首页 > 最新文献

Journal of Ecology最新文献

英文 中文
Climate change and exotic pathogens shift carbon allocation in Mediterranean mixed forests 气候变化和外来病原体改变了地中海混交林的碳分配
IF 5.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-10-09 DOI: 10.1111/1365-2745.14426
Álvaro Gaytán, Luis Matías, Óscar Godoy, Ignacio M. Pérez-Ramos, Pablo Homet, Xoaquín Moreira, Lorena Gómez-Aparicio

在这项研究中,我们旨在调查全球变化的非生物驱动因素(干旱加剧)和生物驱动因素(外来病原体)对地中海混交林成年树木碳分配的单独和综合影响。为此,我们在欧洲最南端的橡树林中安装了降雨排斥基础设施,由于日益干旱和外来侵袭性病原体 Phytophthora cinnamomi 的感染,目前这些森林中的橡树严重减少(Avila 等人,2017 年;Gómez-Aparicio 等人,2012 年)。2016 年春季,在西班牙南部两种类型的橡树混交林中安装了降雨排斥基础设施:一种是由栎树和卡纳里栎树组成的封闭森林,另一种是由栎树和油橄榄组成的开放林地。这些基础设施排除了 30% 的年降雨量,模拟了欧洲南部气候变化模型的预测结果(Ali 等人,2022 年)。在基础设施安装后的头两年(2016-2018 年),我们测量了与这三个物种的成年树在初级生产、繁殖、防御和储备方面的碳吸收和投资有关的一系列变量。我们提出了三个具体问题:(1)降雨排斥和 P. cinnamomi 的丰度如何影响成年树木的主要碳源(光合作用)和碳汇(初级生产、繁殖、防御和储备)?我们假设,降雨排斥和外来病原体的大量存在都会对成树的 C 吸收和 C 吸收汇产生负面影响(Adams 等人,2015 年;Chambi-Legoas 等人,2020 年;Guo 等人,2022 年;Limousin 等人,2009 年)。然而,最近的研究表明,排除降雨可显著降低土壤中 P. cinnamomi 的丰度(Serrano 等人,2022 年,2024 年)。因此,我们还预测,降雨排斥不仅会因土壤水分供应量降低而对成树的表现产生直接的负面影响,而且还会因病原体丰度降低而产生积极(间接)的影响,这一点已在树苗中得到证实(Homet 等人,2024 年);(2)降雨排斥如何影响成树不同 C sinks 之间的权衡?我们预计树种会采取保守策略,优先考虑防御和储存,而不是初级生产或繁殖,以减轻降雨排斥和 P. cinnamomi 攻击造成的 C 限制(Dietze 等人,2014 年;Kuang 等人,2017 年;Signori-Müller 等人,2021 年);(3)共存树种在 C 平衡方面对降雨排斥和 P. cinnamomi 的反应是否不同?我们假设降雨减少和外来病原体会对所研究的树种产生不对称的影响,因为它们对干旱(Q. canariensis > Q. suber > O. europaea; Gómez-Aparicio 等人,2008 年;Ibáñez 等人,2017 年)和 P. cinnamomi 攻击(Q. suber > Q. canariensis > O. europaea; Gómez 等人,2020 年)的敏感性不同。这些问题的答案将有助于我们进一步了解非生物和生物压力因素对共存于对全球变化特别敏感的生态系统(如地中海森林)中的树种的碳平衡的综合影响。
{"title":"Climate change and exotic pathogens shift carbon allocation in Mediterranean mixed forests","authors":"Álvaro Gaytán,&nbsp;Luis Matías,&nbsp;Óscar Godoy,&nbsp;Ignacio M. Pérez-Ramos,&nbsp;Pablo Homet,&nbsp;Xoaquín Moreira,&nbsp;Lorena Gómez-Aparicio","doi":"10.1111/1365-2745.14426","DOIUrl":"10.1111/1365-2745.14426","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"112 12","pages":"2843-2860"},"PeriodicalIF":5.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.14426","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Higher abundance of disturbance-favoured trees and shrubs in European temperate woodlands prior to the late-Quaternary extinction of megafauna 在第四纪晚期巨型动物灭绝之前,欧洲温带林地中受干扰较多的乔木和灌木的丰度较高
IF 5.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-10-01 DOI: 10.1111/1365-2745.14422
Elena A. Pearce, Florence Mazier, Ralph Fyfe, Charles W. Davison, Signe Normand, Maria-Antonia Serge, Paolo Scussolini, Jens-Christian Svenning

