首页 > 最新文献

Journal of Ecology最新文献

英文 中文
A pan-European citizen science study shows population size, climate and land use are related to biased morph ratios in the heterostylous plant Primula veris 一项泛欧公民科学研究表明,异种植物报春花(Primula veris)的人口规模、气候和土地利用与偏态形态比率有关
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-01-22 DOI: 10.1111/1365-2745.14477
Tsipe Aavik, Triin Reitalu, Marianne Kivastik, Iris Reinula, Sabrina Träger, Evelyn Uuemaa, Marta Barberis, Arjen Biere, Sílvia Castro, Sara A. O. Cousins, Anikó Csecserits, Eleftherios Dariotis, Živa Fišer, Grzegorz Grzejszczak, Cuong Nguyen Huu, Kertu Hool, Hans Jacquemyn, Margaux Julien, Marcin Klisz, Alexander Kmoch, Nikos Krigas, Attila Lengyel, Michael Lenhard, Desalew M. Moges, Zuzana Münzbergová, Ülo Niinemets, Baudewijn Odé, Hana Pánková, Meelis Pärtel, Ricarda Pätsch, Theodora Petanidou, Jan Plue, Radosław Puchałka, Froukje Rienks, Ioulietta Samartza, Julie K. Sheard, Bojana Stojanova, Joachim P. Töpper, Georgios Tsoktouridis, Spas Uzunov, Martin Zobel
<h2>1 INTRODUCTION</h2><p>The last century has witnessed unprecedented habitat loss and fragmentation as a result of global land use change (Haddad et al., <span>2015</span>). Along with climate change, this trend adversely affects several aspects of biodiversity, causing the loss of genetic diversity (Des Roches et al., <span>2021</span>; Laikre et al., <span>2020</span>; Schlaepfer et al., <span>2018</span>), species richness (Tilman et al., <span>2017</span>), and related ecosystem services (Cardinale et al., <span>2012</span>). However, not all species respond in the same way to these factors, with some species being more vulnerable to the mentioned threats than the others. In plants, the response of certain species may depend on their life history, functional traits, phenotypic plasticity, and biogeographic origin (De Kort et al., <span>2021</span>; Hamrick & Godt, <span>1996</span>). In addition, the effects of fragmentation and climate change on plant mutualistic partners, such as pollinators (Bennett et al., <span>2020</span>; Rodger et al., <span>2021</span>), seed dispersers (Donoso et al., <span>2022</span>) or mycorrhizal fungi (Kiesewetter et al., <span>2023</span>; Outhwaite et al., <span>2022</span>; Senapathi et al., <span>2017</span>), may affect the relative vulnerability of plant species to the factors of global change. Outcrossing, animal-pollinated plants may be more susceptible to climate change and habitat fragmentation than clonally reproducing, selfing, or anemophilous plants due to potential negative impacts of habitat loss and climate change on pollinators (Aguilar et al., <span>2008</span>; Bennett et al., <span>2020</span>; Rodger et al., <span>2021</span>). Furthermore, reduced pollinator abundance and diversity may ultimately cause shifts in plant–pollinator networks (Zoller et al., <span>2023</span>), potentially triggering selection of phenotypes with reduced herkogamy or self-incompatibility (Bodbyl Roels & Kelly, <span>2011</span>; Cheptou, <span>2021</span>; Jacquemyn et al., <span>2012</span>; Opedal, <span>2019</span>). However, our understanding of how reproductive plant traits respond to climate change and land use shifts in contemporary landscapes is still limited (Pontarp et al., <span>2023</span>).</p><p>Insufficient pollination poses a particular threat to plant species with floral traits preventing self-pollination, such as heterostyly. Heterostyly is a genetically determined floral polymorphism expressed in the reciprocal positioning of female and male reproductive organs (Barrett, <span>2019</span>). It has evolved independently across at least 28 plant families (Barrett, <span>2019</span>). Populations of heterostylous plants comprise two (distylous species) or three (tristylous species) morphs with reciprocal lengths of style and anthers. Differences between morphs may also be expressed in the size and morphology of stigmatic papillae and pollen grains (Costa, Castro, et al., <span>2017</
由于全球土地利用变化,上个世纪出现了前所未有的栖息地丧失和破碎化(Haddad et al., 2015)。随着气候变化,这一趋势对生物多样性的几个方面产生不利影响,造成遗传多样性的丧失(Des Roches et al., 2021;Laikre et al., 2020;Schlaepfer等人,2018)、物种丰富度(Tilman等人,2017)和相关生态系统服务(Cardinale等人,2012)。然而,并非所有物种对这些因素的反应都相同,有些物种比其他物种更容易受到上述威胁。在植物中,某些物种的反应可能取决于它们的生活史、功能性状、表型可塑性和生物地理起源(De Kort et al., 2021;Hamrick,Godt, 1996)。此外,破碎化和气候变化对植物共生伙伴的影响,如传粉者(Bennett et al., 2020;Rodger等人,2021)、种子传播者(Donoso等人,2022)或菌根真菌(Kiesewetter等人,2023;Outhwaite et al., 2022;Senapathi et al., 2017),可能会影响植物物种对全球变化因素的相对脆弱性。由于生境丧失和气候变化对传粉者的潜在负面影响,异交、动物传粉植物可能比无性繁殖、自交或风媒植物更容易受到气候变化和栖息地破碎化的影响(Aguilar et al., 2008;Bennett et al., 2020;Rodger et al., 2021)。此外,传粉媒介丰度和多样性的减少可能最终导致植物-传粉媒介网络的变化(Zoller等人,2023),可能引发异交或自交不亲和减少的表型选择(Bodbyl Roels &amp;凯利,2011;Cheptou, 2021;Jacquemyn et al., 2012;Opedal, 2019)。然而,我们对当代景观中生殖植物性状如何响应气候变化和土地利用变化的理解仍然有限(Pontarp et al., 2023)。授粉不足对那些具有阻碍自花授粉特性的植物物种造成了特别的威胁,例如异种花柱。异质花柱是一种由遗传决定的花的多态性,表达在雌性和雄性生殖器官的相互定位中(Barrett, 2019)。它已经在至少28个植物科中独立进化(Barrett, 2019)。异花柱植物的种群包括两种(二花柱种)或三种(三花柱种)的花柱和花药长度互反的变体。形态之间的差异也可能表现在柱头乳突和花粉粒的大小和形态上(Costa, Castro, et al., 2017)。花多态性的研究历史悠久,查尔斯·达尔文是第一个提出这种互惠的花多态性有助于确保植物个体之间的异交(Barrett &amp;海岸,2008;达尔文,1862;Simón-Porcar et al., 2022)。最近的研究表明,异花柱植物物种通常以遗传决定的不相容系统为特征,促进了非分类交配(Costa, Ferrero等,2017;Huu et al., 2016, 2022;Keller et al., 2014)。异花柱植物的自交不亲和性和相关性状,包括花药位置、花柱高度、花粉形态之间的大小差异以及生化自交不亲和性由位于S座的一组紧密相连的基因控制,在二花柱植物物种中,S座在一种形态(S-morph)中是半合子的,而在另一种形态(L-morph)中则不存在(Huu et al., 2016)。不同的形态在种群中通常具有平衡的形态频率(等密度)。然而,剧烈的景观变化和植物种群大小的下降可能导致等多态的随机偏差(Endels et al., 2002;ksamry et al., 2003),甚至导致一种(二花科植物)或两种变种(三花科植物;费列罗等人,2020;Heuch, 1980)。不平衡的形态比会减少异种植物种群中合适交配伴侣的数量、生殖产量和遗传多样性(Kaldra et al., 2023;ksamry等人,2003;Meeus et al., 2012)。