Samuel P. Reed, Alejandro A. Royo, Walter P. Carson, Castilleja F. Olmsted, Lee E. Frelich, Peter B. Reich
随着土地利用的改变、气候变化或土著居民的被迫迁移,世界各地的森林经历了历史性干扰制度的重大变化(Bowman et al., 2011;Gilliam, 2016;Gotmark, 2013;Kelly et al., 2023)。北美、欧洲和亚洲的许多中温带森林已经变得更加均匀,经历了严重的灭火,有蹄动物的浏览也增加了(Carpio et al., 2021;Frelich, 2002;Hai et al., 2023;McDowell et al., 2020;Pascual-Rico等人,2021)。这些变化的条件为共同进化并依赖于历史干扰模式的植物物种创造了不利的环境,例如全球分散的橡树(Quercus)物种(Carrero等人,2020;Tinner et al., 2005)。随着干扰制度的改变,植物组成的变化导致管理者恢复或操纵干扰,以支持生物多样性和生态系统功能(Long, 2009;Stanturf et al., 2014)。然而,我们对多种历史干扰的重新引入如何影响生物多样性的理解是新生的,这代表了我们在温带森林系统的长期管理和恢复方面的关键知识差距。北美森林是一个广阔的生态系统,在过去的一个世纪里,它们的干扰机制经历了巨大的变化(Abrams, 2005;Hanberry,Nowacki, 2016;Vander Yacht et al., 2020;韦伯斯特等人,2018)。这种情况在阿巴拉契亚阔叶林中尤为严重,这些阔叶林已经失去了橡树(栎属)树木的再生,并正在过渡到更湿润的、以枫为主导的(宏属)系统。艾布拉姆斯,2008;Pile Knapp et al., 2024)。这种从橡树林到枫树林的过渡是由土著居民被迫搬迁和他们使用文化焚烧作为管理工具而开始的(Abrams等人,2021;Pile Knapp等,2024;波勒斯,2015)。随后是19世纪末和20世纪初的大规模森林砍伐和大面积野火(Lafon et al., 2017)。对这些野火的负面看法导致了一个世纪以来国家批准的火灾排除和抑制,这有利于枫树的生长和更湿润的林下植被(Alexander等人,2021;Arthur et al., 2021)。结果,阿巴拉契亚森林以年龄均匀的林分为主,很少有大中型林分(直径15米;175平方米)树冠间隙和罕见的低强度火灾(Clebsch &;用校车接送学生,1989;Nowacki,艾布拉姆斯,2008;Raymond et al., 2009)。在阿巴拉契亚地区,火灾的复发间隔现在超过了1万年,而不是土著管理下的历史上1到20年的火灾复发间隔和闪电点燃的火灾(Lafon et al., 2017)。与此同时,北美东部大部分地区的白尾鹿(Odocoileus virginianus)种群数量大幅增加,高于历史基线(高于4至8只/平方公里),这取决于它们的种群密度,推动了生态变化,类似于欧洲和亚洲许多其他地区鹿群过多的影响(Côté等人,2004;Iijima等,2023;Reed et al., 2022;Valente et al., 2020)。为了扭转历史管理的长尾效应并维持以橡树为主的植物群落,森林管理者正在重新引入干扰,如规定的焚烧,通过采伐树木创造树冠间隙,以及通过狩猎或将脆弱地区围起来降低鹿的密度(Nuttle等人,2013;Raymond et al., 2009)。重新引入多重干扰可以成为恢复和指导生态群落内部变化的有力工具(Abrams等人,1985;Batllori等人,2019;Reed et al., 2023;Sasaki et al., 2015;Yantes et al., 2023)。例如,在北美和欧洲,低强度的火灾和树冠间隙的形成相结合可以促进橡树的生长,而这些干扰本身的效果较差(Brose et al., 2013;Hutchinson et al., 2024;Izbicki et al., 2020;peterson et al., 2020)。在这个例子中,幸存的橡树代表了干扰后的遗产,其大致特征是在干扰后保留在景观上的适应性、个体和生物量(Cuddington, 2011;富兰克林等人,2000)。干扰遗产可以是物质的(例如木材和营养池)和信息的(例如物种的适应反应和遗传物质),尽管这两类并不是相互排斥的(Johnstone等人,2016)。在给定区域发生的每次干扰都会改变先前干扰的遗留群落,在某些情况下,干扰组合和时间可能会导致独特的群落,这取决于所讨论的干扰如何相互作用(Anoszko等人,2022)。 因此,在美国东部森林和世界各地的温带森林中,与这些干扰单独的遗产相比,低强度火灾、冠层间隙创造和有蹄类动物的觅食组合的干扰遗产可能在决定森林如何重组和发展到未来方面具有特别重要的作用(Cuddington, 2011;Seidl et al., 2014;特纳和Seidl, 2023)。为此目的,土壤种子库是一个重要但研究不足的实体,它可能受到重新引入的干扰的强烈影响,并可能影响未来的干扰制度(Archibold, 1979;Ferrandis et al., 1996;摩根,Neuenschwander, 1988;Pakeman,小,2005;苏萨,1984)。种子库是一种生殖适应,允许植物以休眠种子的形式在地下持续存在,其中土壤可以作为地上干扰的缓冲(Baskin &;巴斯金,2022;汤普森,1987)。森林种子库已被证明是世界各地温带森林生物多样性的储存库,拥有许多草本和木本早期演替物种(Grubb et al., 2013;Plue et al., 2010;Yang等人,2021)。种子库也是遗传多样性的潜在来源(Levin, 1990;McCauley, 2014),使种子库成为物质和信息遗产。