此外,紫杉对许多大型食草动物都有剧毒,但鹿和某些反刍动物除外(Cortinovis &amp; Caloni, 2015; Thomas &amp; Polwart, 2003),因此可能会取代更容易被啃食的物种(Dhar 等人,2007 年;García &amp; Ramón Obeso, 2003)。另一方面,Taxus树皮薄,再生困难,尤其是在干燥环境中,因此易受火灾影响(Mola等人,2014;Thomas &amp; Polwart, 2003),而且其生长缓慢、幼苗繁殖率低,进一步延迟了火灾后的种群恢复(Thomas &amp; Polwart, 2003)。因此,在过去由多种巨型动物提供高水平草食的生态系统中,Taxus很可能会受到青睐(Davoli 等人,2023 年),但频繁的火灾则会使其受到不利影响。灭绝发生在智人到来的公元前约 5 万年,即最后一个冰川期(Bergman 等人,2023 年;Svenning 等人,2024 年),当时由于气候寒冷干燥,森林及其树种的分布和数量都大大减少(Svenning 等人,2008 年;Willis &amp; van Andel, 2004 年)。现代保护实践越来越注重恢复生态功能(Perino 等人,2019 年),而长期数据(如功能基线)的作用早在近 20 年前就已得到认可(Willis 等人,2005 年,2010 年)。退化前基线可为人类引起的退化之前的系统提供独特的生态见解,为现代恢复工作提供重要的背景资料。然而,我们注意到,要将这些见解与现代恢复工作相协调,就必须承认当代生态的复杂性,如不断变化的气候系统和其他人为影响,如野火的引发,这可能需要在退化前基线之外进行额外的考虑。要为当前和未来的系统建立退化前基线,温暖的间冰期条件最为相关。欧洲的末次间冰期(Eemian;~129,000-116,000 BP)是全新世之前最近的一次间冰期。它发生在第四纪晚期巨型动物灭绝之前,动物结构与之前的 1000 万年或更早时期大致相当(Blanco 等人,2021 年;Croitor &amp; Brugal,2010 年)。这一时期在地质学上足够新,足以限制进化变化,因为大多数范围内的物种已经存在(Van Kolfschoten,2000 年)。最后,末次间冰期在气候上可与变暖的全新世相媲美,尤其是在其中层阶段,并被描述为在比工业化前基准温度更高的条件下评估环境响应和气候反馈的试验平台(Kalis 等人,2003 年;Kühl 等人,2007 年;Salonen 等人,2018 年)。因此,末次冰期为晚第四纪动物降级之前温暖条件下的植被结构和动态提供了一个长期的代表性基线(Smith 等人,2018 年)。利用 REVEALS 模型(Sugita,2007 年)进行的基于花粉的植被重建显示,欧洲末次冰期的栎类和榛类植被非常丰富(Pearce 等人,2023 年)。利用末次冰期原始花粉数据进行的研究显示,榛属植物的峰值高达 50%(Rychel 等人,2014 年;Suchora 等人,2022 年)。全新世的栎属和榛属植物过去的丰度比较清楚,REVEALS建模显示,在公元前8200-5700年,栎属植物覆盖率为1%-15%,榛属植物平均覆盖率为10%-15%(Githumbi等人,2022年;Serge等人,2023年)。在末次间冰期,不同程度地存在 Taxus(中欧为 3%-15%;Malkiewicz,2018 年;Schläfli 等人,2021 年)。在全新世,Taxus 花粉并不常见,覆盖率也很低(2%-6%;Deforce &amp; Bastiaens, 2007; Pérez Díaz et al.)在本研究中,我们比较了柞树、榛树和紫杉的丰度,以评估它们的种群在温带森林生物群落晚第四纪巨型动物灭绝前后的变化情况。我们利用最新的 REVEALS 重建(Pearce 等人,2023 年;Serge 等人,2023 年)量化了末次冰期和全新世早中期每种分类群的覆盖率百分比。虽然本研究无法直接测试巨型动物对植被的影响,但我们评估了观测到的丰度差异与气候变异的相关程度,并估算了残差。
{"title":"Higher abundance of disturbance-favoured trees and shrubs in European temperate woodlands prior to the late-Quaternary extinction of megafauna","authors":"Elena A. Pearce,&nbsp;Florence Mazier,&nbsp;Ralph Fyfe,&nbsp;Charles W. Davison,&nbsp;Signe Normand,&nbsp;Maria-Antonia Serge,&nbsp;Paolo Scussolini,&nbsp;Jens-Christian Svenning","doi":"10.1111/1365-2745.14422","DOIUrl":"10.1111/1365-2745.14422","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"112 12","pages":"2813-2827"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.14422","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tree species abundance changes at the edges of their climatic distribution: An interplay between climate change, plant traits and forest management 树种丰度在其气候分布边缘发生变化:气候变化、植物特性和森林管理之间的相互作用
IF 5.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-09-28 DOI: 10.1111/1365-2745.14419
Josep Padullés Cubino, Albert Vilà-Cabrera, Javier Retana

1 引言 人为气候变化正在改变全球物种的地理分布(Pecl 等人,2017 年)。树种等固定且寿命长的生物尤其容易受到分布区变化的影响,因为它们不可避免地受到气候变异的影响(Scheffer 等人,2001 年)。当气候变化超过物种的生理和生态承受能力时,树木种群的衰退就会发生在其气候分布的后缘(温暖干燥)。因此,与中心种群相比,位于后缘的树木种群面临更高的局部灭绝风险(Ackerly 等人,2010 年;Brown,1984 年)。风险增加的原因是它们栖息在较不利的生境中,种群密度较低且波动较大(Lawton, 1993; Vucetich &amp; Waite, 2003)。相反,位于气候分布前缘(寒冷和潮湿)的树木种群可能会增加并扩展到以前无法进入的环境(Astigarraga 等人,2024 年;Matías &amp; Jump,2014 年)。然而,关于树种在其气候分布边缘的丰度变化,证据并不一致(Lenoir &amp; Svenning, 2015; Vilà-Cabrera et al.了解树种的丰度和分布如何在其气候分布的极限对气候变化做出响应,对于制定有效的生物多样性保护和自然资源管理策略至关重要。