由于非同种交配和对传粉者的强烈依赖,异花柱植物因此特别容易受到栖息地丧失的负面影响(Brys等,2004),这可能最终导致自亲和性增加,并在花粉严重稀缺的条件下导致异花柱的破裂(Wang等,2020)。此外,气候条件的变化可能对植物与传粉者的相互作用产生重大影响。温度和降水的变化,以及极端天气事件频率的增加,都可能导致植物-传粉媒介网络的物候解耦,改变传粉媒介的觅食模式,增加花粉降解和更强的花蜜稀释(Lawson &amp;兰德,2019;Settele et al., 2016)。 在异花柱物种中,降水模式变化引起的较高湿度可导致不同形态花粉的不同生存力(Aronne et al., 2020)。因此,土地利用和气候变化的综合影响可能会对具有复杂交配系统的植物造成更大的威胁,例如异花柱(Aronne et al., 2020;Stefanaki et al., 2015;Thomann et al., 2013)。报春花(Primula veris L.)是花柱异质性研究中常用的二花丛模式种(如ksamry et al., 2003;Nowak et al., 2015;Potente et al., 2022)。这种草本植物生长在欧亚大陆的农村和山区(特别是南欧),它们的首选栖息地是半自然草原和半开放森林。然而,欧洲90%的半天然草地面积已经消失(Dengler et al., 2020),对许多草地物种的发生和遗传多样性产生不利影响(Kiviniemi, 2008;Lienert, 2004;Lindborg et al., 2005),包括P. veris (Brys &amp;Jacquemyn, 2009;Kery et al., 2000;Van Rossum et al., 2004)。在平衡状态下,由于负频率依赖的平衡选择,两种形态的比例相等(Heuch, 1979)。与等密度的偏差与狐尾假蝇种群规模的下降有关(Aavik等人,2020;Kaldra et al., 2023;ksamry et al., 2003)。由于一种或另一种变体的相对损失是完全随机的,因此,这种频率相等的变体的随机偏差预计不会影响种群中变体的一般比例。最近的一项研究在其北部分布极限(爱沙尼亚)的一千多个种群中探索了狐尾草的形态比例,结果表明,短型s型总体上超过长型l型,s型占主导地位的种群也超过了s型(Aavik等人,2020)。这一发现表明,其他确定性过程塑造了变异的偏差,导致一种特定的变异类型比另一种非随机流行。先前的研究发现,其他报春花物种在其分布范围边缘附近的种群中,形态间和形态内相容性和自交性存在相当大的差异(Shao et al., 2019;Van Daele等人,2024;Zhang et al., 2021)或沿海拔梯度(Yuan et al., 2017)。当殖民化事件导致小而孤立的种群时,这种交配系统的破坏就会发生,在这种情况下,自相容性是有利的。传粉媒介的稀缺可能进一步促进了这种转变,有利于采用自交和同质作为确保成功繁殖的策略(Yuan等人,2017)。最近的证据表明,这些变化
{"title":"A pan-European citizen science study shows population size, climate and land use are related to biased morph ratios in the heterostylous plant Primula veris","authors":"Tsipe Aavik, Triin Reitalu, Marianne Kivastik, Iris Reinula, Sabrina Träger, Evelyn Uuemaa, Marta Barberis, Arjen Biere, Sílvia Castro, Sara A. O. Cousins, Anikó Csecserits, Eleftherios Dariotis, Živa Fišer, Grzegorz Grzejszczak, Cuong Nguyen Huu, Kertu Hool, Hans Jacquemyn, Margaux Julien, Marcin Klisz, Alexander Kmoch, Nikos Krigas, Attila Lengyel, Michael Lenhard, Desalew M. Moges, Zuzana Münzbergová, Ülo Niinemets, Baudewijn Odé, Hana Pánková, Meelis Pärtel, Ricarda Pätsch, Theodora Petanidou, Jan Plue, Radosław Puchałka, Froukje Rienks, Ioulietta Samartza, Julie K. Sheard, Bojana Stojanova, Joachim P. Töpper, Georgios Tsoktouridis, Spas Uzunov, Martin Zobel","doi":"10.1111/1365-2745.14477","DOIUrl":"https://doi.org/10.1111/1365-2745.14477","url":null,"abstract":"&lt;h2&gt;1 INTRODUCTION&lt;/h2&gt;\u0000&lt;p&gt;The last century has witnessed unprecedented habitat loss and fragmentation as a result of global land use change (Haddad et al., &lt;span&gt;2015&lt;/span&gt;). Along with climate change, this trend adversely affects several aspects of biodiversity, causing the loss of genetic diversity (Des Roches et al., &lt;span&gt;2021&lt;/span&gt;; Laikre et al., &lt;span&gt;2020&lt;/span&gt;; Schlaepfer et al., &lt;span&gt;2018&lt;/span&gt;), species richness (Tilman et al., &lt;span&gt;2017&lt;/span&gt;), and related ecosystem services (Cardinale et al., &lt;span&gt;2012&lt;/span&gt;). However, not all species respond in the same way to these factors, with some species being more vulnerable to the mentioned threats than the others. In plants, the response of certain species may depend on their life history, functional traits, phenotypic plasticity, and biogeographic origin (De Kort et al., &lt;span&gt;2021&lt;/span&gt;; Hamrick &amp; Godt, &lt;span&gt;1996&lt;/span&gt;). In addition, the effects of fragmentation and climate change on plant mutualistic partners, such as pollinators (Bennett et al., &lt;span&gt;2020&lt;/span&gt;; Rodger et al., &lt;span&gt;2021&lt;/span&gt;), seed dispersers (Donoso et al., &lt;span&gt;2022&lt;/span&gt;) or mycorrhizal fungi (Kiesewetter et al., &lt;span&gt;2023&lt;/span&gt;; Outhwaite et al., &lt;span&gt;2022&lt;/span&gt;; Senapathi et al., &lt;span&gt;2017&lt;/span&gt;), may affect the relative vulnerability of plant species to the factors of global change. Outcrossing, animal-pollinated plants may be more susceptible to climate change and habitat fragmentation than clonally reproducing, selfing, or anemophilous plants due to potential negative impacts of habitat loss and climate change on pollinators (Aguilar et al., &lt;span&gt;2008&lt;/span&gt;; Bennett et al., &lt;span&gt;2020&lt;/span&gt;; Rodger et al., &lt;span&gt;2021&lt;/span&gt;). Furthermore, reduced pollinator abundance and diversity may ultimately cause shifts in plant–pollinator networks (Zoller et al., &lt;span&gt;2023&lt;/span&gt;), potentially triggering selection of phenotypes with reduced herkogamy or self-incompatibility (Bodbyl Roels &amp; Kelly, &lt;span&gt;2011&lt;/span&gt;; Cheptou, &lt;span&gt;2021&lt;/span&gt;; Jacquemyn et al., &lt;span&gt;2012&lt;/span&gt;; Opedal, &lt;span&gt;2019&lt;/span&gt;). However, our understanding of how reproductive plant traits respond to climate change and land use shifts in contemporary landscapes is still limited (Pontarp et al., &lt;span&gt;2023&lt;/span&gt;).&lt;/p&gt;\u0000&lt;p&gt;Insufficient pollination poses a particular threat to plant species with floral traits preventing self-pollination, such as heterostyly. Heterostyly is a genetically determined floral polymorphism expressed in the reciprocal positioning of female and male reproductive organs (Barrett, &lt;span&gt;2019&lt;/span&gt;). It has evolved independently across at least 28 plant families (Barrett, &lt;span&gt;2019&lt;/span&gt;). Populations of heterostylous plants comprise two (distylous species) or three (tristylous species) morphs with reciprocal lengths of style and anthers. Differences between morphs may also be expressed in the size and morphology of stigmatic papillae and pollen grains (Costa, Castro, et al., &lt;span&gt;2017&lt;/","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"38 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant phylogeny, traits and fungal community composition as drivers of plant–soil feedbacks 植物系统发育、性状和真菌群落组成是植物-土壤反馈的驱动因素
