首页 > 最新文献

Npg Asia Materials最新文献

英文 中文
Ultrathin skin-conformable electrodes with high water vapor permeability and stretchability characteristics composed of single-walled carbon nanotube networks assembled on elastomeric films 由组装在弹性薄膜上的单壁碳纳米管网络组成的具有高水蒸气渗透性和可拉伸特性的超薄皮肤适形电极
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-20 DOI: 10.1038/s41427-024-00553-9
Tatsuhiro Horii, Kai Yamashita, Marimo Ito, Kei Okada, Toshinori Fujie
Herein, we report on conductive ultrathin films (nanosheets) with the characteristics of stretchability and water vapor permeability for skin-conformable bioelectrodes. The films are fabricated by combining conductive fibrous networks of single-wall carbon nanotubes (SWCNTs) and poly(styrene-b-butadiene-b-styrene) (SBS) nanosheets (i.e., SWCNT-SBS nanosheets). An increase in the number of SWCNT coatings increases both the thicknesses and densities of the SWCNT bundles. The SBS nanosheets coated with three layers of SWCNTs (i.e., SWCNT 3rd-SBS nanosheets) show comparable sheet resistance to the SBS nanosheets coated with poly(3,4-ethylenedioxithiophene) doped with poly(4-styrenesulfonate acid) (PEDOT:PSS) containing 5 wt.% butylene glycol (i.e., PEDOT:PSS/BG5-SBS nanosheets). In addition, the SWCNT 3rd-SBS nanosheets exhibit significantly reduced elastic moduli and increased elongations at break compared to the PEDOT:PSS/BG5-SBS nanosheets. Furthermore, the calculated water vapor transmission ratio of the 210-nm-thick SBS nanosheets (268,172 g m−2 (2 h)−1) is greater than that of the filter paper (6345 g m−2 (2 h)−1). The SWCNT 3rd-SBS nanosheets attached to model skin show high tolerances to bending and artificial sweat at different pH values (i.e., the electrical resistance changes ~1.1 times). Finally, the SWCNT 3rd-SBS nanosheet is applied to detect the surface electromyogram from the forearm of a subject. This nanosheet displays a signal-to-noise ratio similar to that of the PEDOT:PSS/BG5-SBS nanosheet. We report on conductive ultrathin films (referred to as “nanosheets”) with stretchability and water vapor permeability for skin-conformable bioelectrodes. By combining conductive fibrous networks of single-wall carbon nanotubes and poly(styrene-b-butadiene-b-styrene) continuous nanosheets (i.e., SWCNT-SBS nanosheets), the conductive nanosheet shows a high tolerance to bending on a model skin sheet and a high permeability to humidity. Finally, we demonstrate that the conductive nanosheet can detect the surface electromyogram signals from a subject’s forearm.
在此,我们报告了具有拉伸性和水蒸气渗透性的导电超薄薄膜(纳米片),可用于皮肤适形生物电极。这种薄膜是通过将单壁碳纳米管(SWCNT)和聚(苯乙烯-丁二烯-苯乙烯)纳米片(即 SWCNT-SBS 纳米片)的导电纤维网络结合在一起制成的。随着 SWCNT 涂层数量的增加,SWCNT 束的厚度和密度也随之增加。涂覆了三层 SWCNT 的 SBS 纳米片(即 SWCNT 3rd-SBS 纳米片)与涂覆了含有 5 wt.% 丁二醇的掺杂聚(4-苯乙烯磺酸)的聚(3,4-亚乙二氧基噻吩)(PEDOT:PSS)的 SBS 纳米片(即 PEDOT:PSS/BG5-SBS 纳米片)具有相当的薄层电阻。此外,与 PEDOT:PSS/BG5-SBS 纳米片相比,SWCNT 3rd-SBS 纳米片的弹性模量显著降低,断裂伸长率显著增加。此外,计算得出的 210 纳米厚 SBS 纳米片的水蒸气透过率(268172 g m-2 (2 h)-1)高于滤纸(6345 g m-2 (2 h)-1)。附着在模型皮肤上的 SWCNT 第 3 代-SBS 纳米片对不同 pH 值下的弯曲和人工汗液表现出很高的耐受性(即电阻变化~1.1 倍)。最后,将 SWCNT 3rd-SBS 纳米片用于检测受试者前臂的表面肌电图。这种纳米片显示出与 PEDOT:PSS/BG5-SBS 纳米片相似的信噪比。
{"title":"Ultrathin skin-conformable electrodes with high water vapor permeability and stretchability characteristics composed of single-walled carbon nanotube networks assembled on elastomeric films","authors":"Tatsuhiro Horii, Kai Yamashita, Marimo Ito, Kei Okada, Toshinori Fujie","doi":"10.1038/s41427-024-00553-9","DOIUrl":"10.1038/s41427-024-00553-9","url":null,"abstract":"Herein, we report on conductive ultrathin films (nanosheets) with the characteristics of stretchability and water vapor permeability for skin-conformable bioelectrodes. The films are fabricated by combining conductive fibrous networks of single-wall carbon nanotubes (SWCNTs) and poly(styrene-b-butadiene-b-styrene) (SBS) nanosheets (i.e., SWCNT-SBS nanosheets). An increase in the number of SWCNT coatings increases both the thicknesses and densities of the SWCNT bundles. The SBS nanosheets coated with three layers of SWCNTs (i.e., SWCNT 3rd-SBS nanosheets) show comparable sheet resistance to the SBS nanosheets coated with poly(3,4-ethylenedioxithiophene) doped with poly(4-styrenesulfonate acid) (PEDOT:PSS) containing 5 wt.% butylene glycol (i.e., PEDOT:PSS/BG5-SBS nanosheets). In addition, the SWCNT 3rd-SBS nanosheets exhibit significantly reduced elastic moduli and increased elongations at break compared to the PEDOT:PSS/BG5-SBS nanosheets. Furthermore, the calculated water vapor transmission ratio of the 210-nm-thick SBS nanosheets (268,172 g m−2 (2 h)−1) is greater than that of the filter paper (6345 g m−2 (2 h)−1). The SWCNT 3rd-SBS nanosheets attached to model skin show high tolerances to bending and artificial sweat at different pH values (i.e., the electrical resistance changes ~1.1 times). Finally, the SWCNT 3rd-SBS nanosheet is applied to detect the surface electromyogram from the forearm of a subject. This nanosheet displays a signal-to-noise ratio similar to that of the PEDOT:PSS/BG5-SBS nanosheet. We report on conductive ultrathin films (referred to as “nanosheets”) with stretchability and water vapor permeability for skin-conformable bioelectrodes. By combining conductive fibrous networks of single-wall carbon nanotubes and poly(styrene-b-butadiene-b-styrene) continuous nanosheets (i.e., SWCNT-SBS nanosheets), the conductive nanosheet shows a high tolerance to bending on a model skin sheet and a high permeability to humidity. Finally, we demonstrate that the conductive nanosheet can detect the surface electromyogram signals from a subject’s forearm.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-13"},"PeriodicalIF":8.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00553-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monitoring ocular disease via optical nanostructures potentially applicable to corneal contact lens products 通过可能适用于角膜接触镜产品的光学纳米结构监测眼部疾病
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-14 DOI: 10.1038/s41427-024-00550-y
Bader AlQattan, Mohamed Elsherif, Fahad Alam, Haider Butt