在扰动中幸存下来的发芽植物最终成熟并释放种子,重新建立种子库过程,使植物群落能够在未来的扰动中重组,从而根据返回土壤的种子建立另一种遗产(Baltzer等人,2021;Faliń平方公里列阵,1999;Grubb, 1988;凯悦酒店,卡斯珀,2000;Seidl,特纳,2022)。假设,更多的干扰将导致种子库更类似于地上植被,因为草本层是均匀的,少数野生物种存活和繁殖(Ma et al., 2021)。种子库的这些变化和干扰会产生长期的生态后果。例如,在19世纪末和20世纪初,美国的木材采伐和森林大火可能使灌木红莓传播并使其长寿的种子饱和森林种子库,在整个美国东部受到植被干扰后,形成了长达一个世纪的红莓重再生遗产(Dunn et al., 1982;彼得森,卡森,1996)。然后,红莓可以作为一种顽强的林下植物存活数十年(Donoso &;Nyland, 2006;Kern等人,2012)。规定的燃烧、树冠间隙的创造和鹿的浏览都为种子库中的新植被生长和种子库的变化提供了独特而重要的机会(Gioria等人,2022;Muscolo et al., 2014;舒勒,2010)。规定的火清除植物材料,通过增加光、热、烟和营养来催化种子发芽(Keeley &;
{"title":"Multiple disturbances, multiple legacies: Fire, canopy gaps and deer jointly change the forest seed bank","authors":"Samuel P. Reed, Alejandro A. Royo, Walter P. Carson, Castilleja F. Olmsted, Lee E. Frelich, Peter B. Reich","doi":"10.1111/1365-2745.14459","DOIUrl":"10.1111/1365-2745.14459","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 2","pages":"353-370"},"PeriodicalIF":5.3,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.14459","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>Sandel, B., Pavelka, C., Hayashi, T., et al. (2021) Predicting intraspecific trait variation among California's grasses. <i>Journal of Ecology</i>, <i>109</i>, 2662–2677. https://doi.org/10.1111/1365-2745.13673.</p><p>In the paper by Sandel et al. (2021), an error has been identified in the code.</p><p>The error was in generating the testing data subset for assessing random forest fit, causing it to not be independent of the training dataset. This affects Figures 3-5, and the corrected versions of these are included below. Table S3 has been updated in the article. The updated text referring to these figures in the section ‘3.2 Modelling ITV’ is also included below. The changes do not fundamentally alter the message of the paper.</p><p><b>3.2 Modelling</b> <b>ITV</b></p><p>Across all specifications of the random forest models, performance scores were very similar on the training and testing data subsets (on average, differing by <0.09, Table S3), suggesting little overfitting. When applied to the testing dataset, random forests containing all five predictor groups predicted values that were well correlated with the observed trait values (for delta-SLA: 0.74, SLA: 0.82, delta-Height: 0.67, Height = 0.88, delta-LA: 0.72, LA: 0.89, Table S3). Across all subsets of variable groups, other local traits (values of the non-focal trait from the local population, e.g. when predicting SLA, the Height of the plants) and climate were the most important groups for model performance (Figure 3). Species mean traits, name and phylogeny had smaller contributions to model