有几个因素会影响生物地理学预测的准确性,即树种如何在其气候分布的后缘和前缘对气候变化做出响应(Vilà-Cabrera 等人,2019 年)。例如,种群表现可能受到不同细尺度生态因素(如小气候、土壤质量、水供应)、生物相互作用、混杂的本体效应或表型内的适应性和遗传多样性之间相互作用的影响(Anderegg &amp; HilleRisLambers, 2019; Heiland等人, 2022; Jump等人, 2017; Valladares等人, 2015)。此外,其他全球变化驱动因素也会改变物种分布。例如,近期的社会经济变化对森林景观造成了截然不同的影响(Meyfroidt 等人,2010 年)。在地中海盆地的许多发达国家,放弃森林管理和农业实践引发了大规模植树造林,导致森林密度增加(Astigarraga 等人,2020 年;McGrath 等人,2015 年)。这种转变的特点是,法桐科树木大面积扩展,而松科树木则受到了影响(Carnicer 等人,2014 年;Vadell 等人,2016 年;Vayreda 等人,2016 年)。阔叶树种有效应对各种干扰的能力更强,竞争能力更高。随着森林树冠的逐渐闭合,对阳光的竞争也随之加剧,这有利于晚生耐阴阔叶树种取代早生对光敏感的针叶树种,因为后者受光竞争的影响较小(Sánchez-Gómez 等人,2008 年;Zavala 等人,2011 年)。此外,一些阔叶树种具有独特的再生能力,使其在受到野火或间伐等干扰后具有更强的快速恢复能力。因此,土地利用变化和森林管理实践是树种分布的关键驱动因素,因为它们有可能在气候边缘偏离气候引起的种群数量下降(Goring &amp; Williams, 2017)。气候变化根据物种的生态策略选择性地偏好物种,从而直接影响树木的种群反应(Fernández-de-Uña 等人,2023 年;Keddy, 1992 年;Selwyn 等人,2024 年)。气候条件的变化会干扰物种的表现,干扰程度取决于物种的功能特征--它们应对压力的策略指标(Adler 等人,2014 年;Mouillot 等人,2013 年)。例如,在亚热带森林中,在应对干旱胁迫时,与采用保守策略的物种相比,具有更多获取叶片策略的树种数量有所增加(Li 等人,2015 年)。随着植物功能性状数据的不断增加(Kattge 等人,2020 年),我们现在可以对物种的生态策略进行定量分析。在伊比利亚半岛,位于地中海生物群落与温带生物群落之间的过渡地带,包括Fagus sylvatica或Quercus petraea在内的几种对干旱敏感的欧亚树种已延伸至其最南端的地理分布。
{"title":"Tree species abundance changes at the edges of their climatic distribution: An interplay between climate change, plant traits and forest management","authors":"Josep Padullés Cubino,&nbsp;Albert Vilà-Cabrera,&nbsp;Javier Retana","doi":"10.1111/1365-2745.14419","DOIUrl":"10.1111/1365-2745.14419","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"112 12","pages":"2785-2797"},"PeriodicalIF":5.3,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.14419","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ectomycorrhizal tree islands in arbuscular mycorrhizal forests: Hotspots of fungal inoculum important for seedling establishment of historically dominant trees 丛枝菌根森林中的外生菌根树岛:真菌接种体的热点地区对历史上优势树种的育苗至关重要
IF 5.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-09-26 DOI: 10.1111/1365-2745.14417
Andrew M. Cortese, Thomas R. Horton

北美东北部的落叶林由外生菌根(EM)树和丛生菌根(AM)树混合组成。然而,由于土地利用的遗留问题和其他因素,EM 树减少,AM 树占优势的情况同时增加,这可能会限制森林生态系统功能的发挥。我们研究了分散的 EM 树斑块和来自当地 EM 树占主导地位的森林的土壤接种物如何影响以 AM 树为主的次生林中的 EM 真菌定植、EM Tsuga canadensis、Pinus strobus 和 Quercus spp.树苗的存活和生长。在纽约的三片次生林中,幼苗被种植在优势AM槭树和零星的EM桦树旁。一部分树苗还接受了来自当地 EM 优势森林的土壤接种物。我们对幼苗的存活率和高度生长进行了为期两年的监测,然后测量了幼苗嫩枝的生物量,评估了EM定植情况,并从幼苗根部鉴定了EM真菌。与种植在AM Acer树附近的幼苗相比,种植在EM Betula树附近的所有属的幼苗的EM定植率和真菌丰富度都更高。接种 EM 森林土壤只增加了 AM Acer 附近幼苗的 EM 定殖率和真菌丰富度,这在缺乏本地 EM 真菌的地区非常有效。幼苗根部的 EM 真菌总多样性在 EM Betula 附近最高,其中包括许多通常与成熟树木相关的类群。相比之下,AM Acer 附近的 EM 真菌群落稀少,主要由相对较少的孢子库真菌类群主导。虽然不同处理的幼苗存活率并无差异,但土壤接种和靠近 EM Betula 可增加松树和铁杉第二年的高度生长,而单独的土壤接种则可显著提高柞树幼苗的枝量。综述。农业用地的遗留问题造成了以AM树为主的广阔次生林。在这些森林中,由于缺乏EM真菌,在现有的EM树斑块外建立EM树幼苗可能会受到阻碍,但来自EM树为主的森林的本地土壤接种物可将本地EM真菌重新引入缺乏已建立的EM树的次生林中。
