首页 > 最新文献

Npg Asia Materials最新文献

英文 中文
Tailoring the grain boundary structure and chemistry of the dendrite-free garnet solid electrolyte Li6.1Ga0.3La3Zr2O12 调整无枝晶石榴石固体电解质 Li6.1Ga0.3La3Zr2O12 的晶界结构和化学性质
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-30 DOI: 10.1038/s41427-024-00563-7
Rae-Hyun Lee, Chea-Yun Kang, Jong-Kyu Lee, Bong-Soo Jin, Kyong-Nam Kim, Hyun-Soo Kim, Jung-Rag Yoon, Seung-Hwan Lee
Garnet-type Li6.1Ga0.3La3Zr2O12 (LGLZO) exhibits high ionic conductivity and extremely low electronic conductivity. The electrochemical properties strongly depend on the characteristics of the grain boundaries and pores in the oxide–ceramic electrolyte. Currently, the main issue of LGLZO is its large grain boundary resistance due to high-temperature sintering. Herein, we propose an effective method for reinforcing the chemical and structural characteristics of the grain boundaries using a Li2O-B2O3-Al2O3 (LBA) sintering aid. In this study, the LBA sintering aid is critical because it fills grain boundaries and void spaces. As a result, LGLZO solid-state electrolytes with sintering aids significantly enhance the ionic conductivity and reduce the activation energy, especially in the grain boundary region. Another crucial issue is the formation of Li dendrites in LGLZO. Since dendritic Li propagates along the grain boundaries, the optimized LGLZO solid-state electrolyte demonstrates excellent stability against Li metals. Overall, the LGLZO electrolyte with the LBA sintering aid exhibits stable long-term cycling performance due to the well-designed grain boundaries. The addition of Li2O-B2O3-Al2O3 (LBA) sintering aid to Li6.1Ga0.3La3Zr2O12 (LGLZO) solid electrolytes enhances grain boundary characteristics and reduces porosity. This modification leads to a substantial increase in ionic conductivity and mechanical stability, while effectively preventing Li dendrite formation. The optimized LGLZO sample with LBA exhibits improved long-term cycling performance, making it a promising candidate for high-performance all-solid-state batteries. These findings underscore the critical role of grain boundary engineering in enhancing the electrochemical properties of garnet-type electrolytes.
石榴石型 Li6.1Ga0.3La3Zr2O12(LGLZO)具有很高的离子电导率和极低的电子电导率。其电化学性质在很大程度上取决于氧化物-陶瓷电解质中晶界和孔隙的特性。目前,LGLZO 的主要问题是高温烧结造成的较大晶界电阻。在此,我们提出了一种利用 Li2O-B2O3-Al2O3 (LBA) 烧结助剂强化晶界化学和结构特性的有效方法。在本研究中,LBA 烧结助剂至关重要,因为它能填充晶界和空隙。因此,含有烧结助剂的 LGLZO 固态电解质可显著提高离子导电性并降低活化能,尤其是在晶界区域。另一个关键问题是锂枝晶在 LGLZO 中的形成。由于树枝状锂沿着晶界传播,因此优化的 LGLZO 固态电解质对锂金属具有极佳的稳定性。总体而言,采用 LBA 烧结辅助剂的 LGLZO 电解液因其精心设计的晶界而表现出稳定的长期循环性能。
{"title":"Tailoring the grain boundary structure and chemistry of the dendrite-free garnet solid electrolyte Li6.1Ga0.3La3Zr2O12","authors":"Rae-Hyun Lee, Chea-Yun Kang, Jong-Kyu Lee, Bong-Soo Jin, Kyong-Nam Kim, Hyun-Soo Kim, Jung-Rag Yoon, Seung-Hwan Lee","doi":"10.1038/s41427-024-00563-7","DOIUrl":"10.1038/s41427-024-00563-7","url":null,"abstract":"Garnet-type Li6.1Ga0.3La3Zr2O12 (LGLZO) exhibits high ionic conductivity and extremely low electronic conductivity. The electrochemical properties strongly depend on the characteristics of the grain boundaries and pores in the oxide–ceramic electrolyte. Currently, the main issue of LGLZO is its large grain boundary resistance due to high-temperature sintering. Herein, we propose an effective method for reinforcing the chemical and structural characteristics of the grain boundaries using a Li2O-B2O3-Al2O3 (LBA) sintering aid. In this study, the LBA sintering aid is critical because it fills grain boundaries and void spaces. As a result, LGLZO solid-state electrolytes with sintering aids significantly enhance the ionic conductivity and reduce the activation energy, especially in the grain boundary region. Another crucial issue is the formation of Li dendrites in LGLZO. Since dendritic Li propagates along the grain boundaries, the optimized LGLZO solid-state electrolyte demonstrates excellent stability against Li metals. Overall, the LGLZO electrolyte with the LBA sintering aid exhibits stable long-term cycling performance due to the well-designed grain boundaries. The addition of Li2O-B2O3-Al2O3 (LBA) sintering aid to Li6.1Ga0.3La3Zr2O12 (LGLZO) solid electrolytes enhances grain boundary characteristics and reduces porosity. This modification leads to a substantial increase in ionic conductivity and mechanical stability, while effectively preventing Li dendrite formation. The optimized LGLZO sample with LBA exhibits improved long-term cycling performance, making it a promising candidate for high-performance all-solid-state batteries. These findings underscore the critical role of grain boundary engineering in enhancing the electrochemical properties of garnet-type electrolytes.