fit. The performance of one such random forest, excluding the species predictor variable, is shown in Figure 4. The correlation between observed and predicted values is strong for both training and testing datasets. However, the observed–predicted relationships deviated somewhat from the 1:1 line, particularly for the delta-trait predictions. Standard major axis (SMA) regression slopes were less than 1, ranging from 0.65 to 0.73 for delta-trait models and 0.82 and 0.92 for the final local trait predictions. These deviations indicate that these models tend to predict less extreme values for the most extreme trait observations.</p><p>A model including other local trait measurements and species names would be of limited use for predicting trait values of a plant in an unmeasured location. In contrast, the climate of that location is readily available, and phylogenetic relationships are known for most species. Thus, we focused on a reduced model including just these two variable groups and two species-level traits: the species mean value for the focal trait and its life span. Removing species names from the model had little impact (Table S3), but removing other local traits reduced model performance (Figure 5). For example, predicted-observed correlations for SLA, height and LA dropped to 0.79, 0.88 and 0.89. This likely reflects the fact that other local trait measurements can provide insight in
{"title":"Correction to “Predicting intraspecific trait variation among California's grasses”","authors":"","doi":"10.1111/1365-2745.14466","DOIUrl":"10.1111/1365-2745.14466","url":null,"abstract":"<p>Sandel, B., Pavelka, C., Hayashi, T., et al. (2021) Predicting intraspecific trait variation among California's grasses. <i>Journal of Ecology</i>, <i>109</i>, 2662–2677. https://doi.org/10.1111/1365-2745.13673.</p><p>In the paper by Sandel et al. (2021), an error has been identified in the code.</p><p>The error was in generating the testing data subset for assessing random forest fit, causing it to not be independent of the training dataset. This affects Figures 3-5, and the corrected versions of these are included below. Table S3 has been updated in the article. The updated text referring to these figures in the section ‘3.2 Modelling ITV’ is also included below. The changes do not fundamentally alter the message of the paper.