Ocular diseases can cause vision problems or even blindness if they are not detected early. Some ocular diseases generate irregular physical changes in the eye; therefore, reliable diagnostic technology for continuous monitoring of the eye is an unmet clinical need. In this study, a pulsed laser (Nd:YAG) was used to create optical nanostructures on a hydrogel-based commercial contact lens. Simulations were used to determine the spacing of the nanostructures, which were then produced and tested on the lens in ambient humidity and fully hydrated environments. The nanostructures produced a 4° diffraction angle difference in response to the environmental changes. Vision obstruction was considered while designing the nanostructure features on the lens. The curved nanostructures exhibited a series of visible rainbow colors with an average range of 8° under normal room light. A spherical surface was also used to simulate the human eye, and application of a force (curvature change) caused the nanostructure spacing to change, influencing the visible color of the contact lenses. A smartphone camera application was used to measure the progress of ocular diseases by analyzing the RGB color values of the visible color. The nanostructures were also responsive to K+ ion variations in artificial tear fluids, with a 12 mmol L−1 sensitivity, which may allow the detection of ocular ionic strength changes. A pulsed laser created optical nanostructures (holograms) on hydrogel-based soft contact lenses. The nanostructures produced varying diffraction patterns in response to the environmental changes. Vision obstruction was considered while designing the nanostructure features on the lens surface. A change in curvature of the contact lens caused the nanostructure spacing to change, influencing the visible color of the hologram. A smartphone camera application was used to monitor the diffraction colors by analyzing the RGB color values.
{"title":"Monitoring ocular disease via optical nanostructures potentially applicable to corneal contact lens products","authors":"Bader AlQattan, Mohamed Elsherif, Fahad Alam, Haider Butt","doi":"10.1038/s41427-024-00550-y","DOIUrl":"10.1038/s41427-024-00550-y","url":null,"abstract":"Ocular diseases can cause vision problems or even blindness if they are not detected early. Some ocular diseases generate irregular physical changes in the eye; therefore, reliable diagnostic technology for continuous monitoring of the eye is an unmet clinical need. In this study, a pulsed laser (Nd:YAG) was used to create optical nanostructures on a hydrogel-based commercial contact lens. Simulations were used to determine the spacing of the nanostructures, which were then produced and tested on the lens in ambient humidity and fully hydrated environments. The nanostructures produced a 4° diffraction angle difference in response to the environmental changes. Vision obstruction was considered while designing the nanostructure features on the lens. The curved nanostructures exhibited a series of visible rainbow colors with an average range of 8° under normal room light. A spherical surface was also used to simulate the human eye, and application of a force (curvature change) caused the nanostructure spacing to change, influencing the visible color of the contact lenses. A smartphone camera application was used to measure the progress of ocular diseases by analyzing the RGB color values of the visible color. The nanostructures were also responsive to K+ ion variations in artificial tear fluids, with a 12 mmol L−1 sensitivity, which may allow the detection of ocular ionic strength changes. A pulsed laser created optical nanostructures (holograms) on hydrogel-based soft contact lenses. The nanostructures produced varying diffraction patterns in response to the environmental changes. Vision obstruction was considered while designing the nanostructure features on the lens surface. A change in curvature of the contact lens caused the nanostructure spacing to change, influencing the visible color of the hologram. A smartphone camera application was used to monitor the diffraction colors by analyzing the RGB color values.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-13"},"PeriodicalIF":8.6,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00550-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141341662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topologically influenced terahertz emission in Co2MnGa with a large anomalous Hall effect 具有大反常霍尔效应的 Co_2MnGa 中受拓扑影响的太赫兹发射
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-07 DOI: 10.1038/s41427-024-00545-9
Ruma Mandal, Ren Momma, Kazuaki Ishibashi, Satoshi Iihama, Kazuya Suzuki, Shigemi Mizukami
The terahertz (THz) spectral zone is one of the most exciting but least explored domains of the electromagnetic spectrum. To extend the applicability of THz waves, the present objective is to develop an efficient, compact, durable, and low-cost THz emitter source. A spintronic THz emitter consisting of a ferromagnetic/nonmagnetic bilayer heterostructure is a promising innovation that can provide an alternative solution/replacement for conventional THz emitters. To further develop these spin-based THz emitters, we demonstrate an efficient and strong THz emission from a single layer of Co2MnGa with a large anomalous Hall effect (AHE) influenced by its Weyl semimetallic nature. Strong correlations among the THz emission, AHE, and chemical ordering of the full Heusler crystal structures for Co2MnGa are shown. Based on proper structural and chemical design, the topological nature of this material facilitates systematic optimization. Our initial findings provide a new design concept for the topological influences on spin-based THz emitters, and these emitters are expected to facilitate the further development of the intriguing Weyl physics. Our investigation delves into the pulse-laser-induced emission of THz waves from a single layer of Co2MnGa thin film, emphasizing its notable anomalous Hall effect (AHE) stemming from its Weyl semimetallic characteristics. We establish robust correlations between THz emission, AHE, and the chemical structure of Co2MnGa thin films. Significantly, Co2MnGa films exhibit much larger THz emission compared to conventional CoFeB films. These findings introduce an innovative approach to designing spin-based THz emitters and promise to deepen our understanding of Weyl physics.
