首页 > 最新文献

Journal of Ecology最新文献

英文 中文
Accumulating time lags across biodiversity levels following land‐use change 土地利用变化后生物多样性水平的累积时间滞后
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-11-22 DOI: 10.1111/1365-2745.70203
Jan Plue, Franz Essl, Sara A. O. Cousins
Delayed biodiversity responses to environmental changes occur from genes over communities to ecosystem functions. Despite growing insights into the mechanisms governing both the magnitude and time lags of biodiversity responses at individual levels of biodiversity, how interactions among levels of biodiversity affect ecosystem‐wide inertia in response to an environmental forcing event remains a largely unanswered question. As several sources causing time lags interact within and across multiple biodiversity levels, we hypothesise these mechanisms control how time lags at one biodiversity level may cascade into increasingly extended lags at higher biodiversity levels. We analysed empirical data on genetic diversity, species distributions, community diversity and functional diversity in semi‐natural grassland patches for the existence and length of lagged responses across biodiversity levels in response to 165 years of land‐use change. Time lags were present at all tested biodiversity levels (from genes to traits), none yet in equilibrium with the current landscape. Significant variation in delays among individual species possibly controlled by delayed loss in genetic diversity may affect the scale of future biodiversity losses at the community level. Functional diversity appeared to have the most delayed response, likely due to high functional redundancy in species‐rich grassland communities. Synthesis . Species identity seems central in governing the observed delays at each level of biodiversity, from genetic to functional diversity. In particular, species identity controls the slowest responses at the genetic level, potentially leading to accumulating underestimations of the size and duration of time lags at species, community and functional diversity levels compared to average community responses. Conservation and restoration actions must therefore anticipate the potentially systematic underestimation of time lags in biodiversity responses following habitat change to ensure their effectiveness in halting biodiversity loss.
生物多样性对环境变化的延迟反应从基因到群落再到生态系统功能。尽管人们对生物多样性个体水平上生物多样性响应的幅度和时间滞后机制的认识越来越深入,但生物多样性水平之间的相互作用如何影响生态系统对环境强迫事件的响应惯性,在很大程度上仍是一个未解之谜。由于造成时间滞后的几个来源在多个生物多样性水平内部和之间相互作用,我们假设这些机制控制着一个生物多样性水平的时间滞后如何在更高的生物多样性水平上演变为日益延长的滞后。通过对半自然草地斑块遗传多样性、物种分布、群落多样性和功能多样性的实证分析,探讨了165年土地利用变化对不同生物多样性水平滞后响应的存在程度和持续时间。所有被测试的生物多样性水平(从基因到性状)都存在时间滞后,没有一个与当前的景观处于平衡状态。物种间延迟的显著差异可能是由遗传多样性延迟丧失控制的,这可能影响未来群落水平上生物多样性损失的规模。功能多样性似乎具有最延迟的响应,可能是由于物种丰富的草地群落的高功能冗余。合成。从遗传多样性到功能多样性,物种身份似乎在控制每个生物多样性水平上观察到的延迟方面发挥着核心作用。特别是,物种身份控制着遗传水平上最慢的反应,这可能导致与平均群落反应相比,物种、群落和功能多样性水平上滞后时间的大小和持续时间的累积低估。因此,保护和恢复行动必须预见到在栖息地变化后生物多样性响应的时间滞后可能被系统性低估,以确保其在阻止生物多样性丧失方面的有效性。
{"title":"Accumulating time lags across biodiversity levels following land‐use change","authors":"Jan Plue, Franz Essl, Sara A. O. Cousins","doi":"10.1111/1365-2745.70203","DOIUrl":"https://doi.org/10.1111/1365-2745.70203","url":null,"abstract":"<jats:list> <jats:list-item> Delayed biodiversity responses to environmental changes occur from genes over communities to ecosystem functions. Despite growing insights into the mechanisms governing both the magnitude and time lags of biodiversity responses at individual levels of biodiversity, how interactions among levels of biodiversity affect ecosystem‐wide inertia in response to an environmental forcing event remains a largely unanswered question. </jats:list-item> <jats:list-item> As several sources causing time lags interact within and across multiple biodiversity levels, we hypothesise these mechanisms control how time lags at one biodiversity level may cascade into increasingly extended lags at higher biodiversity levels. </jats:list-item> <jats:list-item> We analysed empirical data on genetic diversity, species distributions, community diversity and functional diversity in semi‐natural grassland patches for the existence and length of lagged responses across biodiversity levels in response to 165 years of land‐use change. </jats:list-item> <jats:list-item> Time lags were present at all tested biodiversity levels (from genes to traits), none yet in equilibrium with the current landscape. Significant variation in delays among individual species possibly controlled by delayed loss in genetic diversity may affect the scale of future biodiversity losses at the community level. </jats:list-item> <jats:list-item> Functional diversity appeared to have the most delayed response, likely due to high functional redundancy in species‐rich grassland