{"title":"Ectomycorrhizal tree islands in arbuscular mycorrhizal forests: Hotspots of fungal inoculum important for seedling establishment of historically dominant trees","authors":"Andrew M. Cortese,&nbsp;Thomas R. Horton","doi":"10.1111/1365-2745.14417","DOIUrl":"10.1111/1365-2745.14417","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"112 11","pages":"2680-2694"},"PeriodicalIF":5.3,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.14417","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vulnerability segmentation is vital to hydraulic strategy of tropical–subtropical woody plants 脆弱性细分对热带-亚热带木本植物的水利战略至关重要
IF 5.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-09-26 DOI: 10.1111/1365-2745.14421
Dong-Liu Huang, Feng Zhang, Ya-Dong Qie, Yong-Qiang Wang, Chun-Yan Wan, Jun-Rui Yu, Jun Zhang, Jing-Xi Gan, Shi-Dan Zhu

脆弱性分段假说认为,可以通过牺牲廉价叶片来保护昂贵茎干的水力功能,这已被证明是干旱地区木本物种抵御干旱的关键策略。气候变化导致相对湿润的热带-亚热带森林中的严重干旱日益加剧。然而,脆弱性分段(以茎和叶之间的抗栓性差异来衡量;P50leaf-stem)是否在热带-亚热带木本植物的水力策略中发挥作用仍不清楚。我们研究了中国热带亚热带六种干旱指数森林类型中 130 种优势木本植物的茎叶的 12 个关键水力相关性状(即抗穴蚀性、水势、安全系数、脆弱性分段、叶-边材面积比和水分利用效率)和死亡率。我们的主要目标是(1) 建立茎叶水力框架并捕捉关键水力特征;(2) 比较不同森林类型和功能群的水力策略;(3) 阐明环境因素和水力特征对死亡率的影响。性状网络分析揭示了茎叶水力性状之间的密切关系,其中空穴阻力、水分损失点和 P50leaf-stem 是关键性状。一般来说,P50 叶茎越大,最低水势、叶水力安全系数和叶-边材面积比越低,但木质密度、茎水力安全系数和水分利用效率越高。热带森林(高干旱度)比亚热带森林(低干旱度)具有更高的抗叶片栓塞性、P50叶茎、木材密度和水分利用效率,而灌木比乔木具有更高的抗叶片栓塞性和更多的负张力损失点。然而,茎叶水力策略在常绿树和落叶树之间没有显著差异。干旱指数和水力特征都会影响物种的死亡率。尤其是 P50leaf-stem 能很好地预测热带森林中干旱引起的死亡率。综述。我们的研究结果表明,热带-亚热带木本植物的水力策略中应纳入脆弱性分段,以探索其对未来气候变化的干旱响应。
{"title":"Vulnerability segmentation is vital to hydraulic strategy of tropical–subtropical woody plants","authors":"Dong-Liu Huang,&nbsp;Feng Zhang,&nbsp;Ya-Dong Qie,&nbsp;Yong-Qiang Wang,&nbsp;Chun-Yan Wan,&nbsp;Jun-Rui Yu,&nbsp;Jun Zhang,&nbsp;Jing-Xi Gan,&nbsp;Shi-Dan Zhu","doi":"10.1111/1365-2745.14421","DOIUrl":"10.1111/1365-2745.14421","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"112 12","pages":"2798-2812"},"PeriodicalIF":5.3,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Projected near-future flooding and warming increase graminoid biomass in a high-latitude coastal wetland 预计近未来的洪水和气候变暖会增加高纬度沿海湿地的禾本科生物量
IF 5.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-09-24 DOI: 10.1111/1365-2745.14418
Matteo Petit Bon, A. Joshua Leffler, Katharine C. Kelsey, Tyler J. Williams, Karen H. Beard

利益冲突声明作者声明没有利益冲突。
{"title":"Projected near-future flooding and warming increase graminoid biomass in a high-latitude coastal wetland","authors":"Matteo Petit Bon,&nbsp;A. Joshua Leffler,&nbsp;Katharine C. Kelsey,&nbsp;Tyler J. Williams,&nbsp;Karen H. Beard","doi":"10.1111/1365-2745.14418","DOIUrl":"10.1111/1365-2745.14418","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"112 12","pages":"2715-2730"},"PeriodicalIF":5.3,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.14418","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of water limitation and competition on tree carbon allocation in an Earth system modelling framework 地球系统建模框架下水分限制和竞争对树木碳分配的影响
IF 5.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-09-24 DOI: 10.1111/1365-2745.14416