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-01-16 DOI: 10.1111/1365-2745.14481
Christopher J. Sweeney, Marina Semchenko, Franciska T. de Vries, Bart E. van Dongen, Richard D. Bardgett
<h2>1 INTRODUCTION</h2><p>Plant–soil feedbacks (PSFs) are a key component of terrestrial ecosystem functioning and influence vegetation dynamics in many ways, such as: the maintenance of species coexistence (Crawford et al., <span>2019</span>; Klironomos, <span>2002</span>; Teste et al., <span>2017</span>), plant invasiveness (Aldorfová et al., <span>2020</span>; Levine et al., <span>2006</span>) and successional changes in plant community composition (Bauer et al., <span>2015</span>; Kardol et al., <span>2006</span>). PSFs involve the modification of soil biological and abiotic properties by a given plant species that have downstream effects on the growth of future individuals in the same soil. These PSFs can be positive, negative or neutral, where plant performance is improved, reduced or unaffected, respectively, when grown in soil previously occupied by the same species compared with soil conditioned by other species (Bever et al., <span>1997</span>; Van der Putten et al., <span>2013</span>). Given this wide variation in PSF observed among species, there is considerable interest in developing a framework that can be used to predict the direction and magnitude of PSF responses as a function of plant species characteristics (de Vries et al., <span>2023</span>; Rutten & Allan, <span>2023</span>; Semchenko et al., <span>2022</span>). However, despite an abundance of studies exploring individual aspects of PSFs, our understanding of how plant traits and phylogeny, via associated effects on soil microbial communities, shape PSFs is still limited by the lack of comprehensive empirical tests.</p><p>Plants modify their immediate environment in many ways and can shape the composition and diversity of microbial communities within their root zones (Grayston et al., <span>1998</span>; Hu et al., <span>2018</span>). This ‘conditioning’ of rhizosphere microbial communities can regulate PSFs, and, as such, PSF responses may be predictable based upon how a particular plant species modifies its root-associated microbiome (Fitzpatrick et al., <span>2018</span>; Semchenko et al., <span>2018</span>; Wilschut et al., <span>2019</span>). Previous studies indicate that root-associated fungi, especially arbuscular mycorrhizal fungi (AMF) and fungal pathotrophs, play an important role in determining PSFs (Cortois et al., <span>2016</span>; Semchenko et al., <span>2018</span>). Several studies show that these fungal guilds are strongly influenced by plant species identity (Frac et al., <span>2018</span>; Semchenko et al., <span>2018</span>) and that increased associations with AMF (Cortois et al., <span>2016</span>; Semchenko et al., <span>2018</span>) or fungal pathotrophs (Semchenko et al., <span>2018</span>; Wilschut et al., <span>2019</span>) lead to more positive and negative PSFs, respectively. There is also evidence that AMF and pathotroph communities are strongly determined by plant phylogenetic relatedness (Barberán et al., <span>2015</span>; Sweeney et 
1 引言 植物-土壤反馈(PSFs)是陆地生态系统功能的关键组成部分,以多种方式影响植被动态,例如:维持物种共存(Crawford 等人,2019 年;Klironomos,2002 年;Teste 等人,2017 年)、植物入侵(Aldorfová 等人,2020 年;Levine 等人,2006 年)以及植物群落组成的演替变化(Bauer 等人,2015 年;Kardol 等人,2006 年)。PSFs 涉及特定植物物种对土壤生物和非生物特性的改变,这种改变会对同一土壤中未来个体的生长产生下游影响。这些 PSF 可以是积极的、消极的或中性的,即与其他物种生长过的土壤相比,在同一物种先前生长过的土壤中生长的植物性能会分别得到改善、降低或不受影响(Bever 等人,1997 年;Van der Putten 等人,2013 年)。鉴于物种间的 PSF 差异如此之大,人们对开发一个框架产生了浓厚的兴趣,该框架可用于预测 PSF 响应的方向和幅度,并将其作为植物物种特征的函数(de Vries 等人,2023 年;Rutten &amp; Allan,2023 年;Semchenko 等人,2022 年)。然而,尽管有大量研究探讨了 PSFs 的个别方面,但由于缺乏全面的实证检验,我们对植物性状和系统发育如何通过对土壤微生物群落的相关影响来塑造 PSFs 的理解仍然有限。植物以多种方式改变其直接环境,并能塑造其根区内微生物群落的组成和多样性(Grayston 等人,1998 年;Hu 等人,2018 年)。根圈微生物群落的这种 "调节 "可以调控 PSF,因此,根据特定植物物种如何改变其根相关微生物群落,可以预测 PSF 的反应(Fitzpatrick 等人,2018 年;Semchenko 等人,2018 年;Wilschut 等人,2019 年)。以往的研究表明,根相关真菌,尤其是丛枝菌根真菌(AMF)和真菌病原菌在决定 PSFs 方面发挥着重要作用(Cortois 等人,2016 年;Semchenko 等人,2018 年)。一些研究表明,这些真菌行会受到植物物种特征的强烈影响(Frac 等人,2018 年;Semchenko 等人,2018 年),与 AMF(Cortois 等人,2016 年;Semchenko 等人,2018 年)或真菌病原营养体(Semchenko 等人,2018 年;Wilschut 等人,2019 年)的联系增加会分别导致更积极和消极的 PSF。还有证据表明,植物系统发育相关性(Barberán 等人,2015 年;Sweeney 等人,2021 年)和功能性状,尤其是根系性状(Bergmann 等人,2020 年;Eissenstat 等人,2015 年;Sweeney 等人,2021 年)强烈决定了 AMF 和病原菌群落。一些研究表明,植物功能性状可作为 PSF 的重要决定因素(Baxendale 等人,2014 年;Kardol 等人,2015 年;Rutten &amp; Allan, 2023 年;Teste 等人,2017 年)。事实上,已知会影响 AMF 或病原菌群落的根系特征(Bergmann 等人,2020 年;McCormack &amp; Iversen,2019 年;Semchenko 等人,2018 年;Sweeney 等人,2021 年;Wilschut 等人,2019 年),包括根系直径(Semchenko 等人,2018 年)、AMF 定殖百分比和特定根长(Cortois 等人,2016 年),已被证明能决定 PSF 的结果。这些特征代表了根资源经济学的 "合作轴"(Bergmann 等人,2020 年),表明植物与 AMF 合作吸收养分的策略是 PSF 的关键决定因素。然而,根系经济学空间的 "保护轴 "反映了根系组织的寿命和建设成本,也被认为决定了 PSF 的方向和大小(Spitzer 等人,2022 年)。地上植物性状也与 PSFs 有关(Baxendale 等人,2014 年;Fitzpatrick 等人,2017 年;Semchenko 等人,2018 年),包括嫩枝氮含量(Semchenko 等人,2018 年)和比叶面积(Fitzpatrick 等人,2017 年)。重要的是,这些地上部性状代表了快慢植物资源经济学,与依赖菌根真菌获取养分的性状无关(Bergmann 等人,2020 年)。由于植物资源获取(Cortois 等人,2016 年;Semchenko 等人,2018 年)和资源保护策略(Baxendale 等人,2014 年)都与 PSFs 有关(Rutten &amp; Allan, 2023; Semchenko 等人,2022 年;Xi et al、植物功能性状反映了植物对菌根真菌的依赖以及对病原体整体防御的投资。