communities. </jats:list-item> <jats:list-item> <jats:italic>Synthesis</jats:italic> . Species identity seems central in governing the observed delays at each level of biodiversity, from genetic to functional diversity. In particular, species identity controls the slowest responses at the genetic level, potentially leading to accumulating underestimations of the size and duration of time lags at species, community and functional diversity levels compared to average community responses. Conservation and restoration actions must therefore anticipate the potentially systematic underestimation of time lags in biodiversity responses following habitat change to ensure their effectiveness in halting biodiversity loss. </jats:list-item> </jats:list>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"185 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145567419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural diversity shifts from negative to positive associations with forest productivity via basal area, stand age, and precipitation thresholds 结构多样性与森林生产力的关系通过基面积、林龄和降水阈值由负向正转变
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-11-21 DOI: 10.1111/1365-2745.70200
Kyungrok Hwang, Lu Zhai
Understanding the relationship between biological diversity and ecosystem productivity is a central challenge in ecology. Structural diversity—the variation in size, height, and spatial arrangement of individuals within communities—has been proposed as a key driver of productivity, yet previous studies have reported mixed results, leaving its role in ecosystem functioning unclear. Clarifying the structural diversity and productivity relationship (SDPR) is essential not only for advancing ecological theory but also for informing biodiversity conservation, resource management, and climate adaptation strategies across ecosystems. Here, we utilized the USDA Forest Service Forest Inventory and Analysis (FIA) database, encompassing 95,602 trees within 3307 plots throughout most types of forest ecosystems in the contiguous U.S. We investigated the variation of SDPR by analyzing the growth of existing trees under the interactive effects of structural diversity with basal area, stand age, and annual precipitation with other factors. We also compiled the studies of SDPR published during 1974–2022 and compared the mean annual precipitation between studies showing the negative and positive SDPR. We found that: (1) SDPR was negative under the low range of structural diversity, but became positive under the high range; (2) SDPR was more positive with greater basal areas; (3) SDPR was more positive with stand development, and (4) SDPR was more positive with greater annual precipitation in the range of low structural diversity but switched to be more negative in the high range, and the negative SDPR with greater precipitation aligns with the analysis of published studies showing greater precipitation in studies with negative SDPR than the positive ones. Synthesis . Our findings reveal that structural diversity plays a context‐dependent role in regulating ecosystem productivity, shaped by interactions with stand structure and climate. This study offers broad implications for understanding ecosystem functioning, particularly how biodiversity interacts with environmental and structural attributes to shape productivity under global change.
理解生物多样性和生态系统生产力之间的关系是生态学的核心挑战。结构多样性——群落内个体的大小、高度和空间安排的变化——被认为是生产力的关键驱动因素,但之前的研究报告的结果好坏参半,使其在生态系统功能中的作用尚不清楚。阐明结构多样性和生产力关系(SDPR)不仅对推进生态学理论,而且对跨生态系统的生物多样性保护、资源管理和气候适应战略具有重要意义。本研究利用美国农业部林业局森林资源调查与分析(FIA)数据库,覆盖美国大部分森林生态系统类型的3307个样地95,602棵树。通过分析现有树木在结构多样性与基面积、林龄、年降水量等因素的交互作用下的生长情况,研究了SDPR的变化。我们还汇编了1974-2022年发表的SDPR研究,并比较了SDPR负和正研究的年平均降水量。研究发现:(1)SDPR在结构多样性低区间为负,在结构多样性高区间为正;(2) SDPR呈阳性,基底面积越大;(3) SDPR随林分发育呈正相关;(4)低结构多样性区SDPR随年降水量增大呈正相关,高结构多样性区SDPR变为负相关,且随降水量增大呈负相关与已发表研究结果一致,负结构多样性区SDPR大于正结构多样性区SDPR。合成。我们的研究结果表明,结构多样性在调节生态系统生产力方面发挥着环境依赖的作用,受林分结构和气候的相互作用的影响。这项研究为理解生态系统功能,特别是生物多样性如何与环境和结构属性相互作用以塑造全球变化下的生产力提供了广泛的意义。
{"title":"Structural diversity shifts from negative to positive associations with forest productivity via basal area, stand age, and precipitation thresholds","authors":"Kyungrok Hwang, Lu Zhai","doi":"10.1111/1365-2745.70200","DOIUrl":"https://doi.org/10.1111/1365-2745.70200","url":null,"abstract":"<jats:list> <jats:list-item> Understanding the relationship between biological diversity and ecosystem productivity is a central challenge in ecology. Structural diversity—the variation in size, height, and spatial arrangement of individuals within communities—has been proposed as a key driver of productivity, yet previous studies have reported mixed results, leaving its role in ecosystem functioning unclear. </jats:list-item> <jats:list-item> Clarifying the structural diversity and productivity relationship (SDPR) is essential not