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-12"},"PeriodicalIF":8.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00563-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142216236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High tolerance of the superconducting current to large grain boundary angles in potassium-doped BaFe2As2 掺钾 BaFe2As2 中超导电流对大晶界角的高耐受性
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-23 DOI: 10.1038/s41427-024-00561-9
Takafumi Hatano, Dongyi Qin, Kazumasa Iida, Hongye Gao, Zimeng Guo, Hikaru Saito, Satoshi Hata, Yusuke Shimada, Michio Naito, Akiyasu Yamamoto
Superconducting magnets based on high-temperature superconductors (HTSs) have become critical components in cutting-edge technologies such as advanced medical applications. In HTSs, weak links of superconductivity are inevitable at high-angle grain boundaries (GBs). Thus, two adjacent grains should be crystallographically aligned within the critical angle (θc), for which the intergrain critical current density (Jc) starts to decrease exponentially. The θc of several iron-based superconductors (IBSs) is larger than that of cuprates. However, the decreases in both θc and intergrain Jc under magnetic fields for IBSs are still substantial, hampering their applications in polycrystalline forms. Here, we report that potassium-doped BaFe2As2 (Ba122:K) exhibits superior GB performance to that of previously reported IBSs. A transport Jc of over 0.1 MA/cm2 across [001]-tilt GBs with misorientation angles up to θGB = 24° was recorded even at 28 K, which is a required level for practical applications. Additionally, even in an applied magnetic field, θc was unaltered, and the decay of the intergrain Jc was small. Our results highlight the exceptional potential of Ba122:K for polycrystalline applications and pave the way for next-generation superconducting magnets. We have fabricated artificial grain boundaries in K-doped BaFe2As2 (Ba122:K), one of the Fe-based superconductors. The crystalline orientation map, acquired through the scanning precession electron diffraction measurements, revealed that spontaneous connectivity modification occurred at the grain boundary, which may mitigate weak-link behavior. Specifically, a self-field critical current density Jc of over 0.1 MA/cm2 across the grain boundary with misorientation angles up to 24° was recorded even at 28 K. This performance surpasses the grain boundary properties of hitherto reported Fe-based superconductors. Our results highlight the exceptional potential of Ba122:K for polycrystalline applications and pave the way for next-generation superconducting magnets.
基于高温超导体(HTS)的超导磁体已成为先进医疗应用等尖端技术的关键部件。在高温超导体中,高角度晶界(GB)处不可避免地会出现超导薄弱环节。因此,两个相邻晶粒应在临界角 (θc)范围内结晶排列,此时晶粒间临界电流密度 (Jc) 开始呈指数下降。几种铁基超导体(IBSs)的θc都比铜氧化物大。然而,在磁场作用下,铁基超导体的θc 和晶粒间 Jc 的下降幅度仍然很大,这阻碍了它们在多晶体形式中的应用。在这里,我们报告了掺钾的 BaFe2As2(Ba122:K)与之前报告的 IBS 相比,具有更优越的 GB 性能。即使在 28 K(这是实际应用所需的水平)的条件下,我们也能记录到跨越[001]倾斜 GB 的传输 Jc 超过 0.1 MA/cm2,其错位角可达 θGB = 24°。此外,即使在外加磁场中,θc 也不会发生变化,晶粒间 Jc 的衰减也很小。我们的研究结果凸显了 Ba122:K 在多晶应用领域的巨大潜力,并为下一代超导磁体的发展铺平了道路。
{"title":"High tolerance of the superconducting current to large grain boundary angles in potassium-doped BaFe2As2","authors":"Takafumi Hatano, Dongyi Qin, Kazumasa Iida, Hongye Gao, Zimeng Guo, Hikaru Saito, Satoshi Hata, Yusuke Shimada, Michio Naito, Akiyasu Yamamoto","doi":"10.1038/s41427-024-00561-9","DOIUrl":"10.1038/s41427-024-00561-9","url":null,"abstract":"Superconducting magnets based on high-temperature superconductors (HTSs) have become critical components in cutting-edge technologies such as advanced medical applications. In HTSs, weak links of superconductivity are inevitable at high-angle grain boundaries (GBs). Thus, two adjacent grains should be crystallographically aligned within