"Rong Liu,&nbsp;Xuejun Yang,&nbsp;Ruiru Gao,&nbsp;Bohan Jiao,&nbsp;Zhenying Huang,&nbsp;Johannes H. C. Cornelissen","doi":"10.1111/1365-2745.14469","DOIUrl":"10.1111/1365-2745.14469","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 2","pages":"459-471"},"PeriodicalIF":5.3,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142888322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional responses of Mediterranean flora to fire: A community-scale perspective 地中海植物对火灾的功能响应:群落尺度的视角
IF 5.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-12-20 DOI: 10.1111/1365-2745.14465
Bérangère A. Leys, Michelle Leydet, Eric Meineri, Arne Saatkamp, Cyrille Violle

利益冲突声明作者声明不存在利益冲突。brangires A. Leys是《生态学杂志》的副主编,但没有参与本文的同行评议或决策过程。
{"title":"Functional responses of Mediterranean flora to fire: A community-scale perspective","authors":"Bérangère A. Leys,&nbsp;Michelle Leydet,&nbsp;Eric Meineri,&nbsp;Arne Saatkamp,&nbsp;Cyrille Violle","doi":"10.1111/1365-2745.14465","DOIUrl":"10.1111/1365-2745.14465","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 2","pages":"433-444"},"PeriodicalIF":5.3,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Divergent resource-use strategies of encroaching shrubs: Can traits predict encroachment success in tallgrass prairie? 灌木入侵资源利用策略的差异:性状能否预测高草草原的入侵成功?
IF 5.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-12-13 DOI: 10.1111/1365-2745.14456
Emily R. Wedel, Zak Ratajczak, E. Greg Tooley, Jesse B. Nippert

利益冲突声明作者声明不存在利益冲突。
{"title":"Divergent resource-use strategies of encroaching shrubs: Can traits predict encroachment success in tallgrass prairie?","authors":"Emily R. Wedel,&nbsp;Zak Ratajczak,&nbsp;E. Greg Tooley,&nbsp;Jesse B. Nippert","doi":"10.1111/1365-2745.14456","DOIUrl":"10.1111/1365-2745.14456","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 2","pages":"339-352"},"PeriodicalIF":5.3,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assemblies of leaf and root mycobiomes in a temperate grassland: Dispersal limitation overpowers selection 温带草原上叶和根真菌群落的组合:扩散限制胜过选择
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-12-13 DOI: 10.1111/1365-2745.14467
Ren Bai, Hang-Wei Hu, An-Hui Ge, Meng Zhou, Jun Sheng, Guangyuan Yuan, Wen-Hao Zhang, Wenming Bai

CONFLICT OF INTEREST STATEMENT

The authors declare that they have no known competing interests or personal relationships that could have appeared to influence the work reported in this paper.

利益冲突声明作者声明,他们没有已知的竞争利益或个人关系,可能会影响本文所报道的工作。
{"title":"Assemblies of leaf and root mycobiomes in a temperate grassland: Dispersal limitation overpowers selection","authors":"Ren Bai, Hang-Wei Hu, An-Hui Ge, Meng Zhou, Jun Sheng, Guangyuan Yuan, Wen-Hao Zhang, Wenming Bai","doi":"10.1111/1365-2745.14467","DOIUrl":"https://doi.org/10.1111/1365-2745.14467","url":null,"abstract":"<h2> CONFLICT OF INTEREST STATEMENT</h2>\u0000<p>The authors declare that they have no known competing interests or personal relationships that could have appeared to influence the work reported in this paper.</p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"233 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple disturbances, multiple legacies: Fire, canopy gaps and deer jointly change the forest seed bank 多重干扰,多重遗产:火、林冠间隙和鹿共同改变了森林种子库