{"title":"Topologically influenced terahertz emission in Co2MnGa with a large anomalous Hall effect","authors":"Ruma Mandal, Ren Momma, Kazuaki Ishibashi, Satoshi Iihama, Kazuya Suzuki, Shigemi Mizukami","doi":"10.1038/s41427-024-00545-9","DOIUrl":"10.1038/s41427-024-00545-9","url":null,"abstract":"The terahertz (THz) spectral zone is one of the most exciting but least explored domains of the electromagnetic spectrum. To extend the applicability of THz waves, the present objective is to develop an efficient, compact, durable, and low-cost THz emitter source. A spintronic THz emitter consisting of a ferromagnetic/nonmagnetic bilayer heterostructure is a promising innovation that can provide an alternative solution/replacement for conventional THz emitters. To further develop these spin-based THz emitters, we demonstrate an efficient and strong THz emission from a single layer of Co2MnGa with a large anomalous Hall effect (AHE) influenced by its Weyl semimetallic nature. Strong correlations among the THz emission, AHE, and chemical ordering of the full Heusler crystal structures for Co2MnGa are shown. Based on proper structural and chemical design, the topological nature of this material facilitates systematic optimization. Our initial findings provide a new design concept for the topological influences on spin-based THz emitters, and these emitters are expected to facilitate the further development of the intriguing Weyl physics. Our investigation delves into the pulse-laser-induced emission of THz waves from a single layer of Co2MnGa thin film, emphasizing its notable anomalous Hall effect (AHE) stemming from its Weyl semimetallic characteristics. We establish robust correlations between THz emission, AHE, and the chemical structure of Co2MnGa thin films. Significantly, Co2MnGa films exhibit much larger THz emission compared to conventional CoFeB films. These findings introduce an innovative approach to designing spin-based THz emitters and promise to deepen our understanding of Weyl physics.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-11"},"PeriodicalIF":8.6,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00545-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141372884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superstrength permanent magnets with iron-based superconductors by data- and researcher-driven process design 通过数据和研究人员驱动的工艺设计,利用铁基超导体制造超强永磁体
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-07 DOI: 10.1038/s41427-024-00549-5
Akiyasu Yamamoto, Shinnosuke Tokuta, Akimitsu Ishii, Akinori Yamanaka, Yusuke Shimada, Mark D. Ainslie
Iron-based high-temperature (high-Tc) superconductors have good potential to serve as materials in next-generation superstrength quasipermanent magnets owing to their distinctive topological and superconducting properties. However, their unconventional high-Tc superconductivity paradoxically associates with anisotropic pairing and short coherence lengths, causing challenges by inhibiting supercurrent transport at grain boundaries in polycrystalline materials. In this study, we employ machine learning to manipulate intricate polycrystalline microstructures through a process design that integrates researcher- and data-driven approaches via tailored software. Our approach results in a bulk Ba0.6K0.4Fe2As2 permanent magnet with a magnetic field that is 2.7 times stronger than that previously reported. Additionally, we demonstrate magnetic field stability exceeding 0.1 ppm/h for a practical 1.5 T permanent magnet, which is a vital aspect of medical magnetic resonance imaging. Nanostructural analysis reveals contrasting outcomes from data- and researcher-driven processes, showing that high-density defects and bipolarized grain boundary spacing distributions are primary contributors to the magnet’s exceptional strength and stability. Iron-based superconductors are promising for uses like quantum computing and superstrong magnets. However, improving their superconducting properties is challenging. This study aimed to improve these properties in a specific superconductor, K-doped Ba122, using Bayesian optimization. The researchers made samples under different conditions and measured their superconducting properties to refine the process. Two large disk-shaped samples were made using the best processing conditions found from data-driven and researcher-driven methods. The superconducting properties of these samples, and their ability to act as magnets, were tested at low temperatures. The results showed significant improvements, proving the optimization process’s effectiveness and resulting in an iron-based superconducting magnet with unprecedented strength. The study concludes that machine learning, especially Bayesian optimization, can significantly advance high-performance superconducting materials development. This could lead to more efficient and powerful superconducting magnets for various uses. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the authors. The world’s strongest iron-based superconducting magnet has been manufactured. Machine learning using Bayesian optimization was employed to improve the superconducting properties of potassium-doped barium iron arsenide (Ba,K)Fe2As2. Two large disk-shaped samples were fabricated using common industrial processing techniques under the best conditions deduced from data- and researcher-driven methods. After magnetizing the samples, they could retain a magnetic field of 2.83 T as a quasi-permanent magnet, around 2.7 times the previous record, with decay r
{"title":"Superstrength permanent magnets with iron-based superconductors by data- and researcher-driven process design","authors":"Akiyasu Yamamoto, Shinnosuke Tokuta, Akimitsu Ishii, Akinori Yamanaka, Yusuke Shimada, Mark D. Ainslie","doi":"10.1038/s41427-024-00549-5","DOIUrl":"10.1038/s41427-024-00549-5","url":null,"abstract":"Iron-based high-temperature (high-Tc) superconductors have good potential to serve as materials in next-generation superstrength quasipermanent magnets owing to their distinctive topological and superconducting properties. However, their unconventional high-Tc superconductivity paradoxically associates with anisotropic pairing and short coherence lengths, causing challenges by inhibiting supercurrent transport at grain boundaries in polycrystalline materials. In this study, we employ machine learning to manipulate intricate polycrystalline microstructures through a process design that integrates researcher- and data-driven approaches via tailored software. Our approach results in a bulk Ba0.6K0.4Fe2As2 permanent magnet with a magnetic field that is 2.7 times stronger than that previously reported. Additionally, we demonstrate magnetic field stability exceeding 0.1 ppm/h for a practical 1.5 T permanent magnet, which is a vital