the critical angle (θc), for which the intergrain critical current density (Jc) starts to decrease exponentially. The θc of several iron-based superconductors (IBSs) is larger than that of cuprates. However, the decreases in both θc and intergrain Jc under magnetic fields for IBSs are still substantial, hampering their applications in polycrystalline forms. Here, we report that potassium-doped BaFe2As2 (Ba122:K) exhibits superior GB performance to that of previously reported IBSs. A transport Jc of over 0.1 MA/cm2 across [001]-tilt GBs with misorientation angles up to θGB = 24° was recorded even at 28 K, which is a required level for practical applications. Additionally, even in an applied magnetic field, θc was unaltered, and the decay of the intergrain Jc was small. Our results highlight the exceptional potential of Ba122:K for polycrystalline applications and pave the way for next-generation superconducting magnets. We have fabricated artificial grain boundaries in K-doped BaFe2As2 (Ba122:K), one of the Fe-based superconductors. The crystalline orientation map, acquired through the scanning precession electron diffraction measurements, revealed that spontaneous connectivity modification occurred at the grain boundary, which may mitigate weak-link behavior. Specifically, a self-field critical current density Jc of over 0.1 MA/cm2 across the grain boundary with misorientation angles up to 24° was recorded even at 28 K. This performance surpasses the grain boundary properties of hitherto reported Fe-based superconductors. Our results highlight the exceptional potential of Ba122:K for polycrystalline applications and pave the way for next-generation superconducting magnets.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-10"},"PeriodicalIF":8.6,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00561-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142216238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multifunctional mesoporous silica drug delivery nanosystem that ameliorates tumor hypoxia and increases radiotherapy efficacy 一种能改善肿瘤缺氧并提高放疗疗效的多功能介孔二氧化硅给药纳米系统
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-16 DOI: 10.1038/s41427-024-00560-w
Yanhong Chu, LiFeng Wang, Yaohua Ke, Xiaoyu Feng, Wenmei Rao, Wei Ren, Kai Xin, Yan Wang, Lixia Yu, Baorui Liu, Qin Liu
Radiotherapy (RT) is a widely used treatment with strong therapeutic effects, but overcoming challenges related to hypoxia-induced tumor resistance and ineffective antitumor immune responses is crucial for optimal outcomes. In this study, we developed a versatile nanosystem using mesoporous silica nanoparticles (MSNs), R837, and a small quantity of manganese peroxide (Mn/ZnO2). The synthesized MSN@R837-Mn/ZnO2 nanoparticles exhibited precise tumor targeting and accumulation, controlled drug release under acidic conditions, and increased sensitivity in magnetic resonance imaging. These attributes collectively augmented the therapeutic efficacy of RT by alleviating hypoxia and immunosuppression. Tumor cells treated with RT combined with these nanoparticles displayed reduced oxidative stress, alleviated hypoxia, and normalized blood vessel formation. Notably, all mice in the RT + PD-1 + MSN@R837-Mn/ZnO2 group achieved complete tumor regression with extended survival. Safety assessments confirmed the absence of MSN@R837-Mn/ZnO2 toxicity, highlighting its potential as a promising approach with dual functionality for the diagnostic imaging and treatment of cancer. Radiotherapy (RT) faces challenges like hypoxia-induced tumor resistance and weak antitumor immune responses. This study developed a nanosystem using mesoporous silica nanoparticles (MSNs), R837, and manganese peroxide (Mn/ZnO2). The MSN@R837-Mn/ZnO2 nanoparticles showed precise tumor targeting, controlled drug release in acidic conditions, and enhanced MRI sensitivity, boosting RT efficacy by reducing hypoxia and immunosuppression. Tumor cells treated with RT and these nanoparticles had less oxidative stress, improved hypoxia, and normalized blood vessels. Remarkably, all mice in the RT+PD-1+MSN@R837-Mn/ZnO2 group achieved complete tumor regression and extended survival, with no toxicity observed, indicating its potential for cancer imaging and treatment.