only for advancing ecological theory but also for informing biodiversity conservation, resource management, and climate adaptation strategies across ecosystems. Here, we utilized the USDA Forest Service Forest Inventory and Analysis (FIA) database, encompassing 95,602 trees within 3307 plots throughout most types of forest ecosystems in the contiguous U.S. We investigated the variation of SDPR by analyzing the growth of existing trees under the interactive effects of structural diversity with basal area, stand age, and annual precipitation with other factors. We also compiled the studies of SDPR published during 1974–2022 and compared the mean annual precipitation between studies showing the negative and positive SDPR. </jats:list-item> <jats:list-item> We found that: (1) SDPR was negative under the low range of structural diversity, but became positive under the high range; (2) SDPR was more positive with greater basal areas; (3) SDPR was more positive with stand development, and (4) SDPR was more positive with greater annual precipitation in the range of low structural diversity but switched to be more negative in the high range, and the negative SDPR with greater precipitation aligns with the analysis of published studies showing greater precipitation in studies with negative SDPR than the positive ones. </jats:list-item> <jats:list-item> <jats:italic>Synthesis</jats:italic> . Our findings reveal that structural diversity plays a context‐dependent role in regulating ecosystem productivity, shaped by interactions with stand structure and climate. This study offers broad implications for understanding ecosystem functioning, particularly how biodiversity interacts with environmental and structural attributes to shape productivity under global change. </jats:list-item> </jats:list>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"104 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145559484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant litter effects on soil carbon stabilization and nitrogen availability: A trade‐off and some versatile species 植物凋落物对土壤碳稳定和氮有效性的影响:一种权衡和一些多用途物种
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-11-20 DOI: 10.1111/1365-2745.70205
Grégoire T. Freschet, Janna Wambsganss, Vincent Poirier, Raoul Huys
Globally, the constrained stoichiometry of living organisms is responsible for the coupling of carbon (C) and nitrogen (N) elements in living organic matter, with afterlife effects in dead organic matter. This coupling has long been thought to foster trade‐offs among several key functions of ecosystems, such as soil fertility and C sequestration. However, while there is evidence for a general coupling of C and N cycling in ecosystems, there are many ways in which these cycles also diverge, both temporally and spatially, under the influence of multiple biotic and abiotic drivers. Here, focusing on the role of plant residues in feeding and steering the C and N cycles in soil, we examine how 24 leaf and root litters with contrasting chemistry differentially influence the temporal release of compounds with varying C:N stoichiometry to soil, and how C and N elements end up as stabilized (mineral‐associated organic matter, MAOM) or more bioavailable organic (particulate organic matter, POM) or mineral forms (e.g. CO 2 , NO 3 , NH 4 + ). There were major differences in the C:N stoichiometry of compounds released during decomposition, from low C:N early on to very high C:N at later stages. We observed a trade‐off in the role of litters towards increasing soil N availability (i.e. N in the soil solution) versus soil C stabilization (i.e. C in MAOM). Slow‐decomposing litters (with high lignin and low N concentrations, C‐poor leachates), particularly roots, favoured soil C stabilization over N availability. For each gram of litter decomposed, roots contributed 33% more C to the MAOM fraction of the soil, whereas leaves contributed 87% more N to the soil solution. This pattern was strongly driven (44% of variance explained) by the contrasting biochemistry of leaf versus root litters. Synthesis . These results suggest that leaf and root litters are highly complementary in the way they contribute to soil C stabilization and N availability. As such, global changes that influence the production and turnover of above and below‐ground litter inputs will likely have cascading effects on the balance between these functions. Our results also reveal substantial variation around the trade‐off between soil C stabilization and N availability, suggesting a continuum from ‘underachieving species’ to ‘versatile species’ contributing more to both functions. This opens perspectives for selecting versatile species capable of influencing positively several agro‐ecosystem functions.