aspect of medical magnetic resonance imaging. Nanostructural analysis reveals contrasting outcomes from data- and researcher-driven processes, showing that high-density defects and bipolarized grain boundary spacing distributions are primary contributors to the magnet’s exceptional strength and stability. Iron-based superconductors are promising for uses like quantum computing and superstrong magnets. However, improving their superconducting properties is challenging. This study aimed to improve these properties in a specific superconductor, K-doped Ba122, using Bayesian optimization. The researchers made samples under different conditions and measured their superconducting properties to refine the process. Two large disk-shaped samples were made using the best processing conditions found from data-driven and researcher-driven methods. The superconducting properties of these samples, and their ability to act as magnets, were tested at low temperatures. The results showed significant improvements, proving the optimization process’s effectiveness and resulting in an iron-based superconducting magnet with unprecedented strength. The study concludes that machine learning, especially Bayesian optimization, can significantly advance high-performance superconducting materials development. This could lead to more efficient and powerful superconducting magnets for various uses. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the authors. The world’s strongest iron-based superconducting magnet has been manufactured. Machine learning using Bayesian optimization was employed to improve the superconducting properties of potassium-doped barium iron arsenide (Ba,K)Fe2As2. Two large disk-shaped samples were fabricated using common industrial processing techniques under the best conditions deduced from data- and researcher-driven methods. After magnetizing the samples, they could retain a magnetic field of 2.83 T as a quasi-permanent magnet, around 2.7 times the previous record, with decay r","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-12"},"PeriodicalIF":8.6,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00549-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141372890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interfacing exogenous stents with human coronary artery by self-assembled coating: designs, functionalities and applications 通过自组装涂层将外源支架与人体冠状动脉连接:设计、功能和应用
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-31 DOI: 10.1038/s41427-024-00548-6
Feng Zhao, Feng Liu, Chenglong Gao, Guoqing Wang, Yinfeng Zhang, Fei Yu, Jiawei Tian, Kai Tan, Runhao Zhang, Kang Liang, Zhexun Lian, Junjie Guo, Biao Kong, Junbo Ge, Hui Xin
Drug-eluting stents are a commonly used treatment for coronary artery disease. However, the coatings used in drug-eluting stents have some limitations such as poor biocompatibility and drug loading capacity. In recent years, self-assembly methods have emerged as a promising alternative for stent coatings. Self-assembled coatings employ biomaterials and offer several advantages over traditional coatings, including thinner thickness, stronger binding capacity, and better biocompatibility. This review discusses the latest research on self-assembled biomaterial-based coatings for drug-eluting stents. We explore how layer-by-layer coatings and composite coating films have been utilized to load and release drugs with high drug loading capacity and biocompatibility, as well as how they promote endothelial adhesion and growth. Additionally, we examine how self-assembled coatings have been used to release active molecules for anti-coagulation and deliver gene therapy. Moreover, we discuss the potential of self-assembled coatings for future development, including intelligent targeted drug delivery, bionic stent coatings, and 3D printed stent coatings. These advancements have the potential to further improve the effectiveness of drug-eluting stents in treating coronary artery disease. The next-generation coronary artery stent by self-assembled coating: Self-assembled coatings in drug-eluting stents can bind biomaterials and offer several advantages over traditional coatings, including thinner structures, stronger binding capacity, and better biocompatibility. The encouraging achievements of self-assembled stent coatings include corrosion resistance, anti-fouling, anti-thrombogenicity, endothelialization, and targeted gene therapy. Future investigation and development of self-assembly in stent coatings will help improve the functionalities of self-assembled coatings in coronary artery stents and greatly extend their applications.
药物洗脱支架是治疗冠状动脉疾病的常用方法。然而,药物洗脱支架所用的涂层存在一些局限性,如生物相容性和药物负载能力较差。近年来,自组装方法已成为支架涂层的一种有前途的替代方法。与传统涂层相比,自组装涂层采用生物材料,具有厚度更薄、结合能力更强、生物相容性更好等优点。本综述讨论了药物洗脱支架自组装生物材料涂层的最新研究。我们探讨了如何利用逐层涂层和复合涂层膜来装载和释放药物,使其具有较高的药物装载能力和生物相容性,以及如何促进内皮粘附和生长。此外,我们还研究了自组装涂层如何用于释放抗凝活性分子和提供基因治疗。此外,我们还讨论了自组装涂层在未来发展中的潜力,包括智能靶向给药、仿生支架涂层和 3D 打印支架涂层。这些进步有可能进一步提高药物洗脱支架治疗冠心病的效果。
{"title":"Interfacing exogenous stents with human coronary artery by self-assembled coating: designs, functionalities and applications","authors":"Feng Zhao, Feng Liu, Chenglong Gao, Guoqing Wang, Yinfeng Zhang, Fei Yu, Jiawei Tian, Kai Tan, Runhao Zhang, Kang Liang, Zhexun Lian, Junjie Guo, Biao Kong, Junbo Ge, Hui Xin","doi":"10.1038/s41427-024-00548-6","DOIUrl":"10.1038/s41427-024-00548-6","url":null,"abstract":"Drug-eluting stents are a commonly used treatment for coronary artery disease. However, the coatings used in drug-eluting stents have some limitations such as poor biocompatibility and drug loading capacity. In recent years, self-assembly methods have emerged as a promising alternative for stent coatings. Self-assembled coatings employ biomaterials and offer several advantages over traditional coatings, including thinner thickness, stronger binding capacity, and better biocompatibility. This review discusses the latest research on self-assembled biomaterial-based coatings for drug-eluting stents. We explore how layer-by-layer coatings and composite coating films have been utilized to load and release drugs with high drug loading capacity and biocompatibility, as well as how they promote endothelial adhesion and growth. Additionally, we examine how self-assembled coatings have been used to release active molecules for anti-coagulation and deliver gene therapy. Moreover, we discuss the potential of self-assembled coatings for future development, including intelligent targeted drug delivery, bionic stent coatings, and 3D printed stent coatings. These advancements have the potential to further improve the effectiveness of drug-eluting stents in treating coronary artery disease. The next-generation coronary artery stent by self-assembled coating: Self-assembled coatings in drug-eluting stents can bind biomaterials and offer several advantages over traditional coatings, including thinner structures, stronger binding capacity, and better biocompatibility. The encouraging achievements of self-assembled stent coatings include corrosion resistance, anti-fouling, anti-thrombogenicity, endothelialization, and targeted gene therapy. Future investigation and development of self-assembly in stent coatings will help improve the functionalities of self-assembled coatings in coronary artery stents and greatly extend their applications.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-26"},"PeriodicalIF":8.6,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00548-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141189331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two distinct charge density waves in the quasi-one-dimensional metal Sr0.95NbO3.37 revealed by resonant soft X-ray scattering 通过共振软 X 射线散射揭示准一维金属 Sr0.95NbO3.37 中两种截然不同的电荷密度波