IF 5.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-12-11 DOI: 10.1111/1365-2745.14459
Samuel P. Reed, Alejandro A. Royo, Walter P. Carson, Castilleja F. Olmsted, Lee E. Frelich, Peter B. Reich

随着土地利用的改变、气候变化或土著居民的被迫迁移,世界各地的森林经历了历史性干扰制度的重大变化(Bowman et al., 2011;Gilliam, 2016;Gotmark, 2013;Kelly et al., 2023)。北美、欧洲和亚洲的许多中温带森林已经变得更加均匀,经历了严重的灭火,有蹄动物的浏览也增加了(Carpio et al., 2021;Frelich, 2002;Hai et al., 2023;McDowell et al., 2020;Pascual-Rico等人,2021)。这些变化的条件为共同进化并依赖于历史干扰模式的植物物种创造了不利的环境,例如全球分散的橡树(Quercus)物种(Carrero等人,2020;Tinner et al., 2005)。随着干扰制度的改变,植物组成的变化导致管理者恢复或操纵干扰,以支持生物多样性和生态系统功能(Long, 2009;Stanturf et al., 2014)。然而,我们对多种历史干扰的重新引入如何影响生物多样性的理解是新生的,这代表了我们在温带森林系统的长期管理和恢复方面的关键知识差距。北美森林是一个广阔的生态系统,在过去的一个世纪里,它们的干扰机制经历了巨大的变化(Abrams, 2005;Hanberry,Nowacki, 2016;Vander Yacht et al., 2020;韦伯斯特等人,2018)。这种情况在阿巴拉契亚阔叶林中尤为严重,这些阔叶林已经失去了橡树(栎属)树木的再生,并正在过渡到更湿润的、以枫为主导的(宏属)系统。艾布拉姆斯,2008;Pile Knapp et al., 2024)。这种从橡树林到枫树林的过渡是由土著居民被迫搬迁和他们使用文化焚烧作为管理工具而开始的(Abrams等人,2021;Pile Knapp等,2024;波勒斯,2015)。随后是19世纪末和20世纪初的大规模森林砍伐和大面积野火(Lafon et al., 2017)。对这些野火的负面看法导致了一个世纪以来国家批准的火灾排除和抑制,这有利于枫树的生长和更湿润的林下植被(Alexander等人,2021;Arthur et al., 2021)。结果,阿巴拉契亚森林以年龄均匀的林分为主,很少有大中型林分(直径15米;175平方米)树冠间隙和罕见的低强度火灾(Clebsch &amp;用校车接送学生,1989;Nowacki,艾布拉姆斯,2008;Raymond et al., 2009)。在阿巴拉契亚地区,火灾的复发间隔现在超过了1万年,而不是土著管理下的历史上1到20年的火灾复发间隔和闪电点燃的火灾(Lafon et al., 2017)。与此同时,北美东部大部分地区的白尾鹿(Odocoileus virginianus)种群数量大幅增加,高于历史基线(高于4至8只/平方公里),这取决于它们的种群密度,推动了生态变化,类似于欧洲和亚洲许多其他地区鹿群过多的影响(Côté等人,2004;Iijima等,2023;Reed et al., 2022;Valente et al., 2020)。为了扭转历史管理的长尾效应并维持以橡树为主的植物群落,森林管理者正在重新引入干扰,如规定的焚烧,通过采伐树木创造树冠间隙,以及通过狩猎或将脆弱地区围起来降低鹿的密度(Nuttle等人,2013;Raymond et al., 2009)。重新引入多重干扰可以成为恢复和指导生态群落内部变化的有力工具(Abrams等人,1985;Batllori等人,2019;Reed et al., 2023;Sasaki et al., 2015;Yantes et al., 2023)。例如,在北美和欧洲,低强度的火灾和树冠间隙的形成相结合可以促进橡树的生长,而这些干扰本身的效果较差(Brose et al., 2013;Hutchinson et al., 2024;Izbicki et al., 2020;peterson et al., 2020)。在这个例子中,幸存的橡树代表了干扰后的遗产,其大致特征是在干扰后保留在景观上的适应性、个体和生物量(Cuddington, 2011;富兰克林等人,2000)。干扰遗产可以是物质的(例如木材和营养池)和信息的(例如物种的适应反应和遗传物质),尽管这两类并不是相互排斥的(Johnstone等人,2016)。在给定区域发生的每次干扰都会改变先前干扰的遗留群落,在某些情况下,干扰组合和时间可能会导致独特的群落,这取决于所讨论的干扰如何相互作用(Anoszko等人,2022)。 因此,在美国东部森林和世界各地的温带森林中,与这些干扰单独的遗产相比,低强度火灾、冠层间隙创造和有蹄类动物的觅食组合的干扰遗产可能在决定森林如何重组和发展到未来方面具有特别重要的作用(Cuddington, 2011;Seidl et al., 2014;特纳和Seidl, 2023)。为此目的,土壤种子库是一个重要但研究不足的实体,它可能受到重新引入的干扰的强烈影响,并可能影响未来的干扰制度(Archibold, 1979;Ferrandis et al., 1996;摩根,Neuenschwander, 1988;Pakeman,小,2005;苏萨,1984)。种子库是一种生殖适应,允许植物以休眠种子的形式在地下持续存在,其中土壤可以作为地上干扰的缓冲(Baskin &amp;巴斯金,2022;汤普森,1987)。森林种子库已被证明是世界各地温带森林生物多样性的储存库,拥有许多草本和木本早期演替物种(Grubb et al., 2013;Plue et al., 2010;Yang等人,2021)。种子库也是遗传多样性的潜在来源(Levin, 1990;McCauley, 2014),使种子库成为物质和信息遗产。在扰动中幸存下来的发芽植物最终成熟并释放种子,重新建立种子库过程,使植物群落能够在未来的扰动中重组,从而根据返回土壤的种子建立另一种遗产(Baltzer等人,2021;Faliń平方公里列阵,1999;Grubb, 1988;凯悦酒店,卡斯珀,2000;Seidl,特纳,2022)。假设,更多的干扰将导致种子库更类似于地上植被,因为草本层是均匀的,少数野生物种存活和繁殖(Ma et al., 2021)。种子库的这些变化和干扰会产生长期的生态后果。例如,在19世纪末和20世纪初,美国的木材采伐和森林大火可能使灌木红莓传播并使其长寿的种子饱和森林种子库,在整个美国东部受到植被干扰后,形成了长达一个世纪的红莓重再生遗产(Dunn et al., 1982;彼得森,卡森,1996)。然后,红莓可以作为一种顽强的林下植物存活数十年(Donoso &amp;Nyland, 2006;Kern等人,2012)。规定的燃烧、树冠间隙的创造和鹿的浏览都为种子库中的新植被生长和种子库的变化提供了独特而重要的机会(Gioria等人,2022;Muscolo et al., 2014;舒勒,2010)。规定的火清除植物材料,通过增加光、热、烟和营养来催化种子发芽(Keeley &amp;