{"title":"Plant phylogeny, traits and fungal community composition as drivers of plant–soil feedbacks","authors":"Christopher J. Sweeney, Marina Semchenko, Franciska T. de Vries, Bart E. van Dongen, Richard D. Bardgett","doi":"10.1111/1365-2745.14481","DOIUrl":"https://doi.org/10.1111/1365-2745.14481","url":null,"abstract":"&lt;h2&gt;1 INTRODUCTION&lt;/h2&gt;\u0000&lt;p&gt;Plant–soil feedbacks (PSFs) are a key component of terrestrial ecosystem functioning and influence vegetation dynamics in many ways, such as: the maintenance of species coexistence (Crawford et al., &lt;span&gt;2019&lt;/span&gt;; Klironomos, &lt;span&gt;2002&lt;/span&gt;; Teste et al., &lt;span&gt;2017&lt;/span&gt;), plant invasiveness (Aldorfová et al., &lt;span&gt;2020&lt;/span&gt;; Levine et al., &lt;span&gt;2006&lt;/span&gt;) and successional changes in plant community composition (Bauer et al., &lt;span&gt;2015&lt;/span&gt;; Kardol et al., &lt;span&gt;2006&lt;/span&gt;). PSFs involve the modification of soil biological and abiotic properties by a given plant species that have downstream effects on the growth of future individuals in the same soil. These PSFs can be positive, negative or neutral, where plant performance is improved, reduced or unaffected, respectively, when grown in soil previously occupied by the same species compared with soil conditioned by other species (Bever et al., &lt;span&gt;1997&lt;/span&gt;; Van der Putten et al., &lt;span&gt;2013&lt;/span&gt;). Given this wide variation in PSF observed among species, there is considerable interest in developing a framework that can be used to predict the direction and magnitude of PSF responses as a function of plant species characteristics (de Vries et al., &lt;span&gt;2023&lt;/span&gt;; Rutten &amp; Allan, &lt;span&gt;2023&lt;/span&gt;; Semchenko et al., &lt;span&gt;2022&lt;/span&gt;). However, despite an abundance of studies exploring individual aspects of PSFs, our understanding of how plant traits and phylogeny, via associated effects on soil microbial communities, shape PSFs is still limited by the lack of comprehensive empirical tests.&lt;/p&gt;\u0000&lt;p&gt;Plants modify their immediate environment in many ways and can shape the composition and diversity of microbial communities within their root zones (Grayston et al., &lt;span&gt;1998&lt;/span&gt;; Hu et al., &lt;span&gt;2018&lt;/span&gt;). This ‘conditioning’ of rhizosphere microbial communities can regulate PSFs, and, as such, PSF responses may be predictable based upon how a particular plant species modifies its root-associated microbiome (Fitzpatrick et al., &lt;span&gt;2018&lt;/span&gt;; Semchenko et al., &lt;span&gt;2018&lt;/span&gt;; Wilschut et al., &lt;span&gt;2019&lt;/span&gt;). Previous studies indicate that root-associated fungi, especially arbuscular mycorrhizal fungi (AMF) and fungal pathotrophs, play an important role in determining PSFs (Cortois et al., &lt;span&gt;2016&lt;/span&gt;; Semchenko et al., &lt;span&gt;2018&lt;/span&gt;). Several studies show that these fungal guilds are strongly influenced by plant species identity (Frac et al., &lt;span&gt;2018&lt;/span&gt;; Semchenko et al., &lt;span&gt;2018&lt;/span&gt;) and that increased associations with AMF (Cortois et al., &lt;span&gt;2016&lt;/span&gt;; Semchenko et al., &lt;span&gt;2018&lt;/span&gt;) or fungal pathotrophs (Semchenko et al., &lt;span&gt;2018&lt;/span&gt;; Wilschut et al., &lt;span&gt;2019&lt;/span&gt;) lead to more positive and negative PSFs, respectively. There is also evidence that AMF and pathotroph communities are strongly determined by plant phylogenetic relatedness (Barberán et al., &lt;span&gt;2015&lt;/span&gt;; Sweeney et ","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"37 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large seeds as a defensive strategy against partial granivory in the Fagaceae 壳斗科大种子对部分花岗岩的防御策略
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-01-16 DOI: 10.1111/1365-2745.14480
Si‐Chong Chen, Alexandre Antonelli, Xiao Huang, Neng Wei, Can Dai, Qing‐Feng Wang
Large seeds interact with a wide range of animals (e.g. predators) and are dispersed via certain small animals' foraging behaviours, such as caching. Some of the most iconic species of large‐seeded plants have long fascinated ecologists studying biotic interactions, such as oaks and their relatives in the Fagaceae family. The Fagaceae acorns are dispersed through synzoochory, a specific dispersal mode in which animal partners act as both seed dispersers and granivores. Although granivory (i.e. seed herbivory) can profoundly impact the survival of plant offspring, partial damage on seed reserves is a prevalent phenomenon that does not always result in seed mortality. However, previous single‐species studies have resulted in mixed evidence across treatments and traits, leaving the impact of partial granivory on plant regeneration unclear. Using artificial granivory experiments on 1185 seeds of 20 Fagaceae species, here we quantify how partial loss of seed reserve affects seed germination, seedling growth and biomass allocation across a damage gradient from 0% to 96% biomass loss. We show that, although partial granivory reduces seedling growth (e.g. total biomass and number of leaves), it does not significantly affect seed germination or the overall biomass allocation of seedlings (e.g. leaf mass fraction and root:shoot biomass ratio). Seedlings from seeds more preyed upon have higher specific leaf area, indicating that they tend to grow larger but less protected leaves against herbivores, perhaps to compete for light. Synthesis. As seeds dispersed through scatter‐hoarding granivores have evolved relatively large sizes, like Fagaceae acorns, our findings demonstrate that this type of seeds may tolerate partial granivory in exchange for high dispersal efficiency. This study opens new perspectives to our understanding of seed size diversity and evolution. We conclude that seed size per se is a defensive trait, that large seeds counteract potential losses of seed reserve to escape full predation and allow germination.