在全球范围内,生物体的受限化学计量学负责活有机质中碳(C)和氮(N)元素的耦合,以及死有机质中的来世效应。长期以来,人们一直认为这种耦合促进了生态系统几个关键功能之间的权衡,如土壤肥力和碳固存。然而,虽然有证据表明生态系统中碳和氮循环存在普遍耦合,但在多种生物和非生物驱动因素的影响下,这些循环在时间和空间上也有许多不同的方式。这里,关注植物的作用残留在喂养和转向C和N周期土壤,我们看看24叶和根窝与对比化学差异影响化合物的时间释放不同C: N土壤化学计量学,和C和N个元素最终成为稳定(矿物量相关的有机物质,MAOM)或更多可利用有机(颗粒有机质、POM)或矿物形式(例如CO 2,没有3−,NH 4 +)。在分解过程中释放的化合物的C:N化学计量差异很大,从早期的低C:N到后期的高C:N。我们观察到凋落物在增加土壤氮有效性(即土壤溶液中的氮)与土壤碳稳定(即MAOM中的碳)之间的权衡作用。缓慢分解的凋落物(具有高木质素和低氮浓度,C -贫渗滤液),特别是根系,有利于土壤C稳定而不是N有效性。每分解1克凋落物,根系对土壤MAOM组分的碳贡献增加33%,而叶片对土壤溶液的氮贡献增加87%。这种模式被叶片和根凋落物的生物化学对比强烈驱动(44%的方差得到解释)。合成。这些结果表明,叶片凋落物和根凋落物在促进土壤碳稳定和氮有效性方面具有很强的互补性。因此,影响地上和地下凋落物产出和周转的全球变化可能会对这些功能之间的平衡产生级联效应。我们的研究结果还揭示了土壤碳稳定和氮有效性之间权衡的实质性变化,表明从“表现不佳的物种”到“多功能物种”对这两种功能的贡献都更大。这为选择能够积极影响几种农业生态系统功能的多功能物种开辟了前景。
{"title":"Plant litter effects on soil carbon stabilization and nitrogen availability: A trade‐off and some versatile species","authors":"Grégoire T. Freschet, Janna Wambsganss, Vincent Poirier, Raoul Huys","doi":"10.1111/1365-2745.70205","DOIUrl":"https://doi.org/10.1111/1365-2745.70205","url":null,"abstract":"<jats:list> <jats:list-item> Globally, the constrained stoichiometry of living organisms is responsible for the coupling of carbon (C) and nitrogen (N) elements in living organic matter, with afterlife effects in dead organic matter. This coupling has long been thought to foster trade‐offs among several key functions of ecosystems, such as soil fertility and C sequestration. However, while there is evidence for a general coupling of C and N cycling in ecosystems, there are many ways in which these cycles also diverge, both temporally and spatially, under the influence of multiple biotic and abiotic drivers. </jats:list-item> <jats:list-item> Here, focusing on the role of plant residues in feeding and steering the C and N cycles in soil, we examine how 24 leaf and root litters with contrasting chemistry differentially influence the temporal release of compounds with varying C:N stoichiometry to soil, and how C and N elements end up as stabilized (mineral‐associated organic matter, MAOM) or more bioavailable organic (particulate organic matter, POM) or mineral forms (e.g. CO <jats:sub>2</jats:sub> , NO <jats:sub>3</jats:sub> <jats:sup>−</jats:sup> , NH <jats:sub>4</jats:sub> <jats:sup>+</jats:sup> ). </jats:list-item> <jats:list-item> There were major differences in the C:N stoichiometry of compounds released during decomposition, from low C:N early on to very high C:N at later stages. We observed a trade‐off in the role of litters towards increasing soil N availability (i.e. N in the soil solution) versus soil C stabilization (i.e. C in MAOM). Slow‐decomposing litters (with high lignin and low N concentrations, C‐poor leachates), particularly roots, favoured soil C stabilization over N availability. For each gram of litter decomposed, roots contributed 33% more C to the MAOM fraction of the soil, whereas leaves contributed 87% more N to the soil solution. This pattern was strongly driven (44% of variance explained) by the contrasting biochemistry of leaf versus root litters. </jats:list-item> <jats:list-item> <jats:italic>Synthesis</jats:italic> . These results suggest that leaf and root litters are highly complementary in the way they contribute to soil C stabilization and N availability. As such, global changes that influence the production and turnover of above and below‐ground litter inputs will likely have cascading effects on the balance between these functions. Our results