Pub Date : 2024-02-16DOI: 10.1038/s41427-024-00529-9
Hee-Sung Han, Sergio A. Montoya, Eric E. Fullerton, Weilun Chao, Soong-Geun Je, Ki‐Suk Lee, Mi-Young Im
Manipulating the topological properties of spin textures in magnetic materials is of great interest due to the rich physics and promising technological applications of these materials in advanced electronic devices. A spin texture with desired topological properties can be created by magnetic monopole injection, resulting in topological transitions involving changes in the topological charge. Therefore, controlling magnetic monopole injection has paramount importance for obtaining the desired spin textures but has not yet been reported. Here, we report the use of reliably manipulated magnetic monopole injection in the topological transition from stripe domains to skyrmions in an Fe/Gd multilayer. An easily tunable in-plane magnetic field applied to an Fe/Gd multilayer plays a key role in the magnetic monopole injection by modulating the local exchange energy. Our findings facilitate the efficient management of topological transitions by providing an important method for controlling magnetic monopole injection.
{"title":"Manipulation of the magnetic monopole injection for topological transition","authors":"Hee-Sung Han, Sergio A. Montoya, Eric E. Fullerton, Weilun Chao, Soong-Geun Je, Ki‐Suk Lee, Mi-Young Im","doi":"10.1038/s41427-024-00529-9","DOIUrl":"https://doi.org/10.1038/s41427-024-00529-9","url":null,"abstract":"<p>Manipulating the topological properties of spin textures in magnetic materials is of great interest due to the rich physics and promising technological applications of these materials in advanced electronic devices. A spin texture with desired topological properties can be created by magnetic monopole injection, resulting in topological transitions involving changes in the topological charge. Therefore, controlling magnetic monopole injection has paramount importance for obtaining the desired spin textures but has not yet been reported. Here, we report the use of reliably manipulated magnetic monopole injection in the topological transition from stripe domains to skyrmions in an Fe/Gd multilayer. An easily tunable in-plane magnetic field applied to an Fe/Gd multilayer plays a key role in the magnetic monopole injection by modulating the local exchange energy. Our findings facilitate the efficient management of topological transitions by providing an important method for controlling magnetic monopole injection.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"87 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139754180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-09DOI: 10.1038/s41427-023-00513-9
Zhifu Yin, Yang Yang, Cong Hu, Jinzhe Li, Boyu Qin, Xue Yang
Real-time monitoring and early warning of human health conditions is an important function of wearable devices. Along with the development of the Internet of Things and the medical drive for early detection and treatment, wearable devices will become increasingly important in the future. Compared with traditional sensors, wearable sensors with mechanical softness and deformability are able to adapt to geometric nonlinearities and deformations caused by motion that occurs in application scenarios, thus ensuring stable and effective signal output under various complex working conditions. Various novel sensing materials have been developed for the detection of various biomarkers of respiration over the past few years. Here, we summarize the latest innovations in wearable respiratory sensors, highlighting the dominant sensing materials, designs, sensing mechanisms, and clinical implications. Finally, the future challenges and directions of wearable respiratory sensors are outlined toward promoting advancement in the field of wearable respiratory monitoring.