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-24 DOI: 10.1038/s41427-024-00547-7
Angga Dito Fauzi, Caozheng Diao, Thomas J. Whitcher, Frank Lichtenberg, Ping Yang, Mark B. H. Breese, Andrivo Rusydi
The interplay of electron-electron and electron-lattice interactions plays an important role in determining exotic properties in strongly correlated electron systems. Of particular interest is quasi-one-dimensional SrNbOx metals, which are perovskite-related layered Carpy-Galy phases. Quasi-one-dimensional metals often exhibit a charge density wave (CDW) accompanied by lattice distortion; however, to date, the presence of a CDW in a quasi-one-dimensional metallic Carpy-Galy phase has not been detected. Here, we report the discovery of two distinct and simultaneous commensurate CDWs in Sr0.95NbO3.37 using resonant soft X-ray scattering (RSXS), namely, an electronic-(001) superlattice below ~ 200 K and an electronic-(002) Bragg peak. We also observe a non-electronic-(002) Bragg peak showing lattice distortion below ~ 150 K. Through the temperature dependence and resonance profile of these CDWs and the lattice distortion, as well as the relationship between the wavelength and charge density, these CDWs are determined to be Wigner crystals and Peierls-like instabilities, respectively. The electron‒electron interaction is strong and dominant even up to 350 K, and upon cooling, it drives the electron–lattice interaction. The correlation length of the electronic-(001) superlattice is surprisingly larger than that of the electronic-(002) Bragg peak, and the superlattice is highly anisotropic. Supported by theoretical calculations, the CDWs are determined by the charge anisotropy and redistribution between the O-2p and Nb-4d orbitals, and the strength of the electronic-(001) superlattice is within the strong coupling limit. Understanding how electrons interact in materials is vital for fundamental research and creating new technologies. However, the connection between different CDWs and their impact on materials, particularly inorganic systems, is unclear. The study, led by Andrivo Rusydi, aimed to understand CDWs in a specific crystal type, a quasi-one-dimensional metal. Rusydi and his team used resonant soft X-ray scattering to identify two distinct CDWs in one crystal. Their results showed that the Wigner crystal appeared without any crystal structure changes, while the Peierls-like instability was associated with a crystal distortion. These findings suggest that strong electron-electron interactions can drive changes in the crystal lattice, leading to different CDWs. This research offers new insights into the complex relationship between electron interactions and CDWs in inorganic materials. The advancements made in this study could impact future electronic devices development and understanding superconductivity. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. The interplay of electron-electron and electron-lattice interactions plays an important role in determining exotic properties in strongly correlated electron systems. Here, we report the discovery of two distinct and simultaneous com
{"title":"Two distinct charge density waves in the quasi-one-dimensional metal Sr0.95NbO3.37 revealed by resonant soft X-ray scattering","authors":"Angga Dito Fauzi, Caozheng Diao, Thomas J. Whitcher, Frank Lichtenberg, Ping Yang, Mark B. H. Breese, Andrivo Rusydi","doi":"10.1038/s41427-024-00547-7","DOIUrl":"10.1038/s41427-024-00547-7","url":null,"abstract":"The interplay of electron-electron and electron-lattice interactions plays an important role in determining exotic properties in strongly correlated electron systems. Of particular interest is quasi-one-dimensional SrNbOx metals, which are perovskite-related layered Carpy-Galy phases. Quasi-one-dimensional metals often exhibit a charge density wave (CDW) accompanied by lattice distortion; however, to date, the presence of a CDW in a quasi-one-dimensional metallic Carpy-Galy phase has not been detected. Here, we report the discovery of two distinct and simultaneous commensurate CDWs in Sr0.95NbO3.37 using resonant soft X-ray scattering (RSXS), namely, an electronic-(001) superlattice below ~ 200 K and an electronic-(002) Bragg peak. We also observe a non-electronic-(002) Bragg peak showing lattice distortion below ~ 150 K. Through the temperature dependence and resonance profile of these CDWs and the lattice distortion, as well as the relationship between the wavelength and charge density, these CDWs are determined to be Wigner crystals and Peierls-like instabilities, respectively. The electron‒electron interaction is strong and dominant even up to 350 K, and upon cooling, it drives the electron–lattice interaction. The correlation length of the electronic-(001) superlattice is surprisingly larger than that of the electronic-(002) Bragg peak, and the superlattice is highly anisotropic. Supported by theoretical calculations, the CDWs are determined by the charge anisotropy and redistribution between the O-2p and Nb-4d orbitals, and the strength of the electronic-(001) superlattice is within the strong coupling limit. Understanding how electrons interact in materials is vital for fundamental research and creating new technologies. However, the connection between different CDWs and their impact on materials, particularly inorganic systems, is unclear. The study, led by Andrivo Rusydi, aimed to understand CDWs in a specific crystal type, a quasi-one-dimensional metal. Rusydi and his team used resonant soft X-ray scattering to identify two distinct CDWs in one crystal. Their results showed that the Wigner crystal appeared without any crystal structure changes, while the Peierls-like instability was associated with a crystal distortion. These findings suggest that strong electron-electron interactions can drive changes in the crystal lattice, leading to different CDWs. This research offers new insights into the complex relationship between electron interactions and CDWs in inorganic materials. The advancements made in this study could impact future electronic devices development and understanding superconductivity. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. The interplay of electron-electron and electron-lattice interactions plays an important role in determining exotic properties in strongly correlated electron systems. Here, we report the discovery of two distinct and simultaneous com","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-13"},"PeriodicalIF":8.6,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00547-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141101669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TPU-assisted adhesive PDMS film for dry or underwater environments 用于干燥或水下环境的热塑性聚氨酯辅助粘合剂 PDMS 薄膜