大种子与各种各样的动物(如食肉动物)相互作用,并通过某些小动物的觅食行为(如贮藏)传播。长期以来,一些最具代表性的大种子植物物种一直吸引着生态学家研究生物相互作用,如橡树及其壳斗科的近亲。壳斗科橡子的传播是通过同宗传播的,这是一种特殊的传播模式,在这种传播模式中,动物伴侣既充当种子传播者,又充当花岗岩捕食者。尽管颗粒性(即种子食草性)对植物后代的生存有深远的影响,但对种子储备的部分破坏是一种普遍现象,并不总是导致种子死亡。然而,先前的单物种研究在处理和性状方面得出了混合的证据,使得部分花岗岩对植物再生的影响尚不清楚。通过对20种壳斗科植物的1185颗种子进行人工颗粒实验,定量分析了部分种子储备损失对种子萌发、幼苗生长和生物量分配的影响。研究表明,尽管部分颗粒状象牙会降低幼苗的生长(如总生物量和叶片数量),但对种子萌发或幼苗的总体生物量分配(如叶片质量分数和根冠生物量比)没有显著影响。更容易被捕食的种子的幼苗具有更高的比叶面积,这表明它们倾向于长出更大但保护较少的叶子来对抗食草动物,这可能是为了争夺光线。合成。由于种子通过分散囤积的花岗岩动物传播,已经进化出相对较大的尺寸,如壳斗科橡子,我们的研究结果表明,这种类型的种子可以忍受部分花岗岩,以换取较高的传播效率。该研究为我们对种子大小多样性和进化的认识开辟了新的视角。我们得出结论,种子大小本身是一种防御性状,大的种子抵消了种子储备的潜在损失,以逃避完全的捕食并允许发芽。
{"title":"Large seeds as a defensive strategy against partial granivory in the Fagaceae","authors":"Si‐Chong Chen, Alexandre Antonelli, Xiao Huang, Neng Wei, Can Dai, Qing‐Feng Wang","doi":"10.1111/1365-2745.14480","DOIUrl":"https://doi.org/10.1111/1365-2745.14480","url":null,"abstract":"<jats:list> <jats:list-item>Large seeds interact with a wide range of animals (e.g. predators) and are dispersed via certain small animals' foraging behaviours, such as caching. Some of the most iconic species of large‐seeded plants have long fascinated ecologists studying biotic interactions, such as oaks and their relatives in the Fagaceae family.</jats:list-item> <jats:list-item>The Fagaceae acorns are dispersed through synzoochory, a specific dispersal mode in which animal partners act as both seed dispersers and granivores. Although granivory (i.e. seed herbivory) can profoundly impact the survival of plant offspring, partial damage on seed reserves is a prevalent phenomenon that does not always result in seed mortality. However, previous single‐species studies have resulted in mixed evidence across treatments and traits, leaving the impact of partial granivory on plant regeneration unclear.</jats:list-item> <jats:list-item>Using artificial granivory experiments on 1185 seeds of 20 Fagaceae species, here we quantify how partial loss of seed reserve affects seed germination, seedling growth and biomass allocation across a damage gradient from 0% to 96% biomass loss.</jats:list-item> <jats:list-item>We show that, although partial granivory reduces seedling growth (e.g. total biomass and number of leaves), it does not significantly affect seed germination or the overall biomass allocation of seedlings (e.g. leaf mass fraction and root:shoot biomass ratio). Seedlings from seeds more preyed upon have higher specific leaf area, indicating that they tend to grow larger but less protected leaves against herbivores, perhaps to compete for light.</jats:list-item> <jats:list-item><jats:italic>Synthesis</jats:italic>. As seeds dispersed through scatter‐hoarding granivores have evolved relatively large sizes, like Fagaceae acorns, our findings demonstrate that this type of seeds may tolerate partial granivory in exchange for high dispersal efficiency. This study opens new perspectives to our understanding of seed size diversity and evolution. We conclude that seed size per se is a defensive trait, that large seeds counteract potential losses of seed reserve to escape full predation and allow germination.</jats:list-item> </jats:list>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"43 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rooting depth and specific leaf area modify the impact of experimental drought duration on temperate grassland species 生根深度和比叶面积改变了实验干旱持续时间对温带草原物种的影响
IF 5.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-01-10 DOI: 10.1111/1365-2745.14468
Yvonne Künzi, Michaela Zeiter, Markus Fischer, Andreas Stampfli

由于气候变化,温带草原正面临日益严重的干旱。与此同时,土地利用集约化通过促进生长迅速、资源获取性强、比叶面积(SLA)高的物种,正在改变草地的功能组成。SLA如何影响草地物种抵抗和从日益严重的干旱中恢复的能力,以及深根是否改善了它们的干旱性能尚不清楚。为了研究这一点,我们建立了一个普通花园的田间试验,包括温带草地物种,SLAs为17.9-39.3 mm2 g−1,最大生根深度为16-252 cm。1.5年后,我们分别模拟了0、79、134、177和220天的干旱。干旱对植物性能的影响随着干旱时间的延长而增加,在所考虑的32种植物中,绿色组织的存活率和年生物量降低了50%。由于植物有效水分在所有处理结束时仍保留在深层土壤中,深根减轻了干旱后期干旱时间增加对生产力的负面影响,并在较长干旱后有利于生产力。16种禾草类植物的低到高的SLA特征梯度似乎代表了从耐脱水到避免脱水的不同生存策略,而不是干旱敏感性。沿着植物的SLA梯度变化的干旱响应意味着多种其他性状与进化上遥远的物种的抗旱性有关。合成。我们的研究结果表明,当植物有效水分在浅层土壤中缺乏而在深层土壤中保留时,深根对温带草地物种长期无降雨是有益的。因此,面对日益严重的干旱,我们建议(1)在集约化草地上培育深根物种,并在肥沃的土壤上培育深根物种;(2)指导进一步的研究,以确定在半自然草地上支持深根的管理实践。
{"title":"Rooting depth and specific leaf area modify the impact of experimental drought duration on temperate grassland species","authors":"Yvonne Künzi,&nbsp;Michaela Zeiter,&nbsp;Markus Fischer,&nbsp;Andreas Stampfli","doi":"10.1111/1365-2745.14468","DOIUrl":"10.1111/1365-2745.14468","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 2","pages":"445-458"},"PeriodicalIF":5.3,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.14468","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142961303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitrogen content of herbarium specimens from arable fields and mesic meadows reflect the intensifying agricultural management during the 20th century 20世纪耕地和仲介草甸植物标本氮含量的变化反映了农业管理的加强
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-01-08 DOI: 10.1111/1365-2745.14474
Paul Kühn, Raymond Umazekabiri, Christine Römermann, Helge Bruelheide, Karsten Wesche

CONFLICT OF INTEREST STATEMENT

The authors state that no conflict of interest exists.