{"title":"Multiple disturbances, multiple legacies: Fire, canopy gaps and deer jointly change the forest seed bank","authors":"Samuel P. Reed,&nbsp;Alejandro A. Royo,&nbsp;Walter P. Carson,&nbsp;Castilleja F. Olmsted,&nbsp;Lee E. Frelich,&nbsp;Peter B. Reich","doi":"10.1111/1365-2745.14459","DOIUrl":"10.1111/1365-2745.14459","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 2","pages":"353-370"},"PeriodicalIF":5.3,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.14459","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Predicting intraspecific trait variation among California's grasses” 对“预测加州禾草种内性状变异”的更正
IF 5.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-12-10 DOI: 10.1111/1365-2745.14466
<p>Sandel, B., Pavelka, C., Hayashi, T., et al. (2021) Predicting intraspecific trait variation among California's grasses. <i>Journal of Ecology</i>, <i>109</i>, 2662–2677. https://doi.org/10.1111/1365-2745.13673.</p><p>In the paper by Sandel et al. (2021), an error has been identified in the code.</p><p>The error was in generating the testing data subset for assessing random forest fit, causing it to not be independent of the training dataset. This affects Figures 3-5, and the corrected versions of these are included below. Table S3 has been updated in the article. The updated text referring to these figures in the section ‘3.2 Modelling ITV’ is also included below. The changes do not fundamentally alter the message of the paper.</p><p><b>3.2 Modelling</b> <b>ITV</b></p><p>Across all specifications of the random forest models, performance scores were very similar on the training and testing data subsets (on average, differing by <0.09, Table S3), suggesting little overfitting. When applied to the testing dataset, random forests containing all five predictor groups predicted values that were well correlated with the observed trait values (for delta-SLA: 0.74, SLA: 0.82, delta-Height: 0.67, Height = 0.88, delta-LA: 0.72, LA: 0.89, Table S3). Across all subsets of variable groups, other local traits (values of the non-focal trait from the local population, e.g. when predicting SLA, the Height of the plants) and climate were the most important groups for model performance (Figure 3). Species mean traits, name and phylogeny had smaller contributions to model fit. The performance of one such random forest, excluding the species predictor variable, is shown in Figure 4. The correlation between observed and predicted values is strong for both training and testing datasets. However, the observed–predicted relationships deviated somewhat from the 1:1 line, particularly for the delta-trait predictions. Standard major axis (SMA) regression slopes were less than 1, ranging from 0.65 to 0.73 for delta-trait models and 0.82 and 0.92 for the final local trait predictions. These deviations indicate that these models tend to predict less extreme values for the most extreme trait observations.