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-17 DOI: 10.1038/s41427-024-00546-8
Sangyeun Park, Minhyeok Kim, Hongyun So
Adhesive polymer films with anisotropic properties on either side have attracted tremendous interest for biomedical and engineering applications. However, developing an innovative solution that provides effective adhesion under both dry and wet conditions remains a considerable challenge. In this study, we devised a novel process for creating adhesive films by casting polydimethylsiloxane (PDMS) onto a thermoplastic polyurethane (TPU) substrate. During the curing process, the PDMS layer in contact with the TPU was lightly cross-linked, which significantly increased adhesion. The catalytic reaction used for polymerization was regulated by the TPU, which is known to adsorb metal ions. This adhesive PDMS film (APF) demonstrated outstanding adhesion on various substrates under dry and underwater conditions and maintained adhesion even after repeated use. In practical applications, the APF proved to be an effective waterproof patch by adhering to the surfaces of objects submerged in water. Adhesive polydimethylsiloxane (PDMS) film is successfully fabricated by casting process using thermoplastic polyurethane (TPU). During the curing process, the PDMS lightly cross-linked at the interface with the TPU exhibited a remarkable increase in adhesion properties. The catalytic reaction used for polymerization was regulated by the TPU, which is known to adsorb metal ions. This adhesive PDMS film (APF) demonstrated outstanding adhesion on various substrates under dry and underwater conditions and maintained adhesion even after repeated use. Our findings suggest that the APF could be used an effective waterproof patch by adhering to the surfaces of objects submerged in water.
{"title":"TPU-assisted adhesive PDMS film for dry or underwater environments","authors":"Sangyeun Park, Minhyeok Kim, Hongyun So","doi":"10.1038/s41427-024-00546-8","DOIUrl":"10.1038/s41427-024-00546-8","url":null,"abstract":"Adhesive polymer films with anisotropic properties on either side have attracted tremendous interest for biomedical and engineering applications. However, developing an innovative solution that provides effective adhesion under both dry and wet conditions remains a considerable challenge. In this study, we devised a novel process for creating adhesive films by casting polydimethylsiloxane (PDMS) onto a thermoplastic polyurethane (TPU) substrate. During the curing process, the PDMS layer in contact with the TPU was lightly cross-linked, which significantly increased adhesion. The catalytic reaction used for polymerization was regulated by the TPU, which is known to adsorb metal ions. This adhesive PDMS film (APF) demonstrated outstanding adhesion on various substrates under dry and underwater conditions and maintained adhesion even after repeated use. In practical applications, the APF proved to be an effective waterproof patch by adhering to the surfaces of objects submerged in water. Adhesive polydimethylsiloxane (PDMS) film is successfully fabricated by casting process using thermoplastic polyurethane (TPU). During the curing process, the PDMS lightly cross-linked at the interface with the TPU exhibited a remarkable increase in adhesion properties. The catalytic reaction used for polymerization was regulated by the TPU, which is known to adsorb metal ions. This adhesive PDMS film (APF) demonstrated outstanding adhesion on various substrates under dry and underwater conditions and maintained adhesion even after repeated use. Our findings suggest that the APF could be used an effective waterproof patch by adhering to the surfaces of objects submerged in water.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-10"},"PeriodicalIF":8.6,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00546-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140964838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct observation of the atomic density fluctuation originating from the first sharp diffraction peak in SiO2 glass 直接观察源自二氧化硅玻璃中第一个尖锐衍射峰的原子密度波动
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-10 DOI: 10.1038/s41427-024-00544-w
Akihiko Hirata, Shuya Sato, Motoki Shiga, Yohei Onodera, Koji Kimoto, Shinji Kohara
The intermediate-range order of covalently bonded glasses has been extensively studied in terms of their diffraction peaks observed at low scattering angles; these peaks are called the first sharp diffraction peaks (FSDPs). Although the atomic density fluctuations originating from the quasilattice planes are a critical scientific target, direct experimental observations of these fluctuations are still lacking. Here, we report the direct observation of the atomic density fluctuations in silica glass by energy-filtered angstrom-beam electron diffraction. The correspondence between the local electron diffraction patterns of FSDPs and the atomic configurations constructed based on the X-ray and neutron diffraction results revealed that the local atomic density fluctuations originated from the quasi-periodic alternating arrangements of the columnar chain-like atomic configurations and interstitial tubular voids, as in crystals. We also discovered longer-range fluctuations associated with the shoulder of the FSDP on the low-Q side. The hierarchical fluctuations inherent in materials could aid in the elucidation of their properties and performance. This study reports the direct observation of atomic density fluctuations in silica glass using angstrom-beam electron diffraction. The local atomic fluctuations are found to originate from quasi-periodic arrays of nanoscale columnar atomic configurations and interstitial tubular voids. The present study also reveals longer-range fluctuations associated with the shoulder of the first sharp diffraction peak. These findings may help to understand the properties and performance of materials.