利益冲突声明作者声明不存在利益冲突。
{"title":"Nitrogen content of herbarium specimens from arable fields and mesic meadows reflect the intensifying agricultural management during the 20th century","authors":"Paul Kühn, Raymond Umazekabiri, Christine Römermann, Helge Bruelheide, Karsten Wesche","doi":"10.1111/1365-2745.14474","DOIUrl":"https://doi.org/10.1111/1365-2745.14474","url":null,"abstract":"<h2> CONFLICT OF INTEREST STATEMENT</h2>\u0000<p>The authors state that no conflict of interest exists.</p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"203 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142936527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonal shifts in plant diversity effects on above-ground–below-ground phenological synchrony 植物多样性的季节变化对地上-地下物候同步的影响
IF 5.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-01-06 DOI: 10.1111/1365-2745.14470
Ana E. Bonato Asato, Claudia Guimarães-Steinicke, Gideon Stein, Berit Schreck, Teja Kattenborn, Anne Ebeling, Stefan Posch, Joachim Denzler, Tim Büchner, Maha Shadaydeh, Christian Wirth, Nico Eisenhauer, Jes Hines

生物多样性作为一种优化生态位宽度以获取资源和增强生态系统功能的机制,其重要性已得到充分证实。然而,在探索时间生态位宽度方面仍然存在重大差距,特别是在群落动态的物候方面。这项研究采用了一种独特的方法,通过研究植物物候,传统上主要集中在地上的评估,并深入到地下过程的相对未被探索的领域。因此,生物多样性对地上和地下动态同步的影响被带到了最前沿,为这种复杂的关系提供了一个新的视角。在这项研究中,我们在一个实验草地上每隔2周对群落特征(包括植物高度和绿化率)和土壤过程(如根系生长和营养物质摄食活动)进行了细致的监测,该草地展示了从单一栽培到60种混合栽培的植物多样性光谱。研究结果表明,植物多样性增加了年株高、根系生长和养分摄食活性,同时增强了地上性状与土壤动态之间的同步性。土壤小气候对这些性状和过程的物候特征也有影响。然而,植物多样性和土壤小气候对地上性状和土壤动态的影响在不同季节的强度和方向上都有很大差异,这表明生物多样性、气候和生态系统过程之间存在微妙的关系。值得注意的是,在生长季节的观察揭示了一个顺序模式,即植物群落高峰高度先于绿度的开始。与此同时,根系在叶片衰老后立即开始产生,并持续整个冬季。尽管全年都是一致的,但碎屑生物活动在夏季和晚秋表现出明显的高峰,尽管有显著的变化。合成。该研究强调了植物多样性、地上-地下物候模式和生态系统功能之间的动态相互作用。这表明植物多样性通过复杂的物候动态调节地上-地下的相互依赖关系,其同步程度随过程和季节变化的不同组合而波动。因此,通过提供全面的年内数据,本研究阐明了植物在茎、根和土壤动物活动中物候模式的基本差异,从而强调了植物多样性在形成生态系统过程中的关键作用。
{"title":"Seasonal shifts in plant diversity effects on above-ground–below-ground phenological synchrony","authors":"Ana E. Bonato Asato,&nbsp;Claudia Guimarães-Steinicke,&nbsp;Gideon Stein,&nbsp;Berit Schreck,&nbsp;Teja Kattenborn,&nbsp;Anne Ebeling,&nbsp;Stefan Posch,&nbsp;Joachim Denzler,&nbsp;Tim Büchner,&nbsp;Maha Shadaydeh,&nbsp;Christian Wirth,&nbsp;Nico Eisenhauer,&nbsp;Jes Hines","doi":"10.1111/1365-2745.14470","DOIUrl":"10.1111/1365-2745.14470","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 2","pages":"472-484"},"PeriodicalIF":5.3,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.14470","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A global synthesis of the ecological effects of co-invasions 共同入侵的生态效应的全球综合
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-01-06 DOI: 10.1111/1365-2745.14475
Rameez Ahmad, Showkeen A. Lone, Irfan Rashid, Anzar Ahmad Khuroo

CONFLICT OF INTEREST STATEMENT

The authors have no conflict of interest to declare.

利益冲突声明作者无利益冲突需要声明。
{"title":"A global synthesis of the ecological effects of co-invasions","authors":"Rameez Ahmad, Showkeen A. Lone, Irfan Rashid, Anzar Ahmad Khuroo","doi":"10.1111/1365-2745.14475","DOIUrl":"https://doi.org/10.1111/1365-2745.14475","url":null,"abstract":"<h2> CONFLICT OF INTEREST STATEMENT</h2>\u0000<p>The authors have no conflict of interest to declare.</p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"78 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
More species, more trees: The role of tree packing in promoting forest productivity 更多的物种,更多的树木:树木包装在促进森林生产力中的作用
IF 5.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-01-05 DOI: 10.1111/1365-2745.14460
Xavier Morin, Maude Toigo, Lorenz Fahse, Joannès Guillemot, Maxime Cailleret, Romain Bertrand, Eugénie Cateau, François de Coligny, Raúl García-Valdés, Sophia Ratcliffe, Louise Riotte-Lambert, Miguel A. Zavala, Patrick Vallet

树冠包装效应所涉及的过程与树与树之间的相互作用有关,并不影响单位面积的树木数量,而更多地影响相邻树木的个体异型和功能。树冠包装效应所涉及的过程在群落水平上起作用,也就是说,树木总数在林分水平上发生变化。首先,林分密度对森林生产力的影响由来已久(Forrester,2014;Reineke,1933)。其次,林分密度通常在树木多样性实验(Schnabel 等人,2019 年;Toïgo 等人,2022 年;Williams 等人,2017 年)和半实验性野外采样(Jucker 等人,2015 年;Pretzsch 等人,2015 年)中得到控制,这些实验旨在通过树木与树木之间的相互作用来区分物种丰富度对生态系统功能的影响。同样,在观察性研究中,林分密度(或林分密度近似值)通常被认为是一个需要控制的协变量,以分离树木多样性对生产力的假定影响,而不是驱动DPR的响应变量(Chisholm等人,2013;Paquette &amp; Messier, 2011;Ratcliffe等人,2016;Vila等人,2013)。因此,多样性对林分密度的影响在很大程度上仍未被探索(Chisholm &amp; Dutta Gupta, 2023)。然而,如果 TPE 得到证实,就意味着多样性对森林生产力的关键影响在 BEF 研究中被忽视了:(因此,TPE 依赖于两个组成部分:(i)平均而言,物种丰富度会增加最大林分密度;(ii)物种丰富度的增加会提高林分密度,从而促进森林生产力。据我们所知,这两个部分从未被明确地联系起来,因此也从未被检验过。