Jeremy W. Lichstein, Tao Zhang, Ensheng Weng, Caroline E. Farrior, Ray Dybzinski, Sergey Malyshev, Elena Shevliakova, Richard A. Birdsey, Stephen W. Pacala

利益冲突声明作者声明没有利益冲突。
{"title":"Effects of water limitation and competition on tree carbon allocation in an Earth system modelling framework","authors":"Jeremy W. Lichstein,&nbsp;Tao Zhang,&nbsp;Ensheng Weng,&nbsp;Caroline E. Farrior,&nbsp;Ray Dybzinski,&nbsp;Sergey Malyshev,&nbsp;Elena Shevliakova,&nbsp;Richard A. Birdsey,&nbsp;Stephen W. Pacala","doi":"10.1111/1365-2745.14416","DOIUrl":"10.1111/1365-2745.14416","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"112 11","pages":"2522-2539"},"PeriodicalIF":5.3,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Embracing plant–plant interactions—Rethinking predictions of species range shifts 接受植物与植物之间的相互作用--对物种分布范围变化预测的反思
IF 5.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-09-24 DOI: 10.1111/1365-2745.14415
Pieter Sanczuk, Dries Landuyt, Emiel De Lombaerde, Jonathan Lenoir, Eline Lorer, Miska Luoto, Koenraad Van Meerbeek, Florian Zellweger, Pieter De Frenne

利益冲突声明作者声明不存在利益冲突。
{"title":"Embracing plant–plant interactions—Rethinking predictions of species range shifts","authors":"Pieter Sanczuk,&nbsp;Dries Landuyt,&nbsp;Emiel De Lombaerde,&nbsp;Jonathan Lenoir,&nbsp;Eline Lorer,&nbsp;Miska Luoto,&nbsp;Koenraad Van Meerbeek,&nbsp;Florian Zellweger,&nbsp;Pieter De Frenne","doi":"10.1111/1365-2745.14415","DOIUrl":"10.1111/1365-2745.14415","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"112 12","pages":"2698-2714"},"PeriodicalIF":5.3,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.14415","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonal variability and seagrass traits affect methane fluxes in a subtropical meadow 季节变化和海草特性影响亚热带草甸的甲烷通量
IF 5.3 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-09-23 DOI: 10.1111/1365-2745.14412
Alexandra L. Bijak, Laura K. Reynolds, Willm Martens-Habbena, Ashley R. Smyth

植物性状在种内和种间的变化往往会推动生物地球化学循环。了解物种内和物种间的性状变化在驱动碳循环中的相对作用,对于将现场测量结果放大到全球碳预算至关重要。在海草草甸中,碳和氮的矿化率以及相关的温室气体排放量变化很大,这阻碍了我们可靠预测草甸是否为净碳汇的能力。评估种内和种间性状变异对温室气体通量的影响将提高我们对海草草甸温室气体产生和消耗的局部尺度驱动因素的理解。为了测试植物性状对溶解温室气体通量的影响,我们用完整的活海草植物进行了中观培养。在佛罗里达半岛西海岸的亚热带草甸上,我们比较了以 Halodule wrightii 和 Thalassia testudinum 为主的沉积物在休眠期、生长初期和生长高峰期的黑暗和光照条件下的甲烷(CH4)和氧化亚氮(N2O)通量。我们还测量了氧(O2)通量,以便在群落新陈代谢的背景下解释温室气体通量。我们测量了一些海草特征,如地上和地下生物量、叶片和根部面积,并评估了它们以及物种特征对溶解气体通量的影响。我们发现,与新陈代谢相关的非生物因素(即光照和温度)影响着不同季节的温室气体通量。除了光照条件和采样月份外,植株大小(一个综合性状变量)也是黑暗条件下氧气消耗量和甲烷产生量的重要预测因子,并且比单个植株性状更能预测通量。在以 H. wrightii 为主的沉积物中,CH4 产量略高,但物种特征在驱动 CH4 产量方面的重要性低于植物大小。N2O 通量较低,不受植物性状或物种特征的影响。综述:我们的研究结果表明,在海草草甸中,物种内而不是物种间的性状变异对CH4通量方向和大小的驱动作用更大。我们发现了一种权衡,即海草的生物量通常与沉积物碳储存的增强有关,但在我们的研究中,植物的大小促进了CH4的产生,可能抵消了长期储存的益处。