放疗(RT)是一种广泛使用的治疗方法,具有很强的治疗效果,但克服缺氧引起的肿瘤耐药性和无效的抗肿瘤免疫反应是获得最佳疗效的关键。在这项研究中,我们利用介孔二氧化硅纳米颗粒(MSN)、R837 和少量过氧化锰(Mn/ZnO2)开发了一种多功能纳米系统。合成的 MSN@R837-Mn/ZnO2 纳米粒子具有精确的肿瘤靶向性和蓄积性,在酸性条件下可控制药物释放,并提高了磁共振成像的灵敏度。这些特性通过缓解缺氧和免疫抑制共同提高了 RT 的疗效。肿瘤细胞经与这些纳米颗粒结合的 RT 治疗后,氧化应激减少,缺氧减轻,血管形成正常。值得注意的是,RT + PD-1 + MSN@R837-Mn/ZnO2组的所有小鼠都实现了肿瘤完全消退并延长了生存期。安全性评估证实,MSN@R837-Mn/ZnO2 无毒性,突出了其作为一种具有双重功能的癌症诊断成像和治疗方法的潜力。
{"title":"A multifunctional mesoporous silica drug delivery nanosystem that ameliorates tumor hypoxia and increases radiotherapy efficacy","authors":"Yanhong Chu, LiFeng Wang, Yaohua Ke, Xiaoyu Feng, Wenmei Rao, Wei Ren, Kai Xin, Yan Wang, Lixia Yu, Baorui Liu, Qin Liu","doi":"10.1038/s41427-024-00560-w","DOIUrl":"10.1038/s41427-024-00560-w","url":null,"abstract":"Radiotherapy (RT) is a widely used treatment with strong therapeutic effects, but overcoming challenges related to hypoxia-induced tumor resistance and ineffective antitumor immune responses is crucial for optimal outcomes. In this study, we developed a versatile nanosystem using mesoporous silica nanoparticles (MSNs), R837, and a small quantity of manganese peroxide (Mn/ZnO2). The synthesized MSN@R837-Mn/ZnO2 nanoparticles exhibited precise tumor targeting and accumulation, controlled drug release under acidic conditions, and increased sensitivity in magnetic resonance imaging. These attributes collectively augmented the therapeutic efficacy of RT by alleviating hypoxia and immunosuppression. Tumor cells treated with RT combined with these nanoparticles displayed reduced oxidative stress, alleviated hypoxia, and normalized blood vessel formation. Notably, all mice in the RT + PD-1 + MSN@R837-Mn/ZnO2 group achieved complete tumor regression with extended survival. Safety assessments confirmed the absence of MSN@R837-Mn/ZnO2 toxicity, highlighting its potential as a promising approach with dual functionality for the diagnostic imaging and treatment of cancer. Radiotherapy (RT) faces challenges like hypoxia-induced tumor resistance and weak antitumor immune responses. This study developed a nanosystem using mesoporous silica nanoparticles (MSNs), R837, and manganese peroxide (Mn/ZnO2). The MSN@R837-Mn/ZnO2 nanoparticles showed precise tumor targeting, controlled drug release in acidic conditions, and enhanced MRI sensitivity, boosting RT efficacy by reducing hypoxia and immunosuppression. Tumor cells treated with RT and these nanoparticles had less oxidative stress, improved hypoxia, and normalized blood vessels. Remarkably, all mice in the RT+PD-1+MSN@R837-Mn/ZnO2 group achieved complete tumor regression and extended survival, with no toxicity observed, indicating its potential for cancer imaging and treatment.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-17"},"PeriodicalIF":8.6,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00560-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142216239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probing the weak limit of magnetocrystalline anisotropy through a spin‒flop transition in the van der Waals antiferromagnet CrPS4 通过范德华反铁磁体 CrPS4 的自旋翻转转变探究磁晶各向异性的弱极限
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-09 DOI: 10.1038/s41427-024-00559-3
Jae Yeon Seo, Sunghyun Lim, Hyun Jun Shin, Ki Won Jeong, Jae Min Hong, Kyungsun Moon, Mi Kyung Kim, Nara Lee, Young Jai Choi
The influence of magnetocrystalline anisotropy (MCA) on antiferromagnetism is elucidated through the characterization of the spin‒flop transition. However, due to a lack of suitable candidates for investigation, a detailed understanding of the preservation of the spin‒flop transition in the presence of low MCA energy remains elusive. In this study, we introduce CrPS4, which is a two-dimensional van der Waals antiferromagnet, as an ideal system to explore the exceedingly weak limit of the thermally-evolved MCA energy. By employing a uniaxially anisotropic spin model and fitting it to the experimental magnetic properties, we quantify the MCA energy and identify the discernible spin configurations in different magnetic phases. Notably, even at the limit of extremely weak MCA, with a mere 0.12% of the interlayer antiferromagnetic exchange interaction at T = 33 K, which is slightly below the Néel temperature (TN) of 38 K, the spin‒flop transition remains intact. We further establish a direct correlation between the visualized spin arrangements and the progressive reversal of magnetic torque induced by rotating magnetic fields. This analysis reveals the essential