关于第一部分,一些研究(Pretzsch &amp; Biber, 2016; Tatsumi &amp; Loreau, 2023)已经提出或间接提到了物种丰富度对林分密度的积极影响,但尚未普遍量化,尤其是在大量树种和环境条件下。据我们所知,虽然以前的研究对混交林中林分密度(或林分密度近似值)对森林功能的作用提供了一些见解(如 Brunner &amp; Forrester, 2020; Paquette &amp; Messier, 2011; Ratcliffe 等人, 2016),但物种多样性、林分密度和森林生产力之间的联系尚未得到清晰和普遍的描述。此外,对第二个组成部分的测试并不简单,因为林分密度越高,平均树龄越小和/或树龄越短,可能导致每棵树的生物量产量下降。此外,了解树种多样性、林分密度和森林生产力之间的联系也具有挑战性,因为它们受到气候、土壤、林分年龄或过去管理等多种因素的影响。在此,我们在欧洲广泛的森林生态系统和环境条件下检验了 TPE 的存在。考虑到 TPE 的两个组成部分,我们测试了 (i) 多样性森林是否比单一物种森林具有更大的最大林分密度,以及 (ii) 这是否会导致物种丰富度对森林生产力产生积极影响。为了检验 TPE 的第一个组成部分,我们分析了物种丰富度对林地最大林分密度(Nmax [树木数量.公顷-1])的影响,Nmax 定义为林地在特定生长阶段可维持的最大树木数量,这是森林生态系统中的一条著名规则,也称为自稀疏边界(Forrester 等人,2021 年;Reineke,1933 年)。我们通过分析六个欧洲国家的国家森林资源清查数据(Ratcliffe 等人,2016 年),从而对树种组合和环境条件的多样性进行了采样。为了检验 TPE 的第二个组成部分,我们使用了模拟实验来探索 TPE 是否会参与形成欧洲森林的 DPR。以前在大型观测数据集中对DPRs进行量化的研究(Liang等人,2016年;Paquette &amp; Messier,2011年;Ratcliffe等人,2016年)并未关注物种丰富度与林分密度之间的联系及其对森林生产力的影响。事实上,在观测数据中评估物种丰富度和林分密度对生产力的交互影响是无法正确进行的,因为要将这些影响区分开来,就必须比较具有相似树种组成、相同环境条件但林分密度截然不同的森林,而这在实践中是不可能的。
{"title":"More species, more trees: The role of tree packing in promoting forest productivity","authors":"Xavier Morin,&nbsp;Maude Toigo,&nbsp;Lorenz Fahse,&nbsp;Joannès Guillemot,&nbsp;Maxime Cailleret,&nbsp;Romain Bertrand,&nbsp;Eugénie Cateau,&nbsp;François de Coligny,&nbsp;Raúl García-Valdés,&nbsp;Sophia Ratcliffe,&nbsp;Louise Riotte-Lambert,&nbsp;Miguel A. Zavala,&nbsp;Patrick Vallet","doi":"10.1111/1365-2745.14460","DOIUrl":"10.1111/1365-2745.14460","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 2","pages":"371-386"},"PeriodicalIF":5.3,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.14460","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the long-term dynamics of vegetation since 1953 in high-mountain regions 了解1953年以来高山区植被的长期动态
IF 5.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-01-02 DOI: 10.1111/1365-2745.14472
Katharina Ramskogler, Léon Lepesant, Erich Tasser

理解环境变化和植被分布之间的复杂关系是生态学研究的一个关键挑战,特别是在气候变化加速的背景下(IPCC, 2023)。高山生态系统对气候变化高度敏感,是分析这些影响的重要起点。总体而言,预计高山植物物种在栖息地范围和群落结构方面会发生重大变化(Engler et al., 2011;Gottfried et al., 2012;Thuiller et al., 2005)。例如,通常可以观察到低海拔物种的向上迁移和树线的向上移动,这说明了当前正在进行的深刻的生态转变(Gottfried et al., 2012;He et al., 2023;Malfasi,Cannone, 2020)。然而,这种植被对气候变化的响应并不统一。观察到物种范围的调整,在林木线和较低的高山和丘陵带具有特别快的动态变化(Cannone等,2007;He et al., 2023;泡利等人,2012)。有证据表明,冷适应物种的范围正在缩小(Lamprecht等人,2018),而低海拔物种的上坡迁移速度更快,这增加了当地物种的丰富度,但也导致了更多的空间竞争(Steinbauer等人,2018;Wipf et al., 2013)。这种组合的热干燥(Gottfried et al., 2012;Lamprecht et al., 2018;Rumpf等人,2018)主要受到生长季节延长、能量可用性增加和降水类型变化的驱动(Filippa等人,2019;Pauli et al., 2012;Vitasse et al., 2021)。除了这些直接的气候影响外,植被分布还受到其他因素的复杂相互作用的调节,包括养分有效性、土壤发育和土地利用变化,同时受到个体适应和物种相互作用的调节(bektau et al., 2021;Bellard et al., 2012;Bourgeois et al., 2019;Martinez-Almoyna等,2020;Rogora et al., 2006;助教,Tappeiner, 2002;Theurillat et al., 1998;Wipf et al., 2015)。例如,土地利用的变化,如牧场的废弃或集约化,在植物物种的分布中起着至关重要的作用,因为它们促进或抑制了物种,从而促进了群落的同质化,而不管它们的自然海拔分布如何(Gehrig-Fasel等人,2007;h<e:1> lber et al., 2020;Niedrist et al., 2009;Tasser et al., 2017)。从气候和场地因素的相互作用中产生的动态框架表明,植被变化绝不是线性的,反馈机制是复杂的。例如,气候变化引起的侵蚀过程和永久冻土退化可能导致被称为“定植屏障”的生态机制的建立,从而减缓植被调整的速度和轨迹(Giaccone等人,2019;Leonelli et al., 2011;Ponti et al., 2021)。微地形在调节局部小气候方面发挥着重要作用,使物种的反应更加复杂(Graae et al., 2018;Korner,Hiltbrunner, 2021;谢勒和Korner, 2011)。“热生境”和积雪覆盖变化在塑造植被动态中的作用,导致了关于在融雪晚或早的地区增加能量可用性如何影响群落组成的新假设(Choler, 2018)。虽然一些物种受益于较长的生长季节,但其他物种更容易受到晚霜事件的威胁,这在某些情况下可能导致向下迁移(Cannone &amp;Pignatti, 2014;Lenoir et al., 2010)。植物与植物之间相互作用的动态变化使预测变得更加困难。根据压力梯度假说,植物与植物之间的相互作用是沿环境梯度演化的,在逆境环境中,促进作用更为突出(Bertness &amp;卡拉威,1994;卡拉威,沃克,1997)。如果不同的气候和场地压力因子不同程度地增加或减少,竞争和促进的动态也应该遵循并重塑物种组合(Anthelme et al., 2014;愤怒,2018;Losapio, Cerabolini等,2021;Losapio, Schöb等,2021;Nicklas et al., 2021)。因此,一些社区,可能是那些增加或维持压力水平的社区,经历的变化相对较少,并长期稳定下来。然而,这方面的科学证据仍然不足。了解植物物种和群落的反应,无论它们是向上和/或向下迁移(Lenoir et al., 2010;Pauli et al., 2012)或留在现场(Anthelme et al., 2014;谢勒和Körner, 2011),从而保持稳定的分布和适应(Bellard等人,2012)或死亡和下降(Rumpf等人,2018)仍然是一个挑战。 个别物种对气候变化的耐受性在这种相互作用中起什么作用,以及哪些其他因素影响它们的扩散能力,从而影响它们进入新地点和避难所,这些都是进一步悬而未决的问题(Graae等人,2018;Lenoir et al., 2010)。其中一些悬而未决的问题是我们研究的中心研究对象,这是基于对历史和最近植被数据的利用。历史记录提供了一个机会,通过观察长期变化来捕捉这种复杂性,从而对最重要的潜在过程进行推测。在高山植被中,长期观察可能对解开这些动态更为重要,因为高山物种可以在极端条件下短暂生存,并积累灭绝债务,从而延迟对环境变化的可见响应(Dullinger等,2012)。基于1953年以来的历史植被调查(Giacomini &amp;Pignatti, 1955)和70年后的重新调查,我们调查了意大利Stelvio国家公园亚高山到海洋植物群落的区系变化。具体来说,我们提出了四个基于文献的假设:环境变化主要驱动高海拔群落的植被响应,而低海拔群落正在进入次级演替阶段;气候变化和放牧干扰减少导致高寒植被同质化加剧。耐胁迫植物群落在组成和分布上表现出更大的稳定性。根据压力梯度假说,在全球变暖的背景下,植物间的相互作用正朝着竞争加剧的方向转变。