{"title":"Wearable respiratory sensors for health monitoring","authors":"Zhifu Yin, Yang Yang, Cong Hu, Jinzhe Li, Boyu Qin, Xue Yang","doi":"10.1038/s41427-023-00513-9","DOIUrl":"https://doi.org/10.1038/s41427-023-00513-9","url":null,"abstract":"<p>Real-time monitoring and early warning of human health conditions is an important function of wearable devices. Along with the development of the Internet of Things and the medical drive for early detection and treatment, wearable devices will become increasingly important in the future. Compared with traditional sensors, wearable sensors with mechanical softness and deformability are able to adapt to geometric nonlinearities and deformations caused by motion that occurs in application scenarios, thus ensuring stable and effective signal output under various complex working conditions. Various novel sensing materials have been developed for the detection of various biomarkers of respiration over the past few years. Here, we summarize the latest innovations in wearable respiratory sensors, highlighting the dominant sensing materials, designs, sensing mechanisms, and clinical implications. Finally, the future challenges and directions of wearable respiratory sensors are outlined toward promoting advancement in the field of wearable respiratory monitoring.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"26 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139753825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-02DOI: 10.1038/s41427-023-00527-3
Minseop Kim, Sieun Choi, Dong-Hee Choi, Jinchul Ahn, Dain Lee, Euijeong Song, Hyun Soo Kim, Mijin Kim, Sowoong Choi, Soojung Oh, Minsuh Kim, Seok Chung, Phil June Park
The human cutaneous lymphatic system strictly controls lymphatic functions by coordinating with skin cells. The lymphatic system plays important roles in removing cell waste, residual proteins, various antigens, and immune cells from tissues to maintain homeostasis and activate the immune system through the drainage of interstitial fluid1,2. The skin protects our body from external stimuli such as pathogens through the cutaneous lymphatic system3,4. Herein, to develop an in vitro human cutaneous lymphatic model, we present two 3D microfluidic platforms: a lymphangiogenesis model with a precollecting lymphatic vessel-like structure and an advanced lymphangiogenesis model with a functional cutaneous barrier and a precollecting lymphatic vessel-like structure. In addition, we rapidly analyzed prolymphangiogenic effects using methods that incorporate a high-speed image processing system and a deep learning-based vascular network analysis algorithm by 12 indices. Using these platforms, we evaluated the pro-lymphangiogenic effect of Lymphanax, a natural product derived from fresh ginseng. As a result, we demonstrated that Lymphanax induces robust lymphangiogenesis without any structural abnormalities. In conclusion, we suggest that these innovative platforms are useful for studying the interaction between the skin and lymphatic system as well as evaluating the prolymphangiogenic effects of drugs and cosmetics.
{"title":"An advanced 3D lymphatic system for assaying human cutaneous lymphangiogenesis in a microfluidic platform","authors":"Minseop Kim, Sieun Choi, Dong-Hee Choi, Jinchul Ahn, Dain Lee, Euijeong Song, Hyun Soo Kim, Mijin Kim, Sowoong Choi, Soojung Oh, Minsuh Kim, Seok Chung, Phil June Park","doi":"10.1038/s41427-023-00527-3","DOIUrl":"https://doi.org/10.1038/s41427-023-00527-3","url":null,"abstract":"<p>The human cutaneous lymphatic system strictly controls lymphatic functions by coordinating with skin cells. The lymphatic system plays important roles in removing cell waste, residual proteins, various antigens, and immune cells from tissues to maintain homeostasis and activate the immune system through the drainage of interstitial fluid<sup>1,2</sup>. The skin protects our body from external stimuli such as pathogens through the cutaneous lymphatic system<sup>3,4</sup>. Herein, to develop an in vitro human cutaneous lymphatic model, we present two 3D microfluidic platforms: a lymphangiogenesis model with a precollecting lymphatic vessel-like structure and an advanced lymphangiogenesis model with a functional cutaneous barrier and a precollecting lymphatic vessel-like structure. In addition, we rapidly analyzed prolymphangiogenic effects using methods that incorporate a high-speed image processing system and a deep learning-based vascular network analysis algorithm by 12 indices. Using these platforms, we evaluated the pro-lymphangiogenic effect of Lymphanax, a natural product derived from fresh ginseng. As a result, we demonstrated that Lymphanax induces robust lymphangiogenesis without any structural abnormalities. In conclusion, we suggest that these innovative platforms are useful for studying the interaction between the skin and lymphatic system as well as evaluating the prolymphangiogenic effects of drugs and cosmetics.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"4 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139663012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-26DOI: 10.1038/s41427-023-00525-5