</p><p>A model including other local trait measurements and species names would be of limited use for predicting trait values of a plant in an unmeasured location. In contrast, the climate of that location is readily available, and phylogenetic relationships are known for most species. Thus, we focused on a reduced model including just these two variable groups and two species-level traits: the species mean value for the focal trait and its life span. Removing species names from the model had little impact (Table S3), but removing other local traits reduced model performance (Figure 5). For example, predicted-observed correlations for SLA, height and LA dropped to 0.79, 0.88 and 0.89. This likely reflects the fact that other local trait measurements can provide insight in
Sandel, B., Pavelka, C., Hayashi, T.等(2021)预测加州禾草的种内性状变异。生态学报,2009,26(2):662 - 677。https://doi.org/10.1111/1365-2745.13673.In在Sandel et al.(2021)的论文中,代码中发现了一个错误。错误是在生成用于评估随机森林拟合的测试数据子集时,导致它不独立于训练数据集。这影响了图3-5,更正后的版本包含在下面。表S3已在本文中更新。“3.2 ITV建模”一节中引用这些数据的更新文本也包括在下面。这些变化并没有从根本上改变报纸的信息。图3在图形查看器中打开powerpoint添加变量分组时模型性能的改进。模型性能通过测试数据集中观察到的delta-trait值和预测的delta-trait值之间的相关性来衡量。对于每个变量组,我们用包含该变量组的所有模型的平均性能减去排除该变量的所有模型的平均性能。气候变量为年平均气温和年降水量;局部性状是指一个站点的比叶面积(SLA)、比高或比叶面积(LA)的局部度量,不包括预测度量(例如,预测比叶面积的模型是根据高度和比叶面积训练的);种间性状为植被密度、高度和植被密度的总体种均值;系统发育为前5个系统发育特征向量图;3.2建模itv在所有规格的随机森林模型中,训练和测试数据子集的性能得分非常相似(平均差异为0.09,表S3),这表明很少有过拟合。当应用于测试数据集时,包含所有五个预测组的随机森林预测值与观察到的性状值具有良好的相关性(delta-SLA: 0.74, SLA: 0.82, delta-Height: 0.67, Height = 0.88, delta-LA: 0.72, LA: 0.89,表S3)。在所有变量组的子集中,其他局部性状(来自当地种群的非焦点性状的值,例如在预测SLA时,植物的高度)和气候是模型性能的最重要组(图3)。物种平均性状、名称和系统发育对模型拟合的贡献较小。其中一个这样的随机森林(不包括物种预测变量)的性能如图4所示。对于训练和测试数据集,观测值和预测值之间的相关性很强。然而,观察到的预测关系在一定程度上偏离了1:1的直线,特别是对于delta-trait的预测。标准长轴(SMA)回归斜率小于1,三角洲性状模型的回归斜率为0.65 ~ 0.73,最终局部性状预测的回归斜率为0.82 ~ 0.92。这些偏差表明,对于最极端的性状观察,这些模型倾向于预测不太极端的值。图4在图形查看器中打开powerpointmodel适合随机森林从气候、其他局部性状、物种平均性状和系统发育位置预测局部性状值。每个点代表一个特定地点的草种样本。误差条表示预测的标准误差。预测三角特征值的模型试图预测个体与其物种平均值的偏差(左列)。在这些预测中加上物种平均值,就给出了个体特征值的总体估计(右列)。一个包括其他本地性状测量和物种名称的模型对于预测未测量地点的植物性状值的作用有限。相比之下,那个地方的气候是现成的,而且大多数物种的系统发育关系是已知的。因此,我们将重点放在一个简化的模型上,该模型只包括这两个变量组和两个物种水平的特征:焦点特征的物种平均值及其寿命。从模型中删除物种名称影响不大(表S3),但删除其他局部特征会降低模型性能(图5)。例如,SLA、高度和LA的预测-观测相关性下降到0.79、0.88和0.89。这可能反映了这样一个事实,即其他局部特征测量可以提供对我们的两个广泛的气候预测器无法捕获的局部条件的洞察。尽管有这种适度的减少,这个简化模型的模型性能仍然相当高。图5打开图查看器powerpointmodel只使用平均特征和系统发育适合随机森林,并在整个数据集上训练。每个点代表一个特定地点的草种样本。误差条表示标准误差。预测三角特征值的模型试图预测个体与其物种平均值的偏差(左列)。 在这些预测中加上物种平均值,就给出了个体特征值的总体估计(右列)。我们为这个错误道歉。
{"title":"Correction to “Predicting intraspecific trait variation among California's grasses”","authors":"","doi":"10.1111/1365-2745.14466","DOIUrl":"10.1111/1365-2745.14466","url":null,"abstract":"&lt;p&gt;Sandel, B., Pavelka, C., Hayashi, T., et al. (2021) Predicting intraspecific trait variation among California's grasses. &lt;i&gt;Journal of Ecology&lt;/i&gt;, &lt;i&gt;109&lt;/i&gt;, 2662–2677. https://doi.org/10.1111/1365-2745.13673.&lt;/p&gt;&lt;p&gt;In the paper by Sandel et al. (2021), an error has been identified in the code.&lt;/p&gt;&lt;p&gt;The error was in generating the testing data subset for assessing random forest fit, causing it to not be independent of the training dataset. This affects Figures 3-5, and the corrected versions of these are included below. Table S3 has been updated in the article. The updated text referring to these figures in the section ‘3.2 Modelling ITV’ is also included below. The changes do not fundamentally alter the message of the paper.