also reveal substantial variation around the trade‐off between soil C stabilization and N availability, suggesting a continuum from ‘underachieving species’ to ‘versatile species’ contributing more to both functions. This opens perspectives for selecting versatile species capable of influencing positively several agro‐ecosystem functions. </jats:list-item> </jats:list>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"111 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145553994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Foundation species loss alters algal community structure and dynamics at a trailing range edge 基础物种的消失改变了尾缘藻类群落结构和动态
IF 5.6 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-11-18 DOI: 10.1111/1365-2745.70199
Nathan G. King, Harry Teagle, Stephen J. Hawkins, Dan A. Smale

基础物种是整个生态系统的基础,日益受到气候变化的威胁。在尾缘,由于极端变暖事件可能超过生理阈值,种群损失可能很快,导致局部灭绝,而新物种无法维持恢复。虽然这些损失可以预测,但对剩余社区的影响和潜在的恢复是难以预测的,这限制了我们的预期能力。在这里,我们模拟了一种适应冷的海洋基础物种(海带海带)在两个后缘站点的衰落和消失,其特征是不同程度的波浪暴露和海带海带的优势。我们首先将大型藻群落暴露于脉冲扰动(完全去除树冠)中,然后在控制的吸收水平(0%、50%和100%去除)下跟踪了2.5年的次生演替轨迹。背景吸收(0%去除)导致了类似于干扰前水平的组合的发展,表明系统内具有高度的稳定性/弹性。然而,随着L. digitata去除量的增加,这种恢复力丧失,导致林冠/林下藻类的蓄积量减少,组合结构发生明显变化。波浪暴露的条件导致了一个短暂的机会主义物种的完全转变,这提供了不太稳定和有利的栖息地,并支持独特的群落。遮蔽条件导致了更复杂的向多种可选树冠形态的转变。合成。这些发现表明,通过竞争等生态相互作用的变化,气候驱动的人口减少的间接影响可以在整个群落中传播。鉴于海带支撑着更广泛的温带珊瑚礁食物网,这可能会在生态系统层面产生严重的连锁后果。
{"title":"Foundation species loss alters algal community structure and dynamics at a trailing range edge","authors":"Nathan G. King,&nbsp;Harry Teagle,&nbsp;Stephen J. Hawkins,&nbsp;Dan A. Smale","doi":"10.1111/1365-2745.70199","DOIUrl":"10.1111/1365-2745.70199","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 12","pages":"3858-3872"},"PeriodicalIF":5.6,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.70199","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145545467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convergence and variation in tree growth trends at the aggregate level 树木生长趋势在总体水平上的收敛与变化
IF 5.6 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-11-18 DOI: 10.1111/1365-2745.70201
Shumiao Shu, Xiaolu Tang, George Kontsevich, Ruixuan Liu, Yuan Yao, Bo Pang, Xiaodan Wang, Wanze Zhu, Wenzhi Wang, Xiaoxiang Zhao

在遗传、气候变化和林分结构不均匀的影响下,天然林中单株树木往往表现出复杂、不一致和多变的生长轨迹。这些生长差异对树木总体生长趋势的总体预测提出了挑战。在这里,我们提出了一个半径驱动的代谢生长模型(树轮迭代生长模型,IGMR)来解释树木的径向生长。IGMR表明,总体水平上的最佳径向生长轨迹(BGT)在一个可预测的范围内变化,可以由单棵树的最大半径和总生长时间推导出来。基于全球数据库的分析证实了IGMR的适用性,并发现平均径向增长趋势与一半的BGT密切相关,这种关联的强度可能与功能性状权衡有关。进一步分析表明,气候变化和林分结构不均匀可能导致总体生长轨迹发生更多的漂移(仅生长速率变化),而不是适应(最大尺寸变化)。综合:我们的研究结果不仅揭示了树木大小(或半径)在总体水平上具有收敛的生长轨迹,而且表明气候通过影响该单峰轨迹的高度(即最大径向生长率)来调节树木生长-气候关系,而轨迹的长度(即最大树半径)对物种的依赖性更大。这些发现进一步表明,气候变化更有可能通过群落组成的变化而不是通过单个树木生长速率的直接变化来影响森林的最大碳固存能力。
{"title":"Convergence and variation in tree growth trends at the aggregate level","authors":"Shumiao Shu,&nbsp;Xiaolu Tang,&nbsp;George Kontsevich,&nbsp;Ruixuan Liu,&nbsp;Yuan Yao,&nbsp;Bo Pang,&nbsp;Xiaodan Wang,&nbsp;Wanze Zhu,&nbsp;Wenzhi Wang,&nbsp;Xiaoxiang Zhao","doi":"10.1111/1365-2745.70201","DOIUrl":"10.1111/1365-2745.70201","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 12","pages":"3845-3857"},"PeriodicalIF":5.6,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145535807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil nutrient availability rather than spatial nutrient heterogeneity shapes the intraspecific response of root architectural, morphological and mycorrhizal traits in Vaccinium myrtillus 土壤养分有效性而非空间养分异质性决定了桃金娘根构型、形态和菌根性状的种内响应