{"title":"Understanding the long-term dynamics of vegetation since 1953 in high-mountain regions","authors":"Katharina Ramskogler,&nbsp;Léon Lepesant,&nbsp;Erich Tasser","doi":"10.1111/1365-2745.14472","DOIUrl":"10.1111/1365-2745.14472","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 2","pages":"485-503"},"PeriodicalIF":5.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.14472","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142911626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plastic particles and their additives promote plant invasion through physicochemical mechanisms on seed germination 塑料颗粒及其添加剂通过影响种子萌发的理化机制促进植物入侵
IF 5.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-01-02 DOI: 10.1111/1365-2745.14476
Yudi M. Lozano, Lena Landt, Matthias C. Rillig

由于全球变化的几个因素,包括土壤污染,陆地生物多样性正在迅速减少(IPBES, 2019)。特别值得关注的是微塑料(5毫米塑料颗粒)的污染,这被认为是对全球生态系统的重要威胁(Sigmund等人,2023)。微塑料可以通过土壤改良剂、塑料覆盖、灌溉、洪水、大气输入和垃圾或街道径流污染陆地系统(Rochman等人,2019),对植物-土壤系统既有积极影响,也有消极影响(Boots等人,2019;黄等人,2019)。例如,在欧洲草原,本地物种胡萝卜的生物量可以响应土壤中微塑料薄膜的存在而增加(Huang et al., 2019;Lozano, Lehnert等人,2021)。这种影响被认为是由于塑料颗粒可以改善土壤特性,如孔隙度和通气性(de Souza Machado等人,2019;Lozano, Aguilar-Trigueros等,2021)。相比之下,本地物种黑麦草(Lolium perenne)的生物量可能会减少(Boots等人,2019),可能是由于微塑料渗滤液的毒性作用。然而,不仅本地植物受到微塑料的影响,入侵植物也可能从微塑料污染中受益,因为它们具有增强其在污染环境中茁壮成长能力的特性(Lozano &amp;Rillig, 2024)。研究表明,微塑料纤维可以促进具有入侵特征的物种的生长,如扩展范围的物种Calamagrostis epigejos (Lozano &amp;Rillig, 2020)。与本地物种相比,在干湿水循环条件下,微塑料珠可以增加入侵植物细根生物量和光合效率(Zhang et al., 2024)。此外,微塑料碎片对入侵植物加拿大一枝黄花的生长影响可以忽略不计,而对本土植物黄花一枝黄花有负面影响(Li et al., 2024)。这一优势是可以预期的,因为入侵物种可以从微塑料造成的新环境条件中获益更多,例如土壤含水量、通气性、微生物活动和聚集的变化(de Souza Machado等人,2019;Lozano, Aguilar-Trigueros等,2021)。此外,入侵物种可能拥有一些有利的特征,这些特征可能有助于它们避免或更好地忍受微塑料污染(Lozano &amp;Rillig, 2024),使它们能够在人类改变的环境中茁壮成长(Montesinos, 2021),这些环境最有可能暴露在更高水平的塑料污染中。尽管如此,微塑料也可以抑制棕榈苋等入侵植物的建立(孟等,2023),在某些情况下,与本土植物相比,它们可能对入侵植物生物量产生更强的负面影响(Fu等,2024)。化感作用、草食压力和与种子发芽密切相关的繁殖压力等多种策略,使入侵物种的表现优于本地物种(Bennett et al., 2011)。虽然种子萌发对本土和入侵物种都至关重要,但它在入侵物种的传播和建立中起着特别关键的作用(Daneshgar &amp;何塞,2009;Gioria et al., 2018)。入侵物种通常比本地物种发芽更快,比例更大(Guido et al., 2017;Lozano et al., 2019),发芽特性在入侵性方面提供了关键优势(Moravcova et al., 2010;Palma et al., 2021)。例如,发芽较早的物种可以从早期获得资源、空间和在建立初期减少竞争中受益(Gioria等人,2018),与本地物种相比,已观察到这对几种入侵植物更有利(Dickson等人,2012)。此外,同步萌发在新环境中入侵物种的成功建立中起着关键作用(Gioria et al., 2018),因为它不仅影响本地或入侵物种经历的萌发后条件,还影响开花和授粉时间等关键过程,这些过程最终影响它们在群落中的生长和生存,从而影响它们的入侵潜力(Gioria et al., 2018)。成功发芽的种子数量是另一个关键因素,因为它直接影响植物种群密度和繁殖成功率,这与种子库在土壤中的持久性密切相关,这是入侵植物物种长期成功的重要因素(Gioria et al., 2021)。尽管如此,种子萌发与植物入侵之间的关系是复杂的,并且可以在不同的维度上发生变化,例如传播率、当地丰度或环境范围(Palma et al., 2021)。当前的全球变化情景可能加剧植物入侵(Dai et al., 2022),特别是土壤中存在微塑料(Li et al., 2024)。 关于微塑性对原生或入侵物种种子萌发影响的研究相当少,而且大多是负面影响。例如,聚苯乙烯颗粒可能会降低Lepidium sativum等物种的发芽率(Bosker等人,2019;Pflugmacher等人,2020),而对小麦种子的影响可以忽略不计(Lian等人,2020)。同样,不同形状的微塑料可能会降低本地物种(如Daucus carota)种子萌发的速度,并增加其同步(Lozano et al., 2022)。微塑料是否可以通过影响种子发芽参数(例如促进更快和/或同步发芽)来促进入侵植物物种的成功仍然是我们理解的空白。微塑料可能通过物理和/或化学机制潜在地改变种子发芽,突出不同的作用模式(Lozano et al., 2022)。一方面,土壤中微塑料(即颗粒)的物理存在可能决定了一种物理机制,它可能通过堵塞种子孔(Bosker et al., 2019)、下胚轴和/或胚根生长来影响种子萌发的初期和后期阶段。然而,塑料颗粒可以改善土壤特性,如孔隙度和通气(de Souza Machado等人,2019;Lozano, Aguilar-Trigueros等,2021)对种子萌发有潜在的积极影响。另一方面,添加剂和化学物质渗入土壤所决定的化学机制也会影响种子的萌发。与微塑料相关的有毒化合物(Lithner et al., 2011)可以干扰酶的活性,如淀粉酶,这是发芽所必需的(Sethy &amp;Gosh, 2013),最终导致负面影响。物理和化学效应已被证明会影响水生植物Lemna minor的根长(Boots et al., 2023)和Daucus carota的生长(Lozano, Perlenfein et al., 2024)。然而,我们尚未弄清微塑料对种子萌发的物理和化学影响,也未确定它们对本地和入侵植物物种的影响是否存在差异,是否有可能增加入侵物种的竞争能力。因此,我们评估了塑料颗粒及其添加剂对欧洲草原本地和入侵物种种子萌发的单独和联合影响。我们的目的是(i)解开微塑料对种子萌发的物理(颗粒)和化学(添加剂)影响,(ii)确定微塑料是否可能比本地物种更能促进入侵物种的种子萌发。具体来说,我们假设塑料颗粒对土壤性质的积极物理效应会克服种子孔堵塞的负面影响,从而促进种子萌发。相比之下,我们假设来自微塑料的化学添加剂可能对种子有毒性作用,对种子萌发产生负面影响。此外,我们假设,与本地物种相比,具有独特特征的入侵物种可能更能利用微塑料造成的新环境。为此,我们建立了一个微观世界实验,研究了塑料颗粒(物理效应)、添加剂(化学效应)及其联合作用对德国草原7种植物(本土和入侵)发芽参数的影响。我们评估了种子的萌发参数,如总萌发、萌发速度和萌发同步性。我们还通过使用不同的技术
{"title":"Plastic particles and their additives promote plant invasion through physicochemical mechanisms on seed germination","authors":"Yudi M. Lozano,&nbsp;Lena Landt,&nbsp;Matthias C. Rillig","doi":"10.1111/1365-2745.14476","DOIUrl":"10.1111/1365-2745.14476","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 2","pages":"275-288"},"PeriodicalIF":5.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.14476","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142917750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Ecology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1