&lt;/p&gt;&lt;p&gt;&lt;b&gt;3.2 Modelling&lt;/b&gt; &lt;b&gt;ITV&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Across all specifications of the random forest models, performance scores were very similar on the training and testing data subsets (on average, differing by &lt;0.09, Table S3), suggesting little overfitting. When applied to the testing dataset, random forests containing all five predictor groups predicted values that were well correlated with the observed trait values (for delta-SLA: 0.74, SLA: 0.82, delta-Height: 0.67, Height = 0.88, delta-LA: 0.72, LA: 0.89, Table S3). Across all subsets of variable groups, other local traits (values of the non-focal trait from the local population, e.g. when predicting SLA, the Height of the plants) and climate were the most important groups for model performance (Figure 3). Species mean traits, name and phylogeny had smaller contributions to model fit. The performance of one such random forest, excluding the species predictor variable, is shown in Figure 4. The correlation between observed and predicted values is strong for both training and testing datasets. However, the observed–predicted relationships deviated somewhat from the 1:1 line, particularly for the delta-trait predictions. Standard major axis (SMA) regression slopes were less than 1, ranging from 0.65 to 0.73 for delta-trait models and 0.82 and 0.92 for the final local trait predictions. These deviations indicate that these models tend to predict less extreme values for the most extreme trait observations.&lt;/p&gt;&lt;p&gt;A model including other local trait measurements and species names would be of limited use for predicting trait values of a plant in an unmeasured location. In contrast, the climate of that location is readily available, and phylogenetic relationships are known for most species. Thus, we focused on a reduced model including just these two variable groups and two species-level traits: the species mean value for the focal trait and its life span. Removing species names from the model had little impact (Table S3), but removing other local traits reduced model performance (Figure 5). For example, predicted-observed correlations for SLA, height and LA dropped to 0.79, 0.88 and 0.89. This likely reflects the fact that other local trait measurements can provide insight in","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 1","pages":"263-266"},"PeriodicalIF":5.3,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.14466","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142797797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Avian seed dispersal out of the forests: A view through the lens of Pleistocene landscapes 鸟类种子从森林中散播:透过更新世景观的镜头
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-12-09 DOI: 10.1111/1365-2745.14457
Juan P. González-Varo