IF 5.6 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-11-17 DOI: 10.1111/1365-2745.70188
Barbara Meyers, Rodrigue Friaud, Denicia Kassie, Michael Scherer-Lorenzen, Grégoire T. Freschet

(2021年),Pang et al .(2022年)、Pu et al .(2023),如果et al .(2022年)、Suriyagoda et al .(2012)、Tian et al . (2023), flickr et al . (2015), Waddell et al .(2017),赖特Wurzburger and Zhang et al . (2015), (2023), 2023 Zhu et al . (g)特定root lengthSRLm−1Length per unit dry - mass of fine rootsSRL is a合成法的特点by and in RD研发的变化。It the soil勘探潜力reflects for养分和水(cost per unit (mass) Freschet pages, et al ., 2011) . Bakker et al .(2009)、Eissenstat Freschet et al . (2015), et al .(2015)、范Kleunen (Liu and 2024), Ma et al .(2017)、Wurzburger and赖特(Boot et al ., 2015)(1990年)、(Chen et al ., 2014), Clemensson-Lindell and Asp .等人(1995年)、(2022年)、希尔等人(2006)、李等人(2024),Li et al .(2019年)、Lin et al . (2020) Liu et al .(2017)、Lugli et al .(2011)、Ma et al . (2024),Paterson, Seith et al .(1999)等人(1996年)、Wurzburger and赖特(2024),Yang et al . (2015), Zhang et al .(2011)、郑等人(2018年)、邹et al .(2022年)Bakker et al . (2009), et al . (2013), et al .(2015),粉丝Guilbeault-Mayers et al .(2024年)、Haling et al .(2018)、吴昊等人(2008),He et al . (2017), Hill et al . (2006), Jeffery Kothari et al . (2017), et al . (1996), Li et al .(2019年)、Lugli et al .(2011)、(Lyu et al ., 2016), Pang et al .(2022年)、Pu et al . (2023) Suriyagoda et al . (2012),Tang et al. (2023), Waddell et al. (2017), Wang et al. (2006), Wen et al. (2017), Wurzburger et Wright (2015), Zhan et al. (2019), Zhu et al.(2023)新鲜细根的单位体积干质量RTD的变化:are high .价值保守的母亲挂钩to plant growth strategies)会员,low改良are沥of替代策略(Freschet pages, et al ., 2011) Eissenstat Freschet et al . (2015), et al .(2015)、Ge等(2023),Ma et al .(2024年)、Wurzburger and Wright (Ge et al .(2015) 2023),耿雁生et al .(2022年)、李等人(2024),Li et al .(2019年)、Lin et al .(2020)、Liu et al . (2017) Lugli et al .(2011)、Ma et al .(2024年)、Wurzburger and Wright (2024), Yang et al . (2015),郑et al .(2018)、邹et al .(2022年)、Ge等(2023)Guilbeault-Mayers et al . (2024), Jeffery et al . (2017), Li et al .(2019年)、Lugli et al . (2011), Pang et al .(2022年)、Pu et al . (2023), flickr et al . (2015), Waddell et al .(2017),赖特Wurzburger and Zhang et al . (2015), (2023),Zhu等人(2023)菌根菌根定植强度MCI%任何菌根结构定植的细根交叉点的百分比MCI强度通常与真菌和植物之间关系的亲密程度有关。植物对真菌根系的投资对营养获取很重要,因为真菌参与磷的获取和氮的获取。(Freschet pages, et al ., 2011) Eissenstat Frater et al . (2015), et al .(2018)、Tischer et al .(2015)、特纳等人(1993年),魏Wurzburger et al .(2014),和赖特(Bahadur et al . (2015) 2023), Corkidi et al .(2002)、Frater et al .(2018),霍金斯和乔治(2001年)、贾跃亭等人(2004年)、Jiang et al . (2018), Li et al .(2019年)、Li等人(2011)、Lin et al . (2020) Liu et al .(2000)、Lugli et al .(2011)、潘等人(2020)、Tischer et al .(2015)、Wang et al .(2017),伍兹et al .(2018年)Wurzburger and赖特(Xu et al .(2015),至2021年),Yang et al .(2024年)Amijee等人(1993年)、布鲁斯等(1994),et al .(2013)、邓等人(2018年)、Frater et al .(2018)、锣等人(2011)、锣等(2022年)、格雷厄姆和雅培(2000年)、Guilbeault-Mayers et al . (2024), Hao et al .(2008)、科塔里卡希洛托等人(2001),et al .(1996),刘易斯et al . (1994), Li et al .(2019年)、(Liu et al ., 2000)、Lugli et al .(2011)、潘等人(2020),Pena et al .(2011),得以et al .(2023)、Rua et al . (2013)Tang 2023 et al . (Tian)、et al . (2023), Tischer et al . (2015), Wad