</p><p><b>3.2 Modelling</b> <b>ITV</b></p><p>Across all specifications of the random forest models, performance scores were very similar on the training and testing data subsets (on average, differing by <0.09, Table S3), suggesting little overfitting. When applied to the testing dataset, random forests containing all five predictor groups predicted values that were well correlated with the observed trait values (for delta-SLA: 0.74, SLA: 0.82, delta-Height: 0.67, Height = 0.88, delta-LA: 0.72, LA: 0.89, Table S3). Across all subsets of variable groups, other local traits (values of the non-focal trait from the local population, e.g. when predicting SLA, the Height of the plants) and climate were the most important groups for model performance (Figure 3). Species mean traits, name and phylogeny had smaller contributions to model fit. The performance of one such random forest, excluding the species predictor variable, is shown in Figure 4. The correlation between observed and predicted values is strong for both training and testing datasets. However, the observed–predicted relationships deviated somewhat from the 1:1 line, particularly for the delta-trait predictions. Standard major axis (SMA) regression slopes were less than 1, ranging from 0.65 to 0.73 for delta-trait models and 0.82 and 0.92 for the final local trait predictions. These deviations indicate that these models tend to predict less extreme values for the most extreme trait observations.</p><p>A model including other local trait measurements and species names would be of limited use for predicting trait values of a plant in an unmeasured location. In contrast, the climate of that location is readily available, and phylogenetic relationships are known for most species. Thus, we focused on a reduced model including just these two variable groups and two species-level traits: the species mean value for the focal trait and its life span. Removing species names from the model had little impact (Table S3), but removing other local traits reduced model performance (Figure 5). For example, predicted-observed correlations for SLA, height and LA dropped to 0.79, 0.88 and 0.89. This likely reflects the fact that other local trait measurements can provide insight in","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 1","pages":"263-266"},"PeriodicalIF":5.3,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.14466","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142797797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