人们通过在低散射角处观察到的衍射峰,对共价键玻璃的中间阶进行了广泛的研究;这些衍射峰被称为第一尖锐衍射峰(FSDPs)。尽管源于准晶格平面的原子密度波动是一个重要的科学目标,但目前仍缺乏对这些波动的直接实验观测。在此,我们报告了通过能量滤波埃束电子衍射对二氧化硅玻璃中原子密度波动的直接观测。FSDPs的局部电子衍射图案与根据X射线和中子衍射结果构建的原子构型之间的对应关系表明,局部原子密度波动源于柱状链状原子构型和间隙管状空隙的准周期交替排列,就像在晶体中一样。我们还发现了与低 Q 边 FSDP 肩相关的长程波动。材料固有的层次波动有助于阐明其特性和性能。
{"title":"Direct observation of the atomic density fluctuation originating from the first sharp diffraction peak in SiO2 glass","authors":"Akihiko Hirata, Shuya Sato, Motoki Shiga, Yohei Onodera, Koji Kimoto, Shinji Kohara","doi":"10.1038/s41427-024-00544-w","DOIUrl":"10.1038/s41427-024-00544-w","url":null,"abstract":"The intermediate-range order of covalently bonded glasses has been extensively studied in terms of their diffraction peaks observed at low scattering angles; these peaks are called the first sharp diffraction peaks (FSDPs). Although the atomic density fluctuations originating from the quasilattice planes are a critical scientific target, direct experimental observations of these fluctuations are still lacking. Here, we report the direct observation of the atomic density fluctuations in silica glass by energy-filtered angstrom-beam electron diffraction. The correspondence between the local electron diffraction patterns of FSDPs and the atomic configurations constructed based on the X-ray and neutron diffraction results revealed that the local atomic density fluctuations originated from the quasi-periodic alternating arrangements of the columnar chain-like atomic configurations and interstitial tubular voids, as in crystals. We also discovered longer-range fluctuations associated with the shoulder of the FSDP on the low-Q side. The hierarchical fluctuations inherent in materials could aid in the elucidation of their properties and performance. This study reports the direct observation of atomic density fluctuations in silica glass using angstrom-beam electron diffraction. The local atomic fluctuations are found to originate from quasi-periodic arrays of nanoscale columnar atomic configurations and interstitial tubular voids. The present study also reveals longer-range fluctuations associated with the shoulder of the first sharp diffraction peak. These findings may help to understand the properties and performance of materials.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-10"},"PeriodicalIF":8.6,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00544-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140941264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase stabilization of cesium lead iodide perovskites for use in efficient optoelectronic devices 用于高效光电设备的碘化铯铅包晶石的相稳定化
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-03 DOI: 10.1038/s41427-024-00540-0
Handong Jin, Yu-Jia Zeng, Julian A. Steele, Maarten B. J. Roeffaers, Johan Hofkens, Elke Debroye
All-inorganic lead halide perovskites (LHPs) and their use in optoelectronic devices have been widely explored because they are more thermally stable than their hybrid organic‒inorganic counterparts. However, the active perovskite phases of some inorganic LHPs are metastable at room temperature due to the critical structural tolerance factor. For example, black phase CsPbI3 is easily transformed back to the nonperovskite yellow phase at ambient temperature. Much attention has been paid to improving the phase stabilities of inorganic LHPs, especially those with high solar cell efficiencies. Herein, we discussed the origin of phase stability for CsPbI3 and the strategies used to stabilize the cubic (α) phase. We also assessed the CsPbI3 black β/γ phases that are relatively stable at nearly room temperature. Furthermore, we determined the relationship between phase stabilization and defect passivation and reviewed the growing trend in solar cell efficiency based on black phase CsPbI3. Finally, we provide perspectives for future research related to the quest for optimum device efficiency and green energy. Black phase CsPbI3 easily transforms into the non-perovskite yellow phase, while losing the outstanding optoelectronic properties. In this review, the origin of the phase stability in CsPbI3 and strategies to stabilize the black phases exhibiting the α-phase or the relatively easily stabilized β/γ-phases are extensively discussed. Furthermore, a profound analysis of the CsPbI3 stabilization progress and the evolution of the performance efficiency records of black phase CsPbI3 is provided. Lastly, a prospective on future research on CsPbI3 solar cells pinpoints the current challenges and directs future research approaches toward more efficient and stable devices.