<h2>1 INTRODUCTION</h2><p>The way we tackle and interpret how ecological communities respond to anthropogenic impacts largely depends on our baseline, that is, on the scenarios we envisage prior to human intervention (Pausas & Bond, <span>2019</span>; Vera, <span>2010</span>). During the 19th and 20th centuries, the baseline for the temperate lowlands of Europe was a continuous primeval forest dominated by broadleaved deciduous trees (reviewed by Vera, <span>2000</span>). This hypothesis was mainly founded on the observation that fields and meadows can spontaneously develop into forests after the abandonment of agriculture and livestock farming. The baseline of the primeval forest was challenged by Frans Vera (<span>2000</span>) in his influential book <i>Grazing Ecology and Forest History</i> where the author presented diverse and compelling evidence supporting an alternative hypothesis: grazing and browsing by extinct megaherbivores should have created and maintained wood pastures, which must have been a widespread landscape type in post-glacial temperate Europe (Vera, <span>2000</span>). The book contains perspectives from succession ecology, plant regeneration, palynology, paleoecology, history and even linguistics (Vera, <span>2000</span>). Recently, a large-scale palynological study (Pearce et al., <span>2023</span>) has provided further support to Vera's hypothesis by estimating that light woodland (shade-intolerant taxa) and open vegetation covered more than half of European landscapes during the Last Interglacial period (129,000–116,000 years ago). In parallel, another study has estimated a loss of ~95% of community-wide biomass of European megafauna (wild terrestrial mammals ≥10 kg) since the Last Interglacial along with the loss of the largest species of megaherbivores, including elephants and rhinos (Davoli et al., <span>2024</span>). In addition, a further palynological study suggests that the vegetation composition in the Last Interglacial is better explained by the role of megaherbivores than by fire regimes (Pearce et al., <span>2024</span>).</p><p>Hence, current evidence supports that the temperate zone of Europe was not a closed continuous forest, but a more heterogeneous biome with open vegetation (mainly grasslands), light woodlands and forests (Pearce et al., <span>2023</span>) that held a diverse community of large herbivorous mammals (Davoli et al., <span>2024</span>; Svenning et al., <span>2024</span>). This is congruent with the fact that many temperate woody plants are light-demanding species that are often restricted to forest edges because they fail to regenerate in the shaded forest interiors (Vera, <span>2000</span>). Moreover, many light-demanding plants are thorny (e.g. <i>Berberis vulgaris</i>, <i>Crataegus</i> spp., <i>Prunus spinosa</i>, <i>Rosa</i> spp., <i>Rubus</i> spp. and <i>Ulex europaeus</i>) or have prickly leaves (e.g. <i>Ilex aquifolium</i> and <i>Juniperus</i> spp.). These are defensive traits a