{"title":"Soil nutrient availability rather than spatial nutrient heterogeneity shapes the intraspecific response of root architectural, morphological and mycorrhizal traits in Vaccinium myrtillus","authors":"Barbara Meyers,&nbsp;Rodrigue Friaud,&nbsp;Denicia Kassie,&nbsp;Michael Scherer-Lorenzen,&nbsp;Grégoire T. Freschet","doi":"10.1111/1365-2745.70188","DOIUrl":"10.1111/1365-2745.70188","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 12","pages":"3678-3699"},"PeriodicalIF":5.6,"publicationDate":"2025-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.70188","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145531571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disentangling seed availability and establishment filters at alpine treelines through a decade-long field manipulation 通过长达十年的田间操作,解开高山树木线种子有效性和建立过滤器的纠缠
IF 5.6 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-11-17 DOI: 10.1111/1365-2745.70204
Wentao Lin, Eryuan Liang, J. Julio Camarero

, 2021;Palosse et al., 2024),但更温暖的条件并不能普遍克服生物招募障碍,如竞争(Liang et al., 2016; Wang et al., 2024)。气候变暖、种子可获得性和生物相互作用导致幼苗招募的结果好坏参半。因此,林木线树木补充对气候变化的响应高度依赖于当地微点、物种特征和历史干扰。这种复杂性促使人们呼吁进行多因素实验和跨站点比较,以澄清种子与微生境约束的相对重要性(例如Brown等人,2013年),从而改善未来气候情景下树线移动的预测。在这项研究中,我们通过实验测试了在西班牙比利牛斯山脉两种不同的树线类型(突变型和扩散型)上,非生物(温度、降水和积雪)和生物(草食、灌木覆盖和土壤扰动)过滤器是如何塑造红松幼苗建立的动态的。我们假设种子有效性构成了两种树线的主要过滤器,但与突变树线相比,扩散树线内的种子补充对气候变化(尤其是生长季节变暖)更为敏感,在突变树线,尖锐的植被边界预计会施加更强的微站点和生物限制(Elliott, 2011; Harsch等人,2009)。通过将种子添加、草食动物排除和微环境监测整合到一个多因素实验中,我们旨在理清种子供应、生物压力和气候在控制早期招募中的相对作用和相互作用,从而完善对持续气候变化下林木线稳定性和潜在向上发展的机制理解。
{"title":"Disentangling seed availability and establishment filters at alpine treelines through a decade-long field manipulation","authors":"Wentao Lin,&nbsp;Eryuan Liang,&nbsp;J. Julio Camarero","doi":"10.1111/1365-2745.70204","DOIUrl":"10.1111/1365-2745.70204","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 12","pages":"3830-3844"},"PeriodicalIF":5.6,"publicationDate":"2025-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.70204","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145531570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drivers of thermal tolerance breadth of plants across contrasting biomes 不同生物群系植物耐热性宽度的驱动因素
IF 5.6 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-11-15 DOI: 10.1111/1365-2745.70198
Verónica F. Briceño, Pieter A. Arnold, Alicia M. Cook, Stephanie K. Courtney Jones, Rachael V. Gallagher, Kris French, León A. Bravo, Adrienne B. Nicotra, Andy Leigh

气候变率假说(CVH)预测,来自温度变化较大的环境的物种应具有更宽的热耐受宽度。这一假设尚未在不同的植物中得到彻底的验证。在这里,我们询问了当地气候预测因子(包括降水、平均温度和极端温度以及热变率)如何与物种生理热极限相关联。采用较低(T临界冷)和较高(T临界热)光系统II热耐受性阈值的测量方法,确定了从野外采样的69种植物的热耐受性宽度(TTB),以及冰核温度(T成核,抗冻性),这些植物来自三个不同的生物群落:高山、沙漠和沿海温带雨林。所有测量的热耐受性指标(T临界-冷、T成核、T临界-热和TTB)在不同的生物群落中存在差异。值得注意的是,沙漠物种具有最耐寒和耐热的叶片,因此TTB最宽,而高山和温带生物群系的物种具有相似的TTB。对所有生物群系的植物来说,TTB都超出了当地气候的热范围。总体而言,当地气候驱动因子的两个主成分轴解释了所有容忍度指标的实质性变化。极端炎热、干燥的气候提高了抗冻性和耐热性。较高的热变率和较低的最低温度也提高了抗冻性,但与耐热性或TTB无关。物种解释了所有指标之间的显著差异,但这不是由于系统发育亲缘关系。我们讨论了剩余的变化是如何由于小气候驱动的可塑性,叶片性状或热调节机制。合成。我们的研究结果为植物的气候变异假说提供了部分支持:在温度变化较大的生物群系中,光系统热耐受宽度最大。这种关系在很大程度上是由耐寒性驱动的,而平均温度和极端温度更好地解释了耐热性的变化。因此,我们得出结论,仅CVH不足以解释植物耐热性的变化,气候、环境和生物学的许多其他方面都是潜在的重要驱动因素。
{"title":"Drivers of thermal tolerance breadth of plants across contrasting biomes","authors":"Verónica F. Briceño,&nbsp;Pieter A. Arnold,&nbsp;Alicia M. Cook,&nbsp;Stephanie K. Courtney Jones,&nbsp;Rachael V. Gallagher,&nbsp;Kris French,&nbsp;León A. Bravo,&nbsp;Adrienne B. Nicotra,&nbsp;Andy Leigh","doi":"10.1111/1365-2745.70198","DOIUrl":"10.1111/1365-2745.70198","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 12","pages":"3812-3829"},"PeriodicalIF":5.6,"publicationDate":"2025-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145515552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Budburst timing within a functional trait framework 在功能特征框架内的芽发芽时间