全无机卤化铅包晶石(LHPs)及其在光电器件中的应用已得到广泛探索,因为它们比有机-无机混合包晶石具有更高的热稳定性。然而,由于临界结构耐受因子的影响,一些无机 LHP 的活性包晶石相在室温下是易陨的。例如,黑相 CsPbI3 在常温下很容易转变回非过氧化物黄相。人们一直在关注如何提高无机 LHP 的相稳定性,尤其是那些具有高太阳能电池效率的 LHP。在此,我们讨论了 CsPbI3 相稳定性的起源以及用于稳定立方(α)相的策略。我们还评估了在接近室温时相对稳定的 CsPbI3 黑色 β/γ 相。此外,我们还确定了相稳定与缺陷钝化之间的关系,并回顾了基于黑相 CsPbI3 的太阳能电池效率的增长趋势。最后,我们展望了与追求最佳器件效率和绿色能源相关的未来研究。
{"title":"Phase stabilization of cesium lead iodide perovskites for use in efficient optoelectronic devices","authors":"Handong Jin, Yu-Jia Zeng, Julian A. Steele, Maarten B. J. Roeffaers, Johan Hofkens, Elke Debroye","doi":"10.1038/s41427-024-00540-0","DOIUrl":"10.1038/s41427-024-00540-0","url":null,"abstract":"All-inorganic lead halide perovskites (LHPs) and their use in optoelectronic devices have been widely explored because they are more thermally stable than their hybrid organic‒inorganic counterparts. However, the active perovskite phases of some inorganic LHPs are metastable at room temperature due to the critical structural tolerance factor. For example, black phase CsPbI3 is easily transformed back to the nonperovskite yellow phase at ambient temperature. Much attention has been paid to improving the phase stabilities of inorganic LHPs, especially those with high solar cell efficiencies. Herein, we discussed the origin of phase stability for CsPbI3 and the strategies used to stabilize the cubic (α) phase. We also assessed the CsPbI3 black β/γ phases that are relatively stable at nearly room temperature. Furthermore, we determined the relationship between phase stabilization and defect passivation and reviewed the growing trend in solar cell efficiency based on black phase CsPbI3. Finally, we provide perspectives for future research related to the quest for optimum device efficiency and green energy. Black phase CsPbI3 easily transforms into the non-perovskite yellow phase, while losing the outstanding optoelectronic properties. In this review, the origin of the phase stability in CsPbI3 and strategies to stabilize the black phases exhibiting the α-phase or the relatively easily stabilized β/γ-phases are extensively discussed. Furthermore, a profound analysis of the CsPbI3 stabilization progress and the evolution of the performance efficiency records of black phase CsPbI3 is provided. Lastly, a prospective on future research on CsPbI3 solar cells pinpoints the current challenges and directs future research approaches toward more efficient and stable devices.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-18"},"PeriodicalIF":8.6,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00540-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140830541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation on mussel periostracum, a viscoelastic-to-poro-gel graded material, as an interface between soft tissue and rigid materials 作为软组织与硬质材料界面的粘弹性-孔凝胶分级材料--贻贝骨膜的研究
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-04-26 DOI: 10.1038/s41427-024-00543-x
Hyungbin Kim, Heejin Lim, Sangsik Kim, Jun Mo Koo, Chanoong Lim, Hojung Kwak, Dongyeop X. Oh, Dong Soo Hwang
Mussel periostracum, a nonliving multifunctional gel that covers the rigid inorganic shells of mussels, provides protection against mechanical impacts, biofouling, and corrosion in harsh ocean environments. The inner part of the periostracum, which emerges from biological tissues, functions as a natural interface between tissue and inorganic materials. The periostracum shows significant potential for application in implantable devices that provide interfaces; however, this system remains unexplored. In this study, we revealed that the inner periostracum performs graded mechanical functions and efficiently dissipates energy to accommodate differences in stiffness and stress types on both sides. On the tissue end, the lightly pigmented periostracum exhibits extensibility and energy dissipation under repetitive tension. This process was facilitated by the slipping and reassembly of β-strands in the discovered major proteins, which we named periostracin proteins. On the shell end, the highly pigmented, mineralized, and porous segment of the periostracum provided stiffness and cushioned against compressive stresses exerted by the shell valves during closure. These findings offer a novel possibilities for the design of interfaces that bridge human tissue and devices. The interfaces linking biological tissues and man-made devices is challenging due to mechanical mismatch, biofouling, and water content. Soft materials such as hydrogels have emerged in diverse applications, however, their unresolved problem is the loss of functions in a short period. This report explores natural connective tissue, called periostracum, which is perfectly bridged between biological tissue and inorganic nonliving shell with high durability for long-lasting functions. Its hierarchically designed strategy provides a novel blueprint to design durable soft materials for the interfacing device into tissue.
贻贝骨膜是一种非生物多功能凝胶,覆盖在贻贝坚硬的无机外壳上,可在恶劣的海洋环境中提供保护,防止机械撞击、生物污染和腐蚀。从生物组织中产生的包膜内部是组织与无机材料之间的天然界面。骨膜在提供界面的植入式设备中显示出巨大的应用潜力,但这一系统仍未被开发。在这项研究中,我们发现内骨膜具有分级机械功能,并能有效消散能量,以适应两侧刚度和应力类型的差异。在组织端,轻度色素沉着的骨膜在重复张力作用下表现出伸展性和能量耗散性。这一过程得益于已发现的主要蛋白质(我们将其命名为包膜蛋白)中β-链的滑动和重新组合。在壳的一端,高度色素化、矿化和多孔的壳周膜部分提供了硬度,并缓冲了壳门在闭合过程中施加的压缩应力。这些发现为设计连接人体组织和设备的界面提供了新的可能性。
{"title":"Investigation on mussel periostracum, a viscoelastic-to-poro-gel graded material, as an interface between soft tissue and rigid materials","authors":"Hyungbin Kim, Heejin Lim, Sangsik Kim, Jun Mo Koo, Chanoong Lim, Hojung Kwak, Dongyeop X. Oh, Dong Soo Hwang","doi":"10.1038/s41427-024-00543-x","DOIUrl":"10.1038/s41427-024-00543-x","url":null,"abstract":"Mussel periostracum, a nonliving multifunctional gel that covers the rigid inorganic shells of mussels, provides protection against mechanical impacts, biofouling, and corrosion in harsh ocean environments. The inner part of the periostracum, which emerges from biological tissues, functions as a natural interface between tissue and inorganic materials. The periostracum shows significant potential for application in implantable devices that provide interfaces; however, this system remains unexplored. In this study, we revealed that the inner periostracum performs graded mechanical functions and efficiently dissipates energy to accommodate differences in stiffness and stress types on both sides. On the tissue end, the lightly pigmented periostracum exhibits extensibility and energy dissipation under repetitive tension. This process was facilitated by the slipping and reassembly of β-strands in the discovered major proteins, which we named periostracin proteins. On the shell end, the highly pigmented, mineralized, and porous segment of the periostracum provided stiffness and cushioned against compressive stresses exerted by the shell valves during closure. These findings offer a novel possibilities for the design of interfaces that bridge human tissue and devices. The interfaces linking biological tissues and man-made devices is challenging due to mechanical mismatch, biofouling, and water content. Soft materials such as hydrogels have emerged in diverse applications, however, their unresolved problem is the loss of functions in a short period. This report explores natural connective tissue, called periostracum, which is perfectly bridged between biological tissue and inorganic nonliving shell with high durability for long-lasting functions. Its hierarchically designed strategy provides a novel blueprint to design durable soft materials for the interfacing device into tissue.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-13"},"PeriodicalIF":8.6,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00543-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140803828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Npg Asia Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1