{"title":"Seasonal variability and seagrass traits affect methane fluxes in a subtropical meadow","authors":"Alexandra L. Bijak,&nbsp;Laura K. Reynolds,&nbsp;Willm Martens-Habbena,&nbsp;Ashley R. Smyth","doi":"10.1111/1365-2745.14412","DOIUrl":"10.1111/1365-2745.14412","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"112 12","pages":"2771-2784"},"PeriodicalIF":5.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.14412","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mycorrhizal fungi compromise production of endophytic alkaloids, increasing plant susceptibility to an aphid herbivore 菌根真菌影响内生生物碱的产生,增加植物对蚜虫食草动物的敏感性
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-09-23 DOI: 10.1111/1365-2745.14410
X. Cibils-Stewart, R. K. Vandegeer, W. J. Mace, S. E. Hartley, J. R. Powell, A. J. Popay, S. N. Johnson
<h2>1 INTRODUCTION</h2><p>Symbiosis plays a key role in plant biology affecting growth, adaptation, and speciation (Uroz et al., <span>2019</span>). The plant and fungal kingdoms engage in symbiotic relationships such as mycorrhizae and endophytic associations, supporting nutrient uptake and stress tolerance. Fungi also play key roles in decomposition, nutrient cycling, and disease dynamics, underscoring their importance in ecosystem health and agriculture. For example, some temperate grasses within the Poaceae family, establish symbiotic associations with a myriad of microbes including asexual <i>Epichloë</i> endophytes (Ascomycota: Clavicipitaceae) and arbuscular mycorrhizal (AM) fungi (Glomeromycotina) in shoots and roots, respectively. These symbionts often occur simultaneously and influence enemies of the plant, including herbivorous animals, via changes in plant nutritional and defensive traits (Casas et al., <span>2022</span>; Omacini et al., <span>2006</span>; Perez et al., <span>2021</span>). However, predicting the impact of simultaneous symbioses on plant–herbivore interactions remains challenging since they are usually studied separately.</p><p>As protective mutualists, endophyte anti-herbivore defences mainly operate directly via the production of toxic alkaloids (Bastías et al., <span>2017</span>). In terms of alkaloids, four major groups of endophyte alkaloids have been reported including ergot alkaloids, indole-diterpenes, pyrrolizidines (e.g. loline) and pyrrolopyrazines (e.g. peramine) (Berry et al., <span>2019</span>; Schardl, Florea, et al., <span>2013</span>; Schardl, Young, et al., <span>2013</span>). Nonetheless, only grasses harbouring endophytes that putatively produce peramine (e.g. anti-chewing insect defences) and loline (e.g. anti-aphid and anti-chewing defences) are desirable in pastures because they confer herbivorous insect resistance without affecting grazing mammals (Young et al., <span>2013</span>). While lolines are strongly insecticidal (i.e. toxic), peramine often acts as a potent insect-feeding deterrent (Saikkonen et al., <span>2016</span>). Additionally, endophytes can have a detrimental effect on herbivores by stimulating the increased production of host plant defences (Bastías et al., <span>2017</span>).