IF 5.6 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-11-14 DOI: 10.1111/1365-2745.70196
Deirdre Loughnan, Faith A. M. Jones, Geoffrey Legault, Daniel Buonaiuto, Catherine Chamberlain, Ailene Ettinger, Mira Garner, Ignacio Morales-Castilla, Darwin Sodhi, E. M. Wolkovich

物候学,即生命历史事件发生的时间,在不同的环境和不同的物种中有很大的不同。虽然气候变化通过改变其环境触发因素(如温度)改变了物候,但选择物种水平变异的驱动因素的变化仍然没有得到很好的解释。理论表明,物候学的物种水平变化可能是由于环境压力的变化导致的,这些环境压力在整个春季生长季节有利于不同的策略:从季节早期,更高的非生物风险和更大的养分和光照可用性有利于更便宜的叶片和获取性生长策略,到后期,当更良性的环境和更低的光照和养分水平有利于保守的生长策略。该框架预测了一系列可能与物种物候共同变化的性状,但物候在不同环境中的高度可变性使得在性状框架中测试其作用具有挑战性。我们利用一个适应这种可变性的建模框架,利用来自受控环境实验数据库的物候数据和来自两个主要数据库的树木性状数据,测试了树木性状与春季物候之间的关系。具体来说,我们研究了早蕾和晚蕾的诱因:春天的温度(强迫),冬天的温度(寒冷)和白天的长度(光周期)。我们发现,性状如何与花蕾时间和物候有关的预测得到了各种各样的支持。具有导致早熟芽(对实验冷却和光周期的小响应)的线索的物种较矮,叶片氮含量较高,这两个性状都与获取策略有关,因此与我们的预测一致。然而,种子质量这一生殖性状与物候没有关系,其他性状(如比叶面积)与物候的关系与我们的预测相反。综上所述,我们的研究结果表明,春蕾物候学在一定程度上符合获得性到保守性生长策略的功能性状框架。利用这些关系可以更好地预测群落如何随着物候变化和未来变暖而改变其生长策略。
{"title":"Budburst timing within a functional trait framework","authors":"Deirdre Loughnan,&nbsp;Faith A. M. Jones,&nbsp;Geoffrey Legault,&nbsp;Daniel Buonaiuto,&nbsp;Catherine Chamberlain,&nbsp;Ailene Ettinger,&nbsp;Mira Garner,&nbsp;Ignacio Morales-Castilla,&nbsp;Darwin Sodhi,&nbsp;E. M. Wolkovich","doi":"10.1111/1365-2745.70196","DOIUrl":"10.1111/1365-2745.70196","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 12","pages":"3787-3798"},"PeriodicalIF":5.6,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.70196","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145509369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
More exceptions than rules: Variable effects of ectomycorrhizal fungi on leaf litter decomposition in temperate pine forests 例外多于规则:外生菌根真菌对温带松林凋落叶分解的不同影响
IF 5.6 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-11-14 DOI: 10.1111/1365-2745.70197
Lang C. DeLancey, Moira J. McCarthy, Klara Peterson, Jay J. Yeam, Laurel Kaminsky, Matthew E. Smith, Kabir G. Peay, Sarah E. Hobbie, Peter G. Kennedy

长期以来,人们一直认为外生菌根(ECM)真菌在氮(N)受限的生态系统中通过与腐养菌竞争凋落物N来减少凋落物分解(这种现象被称为“Gadgil效应”)。然而,最近的研究通过证明ECM真菌可以增加或减少不同森林中的有机物分解,对这种效应的普遍性提出了质疑。驱动真菌对ECM分解作用大小和方向变化的生态因子尚不清楚。在这里,我们验证了ECM真菌在低氮有效度的森林中通过加剧腐养N限制来抑制N贫、顽固性凋落物分解的假设。我们在美国三个州的9个松林进行了原位ECM真菌和根减少实验(通过土壤沟),这些松林的土壤和凋落物氮含量、气候和松树寄主(加利福尼亚州的松、佛罗里达州的P. elliottii和明尼苏达州的P. resinosa)各不相同。在每个样地,我们对(1)当地一种松树的针叶凋落物和(2)一种常见的松凋落物进行了1年的分解。与我们的预期相反,ECM真菌要么刺激(加利福尼亚州),要么对(佛罗里达州和明尼苏达州)松针分解没有影响。各试验点ECM真菌对土壤分解的促进作用随土壤全氮含量的增加而增加,但与无机氮有效性无关。此外,尽管先前的研究表明,尽管在初始凋落物C:N比、抗性和净凋落物N固定化方面存在很大差异,但不同凋落物类型之间对N结构的竞争、真菌-腐殖质相互作用、沟槽效应对分解的影响并没有差异。合成。综上所述,我们的研究结果增加了越来越多的证据,证明“加吉尔效应”并不普遍,即使在温带松林的N -贫凋落物中也是如此,在那里它首次被描述并经常被引用。此外,沟槽效应与不同的分解物N供需指标之间的关系不一致,这使人们对N在构建真菌相互作用中的核心作用产生了质疑。
{"title":"More exceptions than rules: Variable effects of ectomycorrhizal fungi on leaf litter decomposition in temperate pine forests","authors":"Lang C. DeLancey,&nbsp;Moira J. McCarthy,&nbsp;Klara Peterson,&nbsp;Jay J. Yeam,&nbsp;Laurel Kaminsky,&nbsp;Matthew E. Smith,&nbsp;Kabir G. Peay,&nbsp;Sarah E. Hobbie,&nbsp;Peter G. Kennedy","doi":"10.1111/1365-2745.70197","DOIUrl":"10.1111/1365-2745.70197","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 12","pages":"3799-3811"},"PeriodicalIF":5.6,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.70197","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145509317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Ecology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1