Brahim Marfoua, Jisang Hong
Anomalous transverse conductivities, such as anomalous Hall conductivity (AHC), anomalous Nernst conductivity (ANC), and anomalous thermal Hall conductivity (ATHC), play a crucial role in the emerging field of spintronics. Motivated by the recent fabrication of two-dimensional (2D) ferromagnetic thin film Fe3GaTe2, we investigate the thickness-dependent anomalous transverse conductivities of the 2D Fe3GaTe2 system (from one to four layers). The atomically ultrathin 2D Fe3GaTe2 system shows above-room-temperature ferromagnetism with a large perpendicular magnetic anisotropy energy. Furthermore, we obtain a large AHC of −485 S/cm in the four-layer thickness, and this is further enhanced to −550 S/cm with small electron doping. This AHC is seven times larger than the measured AHC in thicker 2D Fe3GaTe2 (178 nm). The ANC also reaches 0.55 A/K.m in the four-layer structure. Along with these, the four-layer system exhibits a large ATHC (−0.105 ~ −0.135 W/K.m). This ATHC is comparable to the large ATHC found in Weyl semimetal Co3Sn2S2. Based on our results, the atomically ultrathin 2D Fe3GaTe2 system shows outstanding anomalous transverse conductivities and can be utilized as a potential platform for future spintronics and spin caloritronic device applications.
{"title":"Large anomalous transverse transport properties in atomically thin 2D Fe3GaTe2","authors":"Brahim Marfoua, Jisang Hong","doi":"10.1038/s41427-023-00525-5","DOIUrl":"https://doi.org/10.1038/s41427-023-00525-5","url":null,"abstract":"<p>Anomalous transverse conductivities, such as anomalous Hall conductivity (AHC), anomalous Nernst conductivity (ANC), and anomalous thermal Hall conductivity (ATHC), play a crucial role in the emerging field of spintronics. Motivated by the recent fabrication of two-dimensional (2D) ferromagnetic thin film Fe<sub>3</sub>GaTe<sub>2</sub>, we investigate the thickness-dependent anomalous transverse conductivities of the 2D Fe<sub>3</sub>GaTe<sub>2</sub> system (from one to four layers). The atomically ultrathin 2D Fe<sub>3</sub>GaTe<sub>2</sub> system shows above-room-temperature ferromagnetism with a large perpendicular magnetic anisotropy energy. Furthermore, we obtain a large AHC of −485 S/cm in the four-layer thickness, and this is further enhanced to −550 S/cm with small electron doping. This AHC is seven times larger than the measured AHC in thicker 2D Fe<sub>3</sub>GaTe<sub>2</sub> (178 nm). The ANC also reaches 0.55 A/K.m in the four-layer structure. Along with these, the four-layer system exhibits a large ATHC (−0.105 ~ −0.135 W/K.m). This ATHC is comparable to the large ATHC found in Weyl semimetal Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub>. Based on our results, the atomically ultrathin 2D Fe<sub>3</sub>GaTe<sub>2</sub> system shows outstanding anomalous transverse conductivities and can be utilized as a potential platform for future spintronics and spin caloritronic device applications.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"151 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139589746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-19DOI: 10.1038/s41427-023-00522-8
Ryo Furukawa, Shoki Nezu, Takuro Eguchi, Koji Sekiguchi
The performance of magnonic devices such as converters, switches, and multiplexers greatly depends on magnonic noise. While a peculiar discrete magnonic noise has been previously reported, the sources of underlying magnon dynamics occurring in high-magnon density conditions have not been clarified. Here, zero-span measurements of the spectrum analyzer were recorded to accurately detect magnonic noise as a fluctuation of the spin-wave amplitude. The results of low-frequency magnonic noise demonstrated a spin-wave mode dependency, indicating the existence of a peculiar magnon surface state. Furthermore, the energy thresholds of four-magnon scattering and autooscillation were determined using magnonic white noise. The noise data obtained in this study can help promote theoretical and experimental research on magnons.