我们处理和解释生态群落如何应对人为影响的方式在很大程度上取决于我们的基线,也就是说,取决于我们在人类干预之前设想的情景(Pausas &;债券,2019;维拉,2010)。在19世纪和20世纪,欧洲温带低地的基线是一个以阔叶落叶乔木为主的连续原始森林(Vera, 2000)。这一假说主要建立在田野和草地在放弃农业和畜牧业后可以自发地发展成森林的观察之上。Frans Vera(2000)在其颇具影响力的著作《放牧生态学和森林历史》中对原始森林的基线提出了挑战,作者提出了多种令人信服的证据,支持另一种假设:灭绝的大型食草动物的放牧和觅食应该创造并维持了森林牧场,这一定是冰川后温带欧洲广泛存在的景观类型(Vera, 2000)。这本书包含了从演替生态学,植物再生,孢粉学,古生态学,历史,甚至语言学(维拉,2000年)的观点。最近,一项大规模孢粉学研究(Pearce et al., 2023)进一步支持了Vera的假设,估计在末次间冰期(12.9万- 11.6万年前),浅色林地(不耐荫分类群)和开阔植被覆盖了欧洲一半以上的景观。与此同时,另一项研究估计,自末次间冰期以来,欧洲大型动物(野生陆生哺乳动物≥10公斤)的群落生物量减少了约95%,大型食草动物(包括大象和犀牛)的最大物种也在减少(Davoli et al., 2024)。此外,一项进一步的孢粉学研究表明,末次间冰期的植被组成更好地解释了巨型食草动物的作用,而不是火灾制度(Pearce et al., 2024)。因此,目前的证据支持,欧洲温带不是一个封闭的连续森林,而是一个更异质性的生物群系,包括开放植被(主要是草地)、轻型林地和森林(Pearce et al., 2023),拥有大型食草哺乳动物的多样化群落(Davoli et al., 2024;Svenning等人,2024)。这与许多温带木本植物是需要光的物种这一事实是一致的,因为它们不能在阴暗的森林内部再生,所以往往局限于森林边缘(Vera, 2000)。此外,许多需要光的植物是多刺的(如小檗、山楂、刺李、蔷薇、野蔷薇和欧洲花楸)或有多刺的叶子(如冬青和杜松)。这些是对草食性哺乳动物的防御特征,使这些物种在放牧和浏览的景观中很常见(Vera, 2000)。重要的是,多刺灌木促进了非多刺物种的建立,包括需要光的橡树(栎属),它们受益于其看护植物的抗食草动物保护(Bakker等人,2004;加西亚,Obeso, 2003;马丁内斯,加西亚,2017;Olff et al., 1999;维拉,2000)。值得注意的是,在温带欧洲,大多数需要光的木本物种是通过两种不同的机制被鸟类和哺乳动物传播的:endozochory和synzoochory (van der Pijl, 1982)。一方面,数十种植物结出肉质果实(如Berberis属、Cornus属、creataegus属、Euonymus属、Frangula属、Hedera属、Ilex属、Ligustrum属、Malus属、Rhamnus属、Rosa属、Rubus属、Prunus、Pyrus属、sambuus、Sorbus、Viburnum属)、肉质球果(如Juniperus属)或芳香化种子(如Taxus baccata属),这些果实被食性动物(主要是鸟类)食用(González-Varo等,2023;Rumeu et al., 2020)。食果动物在体内运输有活力的种子,直到它们通过排便或反流(即内窥镜;Jordano, 2014)。另一方面,橡树(栎属)的橡子和榛子(榛属)的坚果促进种子贮藏动物的传播,主要是鸦科动物和老鼠(Kollmann &;Schill, 1996),由于不同的原因,它们不会消耗所有分散储存的种子(即synzoochory;Gómez等人,2019)。小鼠的同音活动通常发生在很短的距离内(20米;Kollmann,Schill, 1996),因此,只有鸟类在景观尺度上发挥重要作用,将橡子和坚果分散到数百米(Pesendorfer et al., 2016)。除了先锋树(桤木、桦木、杨树、柳)的风传播外,动物介导的种子传播为木本植被动态和群落聚集提供了一个起始模板。因此,了解鸟类如何在景观尺度上传播种子对于理解林地的功能并指导其恢复至关重要(Carlo &;莫拉莱斯,2016;González-Varo等,2023;马丁内斯,加西亚,2017;Pesendorfer et al., 2016)。 在这里,我从更新世的角度反思了目前关于木本植物在欧洲破碎的人为景观中的鸟类种子传播的知识。换句话说,我在解释当今种子在森林斑块内外的传播模式时,考虑到基线是异质景观,包括轻型林地和大型食草动物居住的开放植被。这项工作的目的是讨论过去和现在景观之间的联系,寻求对已知不同鸟类在欧洲森林内外传播种子的高度空间互补性的历史理解。我还提出了一个关于景观模式的可能和重要的差异:更新世的林地开阔程度和栖息地边界的清晰度肯定与现代农业造成的人为砍伐非常不同。最后,我简要地讨论了本文所讨论的主要思想对其他生物地理区域的一般性。
{"title":"Avian seed dispersal out of the forests: A view through the lens of Pleistocene landscapes","authors":"Juan P. González-Varo","doi":"10.1111/1365-2745.14457","DOIUrl":"10.1111/1365-2745.14457","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 3","pages":"510-517"},"PeriodicalIF":5.3,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.14457","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chao Wang, Yan Geng, Jordi Sardans, Josep Peñuelas, Jin-Sheng He
利益冲突声明所有作者声明无利益冲突。
{"title":"Coordinated variation in elemental composition and morphology in leaves, but independence in roots across Chinese grasslands","authors":"Chao Wang, Yan Geng, Jordi Sardans, Josep Peñuelas, Jin-Sheng He","doi":"10.1111/1365-2745.14464","DOIUrl":"10.1111/1365-2745.14464","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 2","pages":"418-432"},"PeriodicalIF":5.3,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