</p><p>As nutritional mutualists, AM fungi often enhance plant nutrient supply (mainly phosphorous and nitrogen) through their highly specialized intracellular structures (i.e. arbuscules and vesicles) and their extensive hyphal networks that capture soil nutrients otherwise unavailable for plants (Lanfranco et al., <span>2018</span>). In addition to improving plant nutritional quality, a growing number of reports suggest that AM fungi also improve host resistance to both herbivorous insects (Koricheva et al., <span>2009</span>) and pathogens (Gernns et al., <span>2001</span>). Specifically, for piercing-sucking aphids, AM fungi have been reported to have positive (Hartley & Gange, <span>2009</span
在促进作用的情况下,土壤中的内生渗出物已被证明可以刺激AM的定殖,甚至延长根外菌丝体(Novas等人,2010;Vignale等人,2018)。禾本科植物的另一种高效抗食草动物机制是它们能够从土壤中积累大量的硅(Si)(Alhousari &amp; Greger,2018)。硅的抗食草动物防御机制通过多种机制发挥作用,包括强化植物组织,从而磨损食草动物的口器,阻碍组织穿透,干扰消化和营养获取(Andama 等人,2020 年;Cibils-Stewart 等人,2023 年;Massey &amp; Hartley,2009 年),或改变食草动物的免疫力(Cibils-Stewart 等人,2023 年)。硅的积累也会影响植物对一系列次级代谢产物的分配(Hall 等人,2019 年),包括生物碱(Hall 等人,2021 年)。有人认为,与次生代谢物的产生(即碳基化合物)相比,硅可能是一种更廉价的食草动物防御代谢物(即物理防御),许多植物类群报告的硅与酚类和单宁之间的负相关关系支持了这一假设(Cooke &amp; Leishman, 2012; Frew et al、有证据表明,当植物被Epichloë内生菌(Cibils-Stewart等人,2020,2021,2023;Huitu等人,2014)或AM真菌(Frew等人,2017)定殖时,植物体内的Si积累会增加,尽管这并非普遍现象(AM:Johnson等人,2022;Vega等人,2021;内生菌:Johnson 等人,2023 年)。然而,尽管这两种共生体在自然界中同时存在,但尚未有研究探讨这两种共生体是否相互作用影响植物体内的硅积累和相关的食草动物抗性,或硅供应是否影响共生体介导的食草动物防御。目前还不清楚内生真菌和调幅真菌是如何相互作用的,以及对碳的潜在竞争是否会影响硅的积累和生物碱防御作用的产生。此外,Si 对蚜虫等刺吸式昆虫的防御效果还不确定(Massey 等人,2006 年;Johnson 等人,2020 年;但见 Reynolds 等人,2009 年)。然而,由于共生体产生的代谢物(即内生生物碱)通常会使植物付出能量代价(即碳)(Bastías et al、本研究的目的是调查硅供应、多共生关系(内生真菌和调幅真菌)以及蚜虫食草的存在/不存在在禾本科植物中物理(硅)或共生体介导的(内生生物碱)抗蚜防御的产生和有效性方面的相互作用。为此,我们确定了硅供应、Epichloë内生菌、AM真菌以及全球害虫Rhopalosiphum padi的草食是否会改变(i)禾本科植物的物理防御(即叶面硅浓度)以及(ii)植物生长、初级化学和生理。此外,我们还确定了这些因素单独或组合是否会发生加成或非加成(即拮抗、加成或协同)改变,(iii) 共生特征,包括调幅真菌定殖和内生生物碱的产生。虽然在一些植物-内生真菌共生中,菌丝浓度与生物碱之间存在正相关关系,但必须注意的是,生物碱的生产可能并不总是表生真菌内生菌的表现变量。最后,评估了硅供应、Epichloë真菌内生菌和 AM 真菌之间的相互作用对蚜虫害虫(iv)种群和个体表现的影响。
{"title":"Mycorrhizal fungi compromise production of endophytic alkaloids, increasing plant susceptibility to an aphid herbivore","authors":"X. Cibils-Stewart, R. K. Vandegeer, W. J. Mace, S. E. Hartley, J. R. Powell, A. J. Popay, S. N. Johnson","doi":"10.1111/1365-2745.14410","DOIUrl":"https://doi.org/10.1111/1365-2745.14410","url":null,"abstract":"&lt;h2&gt;1 INTRODUCTION&lt;/h2&gt;\u0000&lt;p&gt;Symbiosis plays a key role in plant biology affecting growth, adaptation, and speciation (Uroz et al., &lt;span&gt;2019&lt;/span&gt;). The plant and fungal kingdoms engage in symbiotic relationships such as mycorrhizae and endophytic associations, supporting nutrient uptake and stress tolerance. Fungi also play key roles in decomposition, nutrient cycling, and disease dynamics, underscoring their importance in ecosystem health and agriculture. For example, some temperate grasses within the Poaceae family, establish