{"title":"Mode-dependent magnonic noise","authors":"Ryo Furukawa, Shoki Nezu, Takuro Eguchi, Koji Sekiguchi","doi":"10.1038/s41427-023-00522-8","DOIUrl":"https://doi.org/10.1038/s41427-023-00522-8","url":null,"abstract":"<p>The performance of magnonic devices such as converters, switches, and multiplexers greatly depends on magnonic noise. While a peculiar discrete magnonic noise has been previously reported, the sources of underlying magnon dynamics occurring in high-magnon density conditions have not been clarified. Here, zero-span measurements of the spectrum analyzer were recorded to accurately detect magnonic noise as a fluctuation of the spin-wave amplitude. The results of low-frequency magnonic noise demonstrated a spin-wave mode dependency, indicating the existence of a peculiar magnon surface state. Furthermore, the energy thresholds of four-magnon scattering and autooscillation were determined using magnonic white noise. The noise data obtained in this study can help promote theoretical and experimental research on magnons.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"7 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139499542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As one of the most intractable neurological diseases, spinal cord injury (SCI) often leads to permanent neurological impairment in patients. Unfortunately, due to the complex pathological mechanisms and unique postinjury microenvironment, there is currently no way to completely repair the injured spinal cord. In recent years, with the rapid development of tissue engineering technology, the combination of biomaterials and medicine has provided a new idea for treating SCI. Here, we systematically summarize representative biomaterials, including natural, synthetic, nano, and hybrid materials, and their applications in SCI treatment. In addition, we describe several state-of-the-art fabrication techniques for tissue engineering. Importantly, we provide novel insights for the use of biomaterial-based therapeutic strategies to reduce secondary damage and promote repair. Finally, we discuss several biomaterial clinical studies. This review aims to provide a reference and new insights for the future exploration of spinal cord regeneration strategies.
{"title":"Biomaterial-based regenerative therapeutic strategies for spinal cord injury","authors":"Keyi Chen, Wei Yu, Genjiang Zheng, Zeng Xu, Chen Yang, Yunhao Wang, Zhihao Yue, Weien Yuan, Bo Hu, Huajiang Chen","doi":"10.1038/s41427-023-00526-4","DOIUrl":"https://doi.org/10.1038/s41427-023-00526-4","url":null,"abstract":"<p>As one of the most intractable neurological diseases, spinal cord injury (SCI) often leads to permanent neurological impairment in patients. Unfortunately, due to the complex pathological mechanisms and unique postinjury microenvironment, there is currently no way to completely repair the injured spinal cord. In recent years, with the rapid development of tissue engineering technology, the combination of biomaterials and medicine has provided a new idea for treating SCI. Here, we systematically summarize representative biomaterials, including natural, synthetic, nano, and hybrid materials, and their applications in SCI treatment. In addition, we describe several state-of-the-art fabrication techniques for tissue engineering. Importantly, we provide novel insights for the use of biomaterial-based therapeutic strategies to reduce secondary damage and promote repair. Finally, we discuss several biomaterial clinical studies. This review aims to provide a reference and new insights for the future exploration of spinal cord regeneration strategies.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"268 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139499447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-19DOI: 10.1038/s41427-023-00523-7
Myeongcheol Go, Inju Hong, Dasol Lee, Sanghoon Kim, Junho Jang, Keon-Woo Kim, Sangmin Shim, Kijung Yong, Junsuk Rho, Jin Kon Kim
As an environmentally friendly and renewable method for hydrogen production powered by solar energy, photocatalytic hydrogen evolution reactions (HERs) using broadband absorbers have received much attention. Here, we report the fabrication and characterization of an ultrabroadband absorber for the photocatalytic HER. The absorber is composed of titanium nitride and titanium dioxide heterostructures deposited onto a porous anodized aluminum oxide template. The absorber shows ultrabroadband absorption in both the visible and near-infrared regions (400–2500 nm), with averages of 99.1% and 80.1%, respectively. Additionally, the presence of the TiO2 layer within the absorber extends the lifetime of the hot carriers by 2.7 times longer than that without the TiO2 layer, enhancing the transfer of hot electrons and improving the efficiency of hydrogen production by 1.9 times. This novel ultrabroadband absorber has potential use in advanced photocatalytic HER applications, providing a sustainable and cost-effective route for hydrogen generation from solar energy.