为了应对最近的气候变化,许多植物已经改变了生活史阶段(物候学)的时间,如发芽、开花和结果发生的时间比工业化前记录早得多(CaraDonna等人,2014;帕玛森,2006)。尽管响应的大小和方向可能是物种特异性的(CaraDonna等人,2014;Collins等人,2021),由于所有营养水平的生物体正在以前所未有的速度变化,这种压倒性的模式引起了人们的关注。不同的反应可能导致相互作用物种之间的不同步(Both et al., 2009;Burkle et al., 2013;Hegland et al., 2009),并且需要更多的研究来增强我们对人口影响的理解,例如对生殖成功的影响(CaraDonna et al., 2014;福勒斯特,Miller-Rushing, 2010;Iler et al., 2021)。此外,虽然物候变化在研究中通常与自下而上的因素联系在一起,如遗传或气候线索(Forrest &;Miller-Rushing, 2010),植物的营养物候和开花物候可以被自上而下的压力源(如草食)提前或延迟(Poveda等人,2003;Tadey, 2020;朱等人,2016)。由于越来越多的食草动物和更频繁的昆虫爆发被假设为世界变暖的后果(哈曼等人,2021;Tylianakis et al., 2008),需要更多的实验研究来探索非生物和生物应激源的联合效应。通常,研究集中在物候变化的公认的气候线索上。热量的积累(如度日)是开花的一个预测指标(Jackson, 1966;Miller-Rushing等人,2007),而且许多温带植物也有冬季寒冷的需求,这限制了它们在春季萌发(Morin等人,2009)。在高山条件下和高纬度地区,积雪和融雪日期为冬季生存和羽化物候提供了重要的非生物控制(CaraDonna等,2014;Iler et al., 2013)。相比之下,食草性通常被认为通过减少生物量、去除光合作用和/或生殖组织以及对适应性产生负面影响来直接影响植物的性能(Barrio et al., 2017;Bustos-Segura等,2021;Moreira等人,2019;拉斯穆森,Yang, 2023),尽管代偿反应也很常见(例如Lemoine等人,2017;Poveda et al., 2003)。然而,当受到攻击的植物将资源从生长和繁殖转向防御,以提高食草性“抗性”时,食草性也会产生额外的影响(Benevenuto等人,2020),并且生理上的改变可以大大改变营养和开花物候(Forkner, 2014;Freeman et al., 2003;俄文,财富,1999;Young et al., 1994)。尽管草食对物候的自上而下的作用,确切的机制尚不清楚。在一些研究中,草食被认为通过对小气候、群落组成和种间竞争的物理改变对物候有间接影响(Han et al., 2016)。例如,在大型食草动物密集放牧(Tadey, 2020)或控制放牧实验(Han et al., 2016)下,一些物种特异性的营养和开花物候延迟(Tadey, 2020);Zhu et al., 2016),归因于大型食草动物的存在对土壤湿度的影响。调查昆虫食草影响的研究已经确定了更直接的物候影响,如缩短花期(Poveda et al., 2003;Schat,开花,2005),延迟开花(Agrawal et al., 1999;Freeman et al., 2003;Lemoine et al., 2017)和由于资源分配变化而提前开花(Bustos-Segura et al., 2021;Pak et al., 2009)。其他人使用有机化合物茉莉酸甲酯(MeJA)来诱导类似于食草昆虫攻击时所表现出的防御反应,并发现增强的食草抗性导致延迟(Agrawal等,1999;Zhai et al., 2015)、高级(Pak et al., 2009)和中性(Thaler, 1999)物候效应。这些相互矛盾的结果引发了人们对草食在物候学中的作用的质疑,特别是因为它们要么未能解开大型草食动物放牧对植物生理学的影响,要么是基于实验室条件、一年生植物和实验室饲养的昆虫。很少有研究探索自下而上和自上而下驱动因素(如变暖和草食)对植物物候的综合影响(Lemoine et al., 2017;Sun et al., 2023)。由于对草食的影响缺乏共识,在草食导致的延迟和升温提前的情况下,综合效应可能会相互抵消(Lemoine等人,2017),或者导致同一方向响应的加性效应(Sun等人,2023)。同样,物种效应可能取决于气候背景,如海拔,次优和相对紧张的条件会加剧某些反应(Gimenez-Benavides等)。 , 2011;Hegland,Gillespie, 2024)。为了解决这些不确定性,我们首次研究了在野外条件下,在挪威西部三个海拔的开放北方针叶林中,升温和草食抗性对两种长寿矮灌木物候的影响。采用MeJA模拟植物对一年虫害爆发的生理抗性反应(自上而下效应),采用开放式顶室(OTCs)模拟连续夏季增温(自下而上效应)。然后,我们跟踪了两种植物物种,它们对两种处理有不同的反应,这取决于海拔和最佳生长条件。杨梅(越桔)是一种生长于挪威中海拔地区的早花落叶树种(约450 m.a.s.l),对MeJA表现出典型的诱导防御反应(生长减少和食草动物伤害;Benevenuto等人,2020),尽管已经报道了对otc变暖的相互矛盾的物候反应(Anadon-Rosell等人,2014;Prieto et al., 2009)。