symbiotic associations with a myriad of microbes including asexual &lt;i&gt;Epichloë&lt;/i&gt; endophytes (Ascomycota: Clavicipitaceae) and arbuscular mycorrhizal (AM) fungi (Glomeromycotina) in shoots and roots, respectively. These symbionts often occur simultaneously and influence enemies of the plant, including herbivorous animals, via changes in plant nutritional and defensive traits (Casas et al., &lt;span&gt;2022&lt;/span&gt;; Omacini et al., &lt;span&gt;2006&lt;/span&gt;; Perez et al., &lt;span&gt;2021&lt;/span&gt;). However, predicting the impact of simultaneous symbioses on plant–herbivore interactions remains challenging since they are usually studied separately.&lt;/p&gt;\u0000&lt;p&gt;As protective mutualists, endophyte anti-herbivore defences mainly operate directly via the production of toxic alkaloids (Bastías et al., &lt;span&gt;2017&lt;/span&gt;). In terms of alkaloids, four major groups of endophyte alkaloids have been reported including ergot alkaloids, indole-diterpenes, pyrrolizidines (e.g. loline) and pyrrolopyrazines (e.g. peramine) (Berry et al., &lt;span&gt;2019&lt;/span&gt;; Schardl, Florea, et al., &lt;span&gt;2013&lt;/span&gt;; Schardl, Young, et al., &lt;span&gt;2013&lt;/span&gt;). Nonetheless, only grasses harbouring endophytes that putatively produce peramine (e.g. anti-chewing insect defences) and loline (e.g. anti-aphid and anti-chewing defences) are desirable in pastures because they confer herbivorous insect resistance without affecting grazing mammals (Young et al., &lt;span&gt;2013&lt;/span&gt;). While lolines are strongly insecticidal (i.e. toxic), peramine often acts as a potent insect-feeding deterrent (Saikkonen et al., &lt;span&gt;2016&lt;/span&gt;). Additionally, endophytes can have a detrimental effect on herbivores by stimulating the increased production of host plant defences (Bastías et al., &lt;span&gt;2017&lt;/span&gt;).&lt;/p&gt;\u0000&lt;p&gt;As nutritional mutualists, AM fungi often enhance plant nutrient supply (mainly phosphorous and nitrogen) through their highly specialized intracellular structures (i.e. arbuscules and vesicles) and their extensive hyphal networks that capture soil nutrients otherwise unavailable for plants (Lanfranco et al., &lt;span&gt;2018&lt;/span&gt;). In addition to improving plant nutritional quality, a growing number of reports suggest that AM fungi also improve host resistance to both herbivorous insects (Koricheva et al., &lt;span&gt;2009&lt;/span&gt;) and pathogens (Gernns et al., &lt;span&gt;2001&lt;/span&gt;). Specifically, for piercing-sucking aphids, AM fungi have been reported to have positive (Hartley &amp; Gange, &lt;span&gt;2009&lt;/span","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"45 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142306207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Ecology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1