{"title":"Ultrabroadband absorptive refractory plasmonics for photocatalytic hydrogen evolution reactions","authors":"Myeongcheol Go, Inju Hong, Dasol Lee, Sanghoon Kim, Junho Jang, Keon-Woo Kim, Sangmin Shim, Kijung Yong, Junsuk Rho, Jin Kon Kim","doi":"10.1038/s41427-023-00523-7","DOIUrl":"https://doi.org/10.1038/s41427-023-00523-7","url":null,"abstract":"<p>As an environmentally friendly and renewable method for hydrogen production powered by solar energy, photocatalytic hydrogen evolution reactions (HERs) using broadband absorbers have received much attention. Here, we report the fabrication and characterization of an ultrabroadband absorber for the photocatalytic HER. The absorber is composed of titanium nitride and titanium dioxide heterostructures deposited onto a porous anodized aluminum oxide template. The absorber shows ultrabroadband absorption in both the visible and near-infrared regions (400–2500 nm), with averages of 99.1% and 80.1%, respectively. Additionally, the presence of the TiO<sub>2</sub> layer within the absorber extends the lifetime of the hot carriers by 2.7 times longer than that without the TiO<sub>2</sub> layer, enhancing the transfer of hot electrons and improving the efficiency of hydrogen production by 1.9 times. This novel ultrabroadband absorber has potential use in advanced photocatalytic HER applications, providing a sustainable and cost-effective route for hydrogen generation from solar energy.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"34 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139510406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-12DOI: 10.1038/s41427-023-00521-9
Chen-Yu Hu, Wei-De Chen, Yan-Ting Liu, Chao-Chung Huang, Chi-Feng Pai
The discovery of efficient magnetization switching upon device activation by spin Hall effect (SHE)-induced spin–orbit torque (SOT) changed the course of magnetic random-access memory (MRAM) research and development. However, for electronic systems with perpendicular magnetic anisotropy (PMA), the use of SOT is still hampered by the necessity of a longitudinal magnetic field to break magnetic symmetry and achieve deterministic switching. In this work, we demonstrate that robust and tunable field-free current-driven SOT switching of perpendicular magnetization can be controlled by the growth protocol in Pt-based magnetic heterostructures. We further elucidate that such growth-dependent symmetry breaking originates from the laterally tilted magnetic anisotropy of the ferromagnetic layer with PMA, a phenomenon that has been largely neglected in previous studies. We show experimentally and in simulation that in a PMA system with tilted anisotropy, the deterministic field-free switching exhibits a conventional SHE-induced damping-like torque feature, and the resulting current-induced effective field shows a nonlinear dependence on the applied current density. This relationship could be potentially misattributed to an unconventional SOT origin.