较晚开花和较小的常绿灌木V. viis - idea(越橘)具有耐旱性,在低海拔和温暖的海拔表现良好,不仅对诱导防御反应较弱(Hegland &;Gillespie, 2024),但也推进了人工变暖下的物候学(Rosa et al., 2015)。在这两个物种中,越橘自然比越橘更容易遭受食草动物的伤害(例如Kozlov等人,2015)。通过我们的联合处理和研究物种,我们旨在量化营养和生殖物候反应,并以生殖输出的形式确定对植物适应性的影响。我们的第一个研究问题是:(1)在三个不同海拔下,实验升温和诱导抗草食联合处理对越橘和越橘的营养物候和繁殖物候有什么影响?根据这些植物之前的反应,我们预计(a)在变暖下的进展,在温度有限的高海拔地区进展最大;(b)由于诱导抗性的延迟,在施用MeJA后的一年里反应更强;(c)在施用MeJA后的一年里,各种处理的组合将相互抵消,尽管在我们最高的高山地点变暖可能使植物更耐草食(Hegland &;Gillespie, 2024)。我们还预计越橘对治疗的反应会更灵敏,因为它更容易受到干旱胁迫和昆虫爆发的影响(Taulavuori等人,2013)。由于物候变化对植物适应性和与人口统计学相关的变量的影响很少被研究(Iler et al., 2021),我们进一步提出了问题(2)物候变化在多大程度上影响越橘和越橘的生殖产量?我们用结构方程模型回答了这个问题,并基于物候变化会因与传粉媒介不匹配而对生殖产出产生负面影响的假设建立了我们的
{"title":"Herbivory resistance in dwarf shrubs combines with simulated warming to shift phenology and decrease reproduction","authors":"Mark A. K. Gillespie, Stein Joar Hegland","doi":"10.1111/1365-2745.14462","DOIUrl":"10.1111/1365-2745.14462","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 2","pages":"387-402"},"PeriodicalIF":5.3,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.14462","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Elevational differentiation occurs alongside high plasticity in a general-purpose genotype invasive plant","authors":"Aaron Millar, Hazel Chapman","doi":"10.1111/1365-2745.14455","DOIUrl":"10.1111/1365-2745.14455","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 1","pages":"220-231"},"PeriodicalIF":5.3,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142777395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biodiversity of key soil phylotypes is associated with increased plant richness and productivity following agricultural abandonment and afforestation","authors":"Jianyu Wang, Yuyu Li, Yongbiao Ji, Jia He, Junhong Zhang, Zhenghong Dong, Zhangxing Zhang, Ran Xu, Wenhui Hu, Miaochun Fan, Wenqing Chen","doi":"10.1111/1365-2745.14463","DOIUrl":"10.1111/1365-2745.14463","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 2","pages":"403-417"},"PeriodicalIF":5.3,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142777396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fuel architecture influences interspecific variation in shoot flammability, but not as much as leaf traits","authors":"Md Azharul Alam, Sarah V. Wyse, Hannah L. Buckley, George L. W. Perry, Xinglei Cui, Jon J. Sullivan, Dylan W. Schwilk, Timothy J. Curran","doi":"10.1111/1365-2745.14450","DOIUrl":"10.1111/1365-2745.14450","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"113 2","pages":"322-338"},"PeriodicalIF":5.3,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142753118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}