我们处理和解释生态群落如何应对人为影响的方式在很大程度上取决于我们的基线,也就是说,取决于我们在人类干预之前设想的情景(Pausas &amp;债券,2019;维拉,2010)。在19世纪和20世纪,欧洲温带低地的基线是一个以阔叶落叶乔木为主的连续原始森林(Vera, 2000)。这一假说主要建立在田野和草地在放弃农业和畜牧业后可以自发地发展成森林的观察之上。Frans Vera(2000)在其颇具影响力的著作《放牧生态学和森林历史》中对原始森林的基线提出了挑战,作者提出了多种令人信服的证据,支持另一种假设:灭绝的大型食草动物的放牧和觅食应该创造并维持了森林牧场,这一定是冰川后温带欧洲广泛存在的景观类型(Vera, 2000)。这本书包含了从演替生态学,植物再生,孢粉学,古生态学,历史,甚至语言学(维拉,2000年)的观点。最近,一项大规模孢粉学研究(Pearce et al., 2023)进一步支持了Vera的假设,估计在末次间冰期(12.9万- 11.6万年前),浅色林地(不耐荫分类群)和开阔植被覆盖了欧洲一半以上的景观。与此同时,另一项研究估计,自末次间冰期以来,欧洲大型动物(野生陆生哺乳动物≥10公斤)的群落生物量减少了约95%,大型食草动物(包括大象和犀牛)的最大物种也在减少(Davoli et al., 2024)。此外,一项进一步的孢粉学研究表明,末次间冰期的植被组成更好地解释了巨型食草动物的作用,而不是火灾制度(Pearce et al., 2024)。因此,目前的证据支持,欧洲温带不是一个封闭的连续森林,而是一个更异质性的生物群系,包括开放植被(主要是草地)、轻型林地和森林(Pearce et al., 2023),拥有大型食草哺乳动物的多样化群落(Davoli et al., 2024;Svenning等人,2024)。这与许多温带木本植物是需要光的物种这一事实是一致的,因为它们不能在阴暗的森林内部再生,所以往往局限于森林边缘(Vera, 2000)。此外,许多需要光的植物是多刺的(如小檗、山楂、刺李、蔷薇、野蔷薇和欧洲花楸)或有多刺的叶子(如冬青和杜松)。这些是对草食性哺乳动物的防御特征,使这些物种在放牧和浏览的景观中很常见(Vera, 2000)。重要的是,多刺灌木促进了非多刺物种的建立,包括需要光的橡树(栎属),它们受益于其看护植物的抗食草动物保护(Bakker等人,2004;加西亚,Obeso, 2003;马丁内斯,加西亚,2017;Olff et al., 1999;维拉,2000)。值得注意的是,在温带欧洲,大多数需要光的木本物种是通过两种不同的机制被鸟类和哺乳动物传播的:endozochory和synzoochory (van der Pijl, 1982)。一方面,数十种植物结出肉质果实(如Berberis属、Cornus属、creataegus属、Euonymus属、Frangula属、Hedera属、Ilex属、Ligustrum属、Malus属、Rhamnus属、Rosa属、Rubus属、Prunus、Pyrus属、sambuus、Sorbus、Viburnum属)、肉质球果(如Juniperus属)或芳香化种子(如Taxus baccata属),这些果实被食性动物(主要是鸟类)食用(González-Varo等,2023;Rumeu et al., 2020)。食果动物在体内运输有活力的种子,直到它们通过排便或反流(即内窥镜;Jordano, 2014)。另一方面,橡树(栎属)的橡子和榛子(榛属)的坚果促进种子贮藏动物的传播,主要是鸦科动物和老鼠(Kollmann &amp;Schill, 1996),由于不同的原因,它们不会消耗所有分散储存的种子(即synzoochory;Gómez等人,2019)。小鼠的同音活动通常发生在很短的距离内(20米;Kollmann,Schill, 1996),因此,只有鸟类在景观尺度上发挥重要作用,将橡子和坚果分散到数百米(Pesendorfer et al., 2016)。除了先锋树(桤木、桦木、杨树、柳)的风传播外,动物介导的种子传播为木本植被动态和群落聚集提供了一个起始模板。因此,了解鸟类如何在景观尺度上传播种子对于理解林地的功能并指导其恢复至关重要(Carlo &amp;莫拉莱斯,2016;González-Varo等,2023;马丁内斯,加西亚,2017;Pesendorfer et al., 2016)。 在这里,我从更新世的角度反思了目前关于木本植物在欧洲破碎的人为景观中的鸟类种子传播的知识。换句话说,我在解释当今种子在森林斑块内外的传播模式时,考虑到基线是异质景观,包括轻型林地和大型食草动物居住的开放植被。这项工作的目的是讨论过去和现在景观之间的联系,寻求对已知不同鸟类在欧洲森林内外传播种子的高度空间互补性的历史理解。我还提出了一个关于景观模式的可能和重要的差异:更新世的林地开阔程度和栖息地边界的清晰度肯定与现代农业造成的人为砍伐非常不同。最后,我简要地讨论了本文所讨论的主要思想对其他生物地理区域的一般性。
{"title":"Avian seed dispersal out of the forests: A view through the lens of Pleistocene landscapes","authors":"Juan P. González-Varo","doi":"10.1111/1365-2745.14457","DOIUrl":"https://doi.org/10.1111/1365-2745.14457","url":null,"abstract":"&lt;h2&gt;1 INTRODUCTION&lt;/h2&gt;\u0000&lt;p&gt;The way we tackle and interpret how ecological communities respond to anthropogenic impacts largely depends on our baseline, that is, on the scenarios we envisage prior to human intervention (Pausas &amp; Bond, &lt;span&gt;2019&lt;/span&gt;; Vera, &lt;span&gt;2010&lt;/span&gt;). During the 19th and 20th centuries, the baseline for the temperate lowlands of Europe was a continuous primeval forest dominated by broadleaved deciduous trees (reviewed by Vera, &lt;span&gt;2000&lt;/span&gt;). This hypothesis was mainly founded on the observation that fields and meadows can spontaneously develop into forests after the abandonment of agriculture and livestock farming. The baseline of the primeval forest was challenged by Frans Vera (&lt;span&gt;2000&lt;/span&gt;) in his influential book &lt;i&gt;Grazing Ecology and Forest History&lt;/i&gt; where the author presented diverse and compelling evidence supporting an alternative hypothesis: grazing and browsing by extinct megaherbivores should have created and maintained wood pastures, which must have been a widespread landscape type in post-glacial temperate Europe (Vera, &lt;span&gt;2000&lt;/span&gt;). The book contains perspectives from succession ecology, plant regeneration, palynology, paleoecology, history and even linguistics (Vera, &lt;span&gt;2000&lt;/span&gt;). Recently, a large-scale palynological study (Pearce et al., &lt;span&gt;2023&lt;/span&gt;) has provided further support to Vera's hypothesis by estimating that light woodland (shade-intolerant taxa) and open vegetation covered more than half of European landscapes during the Last Interglacial period (129,000–116,000 years ago). In parallel, another study has estimated a loss of ~95% of community-wide biomass of European megafauna (wild terrestrial mammals ≥10 kg) since the Last Interglacial along with the loss of the largest species of megaherbivores, including elephants and rhinos (Davoli et al., &lt;span&gt;2024&lt;/span&gt;). In addition, a further palynological study suggests that the vegetation composition in the Last Interglacial is better explained by the role of megaherbivores than by fire regimes (Pearce et al., &lt;span&gt;2024&lt;/span&gt;).&lt;/p&gt;\u0000&lt;p&gt;Hence, current evidence supports that the temperate zone of Europe was not a closed continuous forest, but a more heterogeneous biome with open vegetation (mainly grasslands), light woodlands and forests (Pearce et al., &lt;span&gt;2023&lt;/span&gt;) that held a diverse community of large herbivorous mammals (Davoli et al., &lt;span&gt;2024&lt;/span&gt;; Svenning et al., &lt;span&gt;2024&lt;/span&gt;). This is congruent with the fact that many temperate woody plants are light-demanding species that are often restricted to forest edges because they fail to regenerate in the shaded forest interiors (Vera, &lt;span&gt;2000&lt;/span&gt;). Moreover, many light-demanding plants are thorny (e.g. &lt;i&gt;Berberis vulgaris&lt;/i&gt;, &lt;i&gt;Crataegus&lt;/i&gt; spp., &lt;i&gt;Prunus spinosa&lt;/i&gt;, &lt;i&gt;Rosa&lt;/i&gt; spp., &lt;i&gt;Rubus&lt;/i&gt; spp. and &lt;i&gt;Ulex europaeus&lt;/i&gt;) or have prickly leaves (e.g. &lt;i&gt;Ilex aquifolium&lt;/i&gt; and &lt;i&gt;Juniperus&lt;/i&gt; spp.). These are defensive traits a","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"28 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coordinated variation in elemental composition and morphology in leaves, but independence in roots across Chinese grasslands 中国草原叶片元素组成和形态的协调变化,而根系的独立性
IF 5.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-12-09 DOI: 10.1111/1365-2745.14464
Chao Wang, Yan Geng, Jordi Sardans, Josep Peñuelas, Jin-Sheng He

利益冲突声明所有作者声明无利益冲突。
{"title":"Coordinated variation in elemental composition and morphology in leaves, but independence in roots across Chinese grasslands","authors":"Chao Wang,&nbsp;Yan Geng,&nbsp;Jordi Sardans,&nbsp;Josep Peñuelas,&nbsp;Jin-Sheng He","doi":"10.1111/1365-2745.14464","DOIUrl":"10.1111/1365-2745.14464","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 2","pages":"418-432"},"PeriodicalIF":5.3,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Ecology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1