自旋霍尔效应(SHE)诱导的自旋轨道力矩(SOT)可在器件激活时实现高效磁化切换,这一发现改变了磁性随机存取存储器(MRAM)的研究和开发进程。然而,对于具有垂直磁各向异性(PMA)的电子系统来说,由于需要纵向磁场来打破磁对称性并实现确定性开关,SOT 的使用仍然受到阻碍。在这项工作中,我们证明了在铂基磁异质结构中,垂直磁化的稳健、可调的无磁场电流驱动 SOT 开关可由生长协议控制。我们进一步阐明,这种依赖于生长的对称性破坏源于具有 PMA 的铁磁层的横向倾斜磁各向异性,而这一现象在以往的研究中基本上被忽视了。我们通过实验和仿真表明,在具有倾斜各向异性的 PMA 系统中,确定性无磁场切换表现出传统的 SHE 诱导阻尼转矩特征,由此产生的电流诱导有效磁场与外加电流密度呈非线性依赖关系。这种关系有可能被误认为是非常规 SOT 的起源。
{"title":"The central role of tilted anisotropy for field-free spin–orbit torque switching of perpendicular magnetization","authors":"Chen-Yu Hu, Wei-De Chen, Yan-Ting Liu, Chao-Chung Huang, Chi-Feng Pai","doi":"10.1038/s41427-023-00521-9","DOIUrl":"https://doi.org/10.1038/s41427-023-00521-9","url":null,"abstract":"<p>The discovery of efficient magnetization switching upon device activation by spin Hall effect (SHE)-induced spin–orbit torque (SOT) changed the course of magnetic random-access memory (MRAM) research and development. However, for electronic systems with perpendicular magnetic anisotropy (PMA), the use of SOT is still hampered by the necessity of a longitudinal magnetic field to break magnetic symmetry and achieve deterministic switching. In this work, we demonstrate that robust and tunable field-free current-driven SOT switching of perpendicular magnetization can be controlled by the growth protocol in Pt-based magnetic heterostructures. We further elucidate that such growth-dependent symmetry breaking originates from the laterally tilted magnetic anisotropy of the ferromagnetic layer with PMA, a phenomenon that has been largely neglected in previous studies. We show experimentally and in simulation that in a PMA system with tilted anisotropy, the deterministic field-free switching exhibits a conventional SHE-induced damping-like torque feature, and the resulting current-induced effective field shows a nonlinear dependence on the applied current density. This relationship could be potentially misattributed to an unconventional SOT origin.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"20 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139459829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-10DOI: 10.1038/s41427-023-00524-6
Jun Okabayashi, T. Usami, Amran Mahfudh Yatmeidhy, Y. Murakami, Y. Shiratsuchi, R. Nakatani, Y. Gohda, K. Hamaya
{"title":"Strain-induced specific orbital control in a Heusler alloy-based interfacial multiferroics","authors":"Jun Okabayashi, T. Usami, Amran Mahfudh Yatmeidhy, Y. Murakami, Y. Shiratsuchi, R. Nakatani, Y. Gohda, K. Hamaya","doi":"10.1038/s41427-023-00524-6","DOIUrl":"https://doi.org/10.1038/s41427-023-00524-6","url":null,"abstract":"","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"12 5","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139439847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The fabrication and development of high-entropy alloys (HEAs) with exceptional functionalities is a rapidly expanding field with numerous applications. When the role of entropy in HEAs is considered, the extrinsic factors, such as the existence of grains and different phases, need to be separated from the intrinsic configurations of the atomic lattice. Here, we fabricated the CoCrFeNi2Al0.5 HEA/muscovite heterostructures, and some were prepared as epitaxial bilayers and others were prepared as an amorphous system. These two systems are classified into atomic-site disordered (ASD) and structurally disordered (SD) states, respectively, without the extrinsic effects for the determination of the crystal lattice role in high-entropy states. In this study, we determined the role of the structure order in correlation with the structural, electronic, and magnetic properties of HEAs using a combination of energy-dispersive X-ray spectrometry, X-ray diffraction, transmission electron microscopy, magneto-transport, ac magnetometry, and X-ray absorption spectroscopy with magnetic circular dichroism. The ASD state showed fully metallic behavior. In contrast, the SD state showed a metallic behavior with intense magnetic saturation, which was called Kondo-like behavior, under 50 K with a low-temperature coefficient of resistivity of ~64 ppm/°C. The difference between the saturation magnetic moment and the electron relaxation behavior in the ASD and SD states resulted from the existence of the structural order affecting the atomic distance and periodicity to modify the exchange interaction and tune the electron-phonon interaction for scattering. The ferromagnetic behavior contributed by Co, Fe, and Ni atoms was probed by X-ray absorption and magnetic circular dichroism to understand the magnetic interactions in the ASD and SD states.
制造和开发具有特殊功能的高熵合金(HEAs)是一个快速发展的领域,其应用领域众多。在考虑熵在高熵合金中的作用时,需要将晶粒和不同相的存在等外在因素与原子晶格的内在构型区分开来。在这里,我们制备了 CoCrFeNi2Al0.5 HEA/muscovite 异质结构,其中一些制备成了外延双层结构,另一些制备成了非晶态体系。这两种体系被分别划分为原子位点无序(ASD)态和结构无序(SD)态,在确定高熵态中晶格的作用时不需要考虑外在效应。在这项研究中,我们结合使用了能量色散 X 射线光谱法、X 射线衍射法、透射电子显微镜法、磁传输法、交流磁力测定法和带有磁圆二色性的 X 射线吸收光谱法,确定了结构顺序与 HEA 的结构、电子和磁特性之间的相关性。ASD 状态显示出完全的金属特性。与此相反,SD 状态在 50 K 下表现出具有强磁饱和度的金属行为,被称为近藤行为,其低温电阻系数约为 64 ppm/°C。在 ASD 和 SD 状态下,饱和磁矩和电子弛豫行为之间的差异是由于存在影响原子间距和周期性的结构顺序,从而改变了交换相互作用,并调整了电子-声子相互作用以实现散射。通过 X 射线吸收和磁圆二色性探测了 Co、Fe 和 Ni 原子的铁磁行为,以了解 ASD 和 SD 状态下的磁相互作用。
{"title":"Role of the structure order in the transport and magnetic properties of high-entropy alloy films","authors":"Jia-Wei Chen, Shih-Hsun Chen, Padraic Shafer, Wen-Yen Tzeng, Yi-Cheng Chen, Chih-Wei Luo, Wen-Wei Wu, Jien-Wei Yeh, Ying-Hao Chu","doi":"10.1038/s41427-023-00518-4","DOIUrl":"https://doi.org/10.1038/s41427-023-00518-4","url":null,"abstract":"<p>The fabrication and development of high-entropy alloys (HEAs) with exceptional functionalities is a rapidly expanding field with numerous applications. When the role of entropy in HEAs is considered, the extrinsic factors, such as the existence of grains and different phases, need to be separated from the intrinsic configurations of the atomic lattice. Here, we fabricated the CoCrFeNi<sub>2</sub>Al<sub>0.5</sub> HEA/muscovite heterostructures, and some were prepared as epitaxial bilayers and others were prepared as an amorphous system. These two systems are classified into atomic-site disordered (ASD) and structurally disordered (SD) states, respectively, without the extrinsic effects for the determination of the crystal lattice role in high-entropy states. In this study, we determined the role of the structure order in correlation with the structural, electronic, and magnetic properties of HEAs using a combination of energy-dispersive X-ray spectrometry, X-ray diffraction, transmission electron microscopy, magneto-transport, ac magnetometry, and X-ray absorption spectroscopy with magnetic circular dichroism. The ASD state showed fully metallic behavior. In contrast, the SD state showed a metallic behavior with intense magnetic saturation, which was called Kondo-like behavior, under 50 K with a low-temperature coefficient of resistivity of ~64 ppm/°C. The difference between the saturation magnetic moment and the electron relaxation behavior in the ASD and SD states resulted from the existence of the structural order affecting the atomic distance and periodicity to modify the exchange interaction and tune the electron-phonon interaction for scattering. The ferromagnetic behavior contributed by Co, Fe, and Ni atoms was probed by X-ray absorption and magnetic circular dichroism to understand the magnetic interactions in the ASD and SD states.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"11 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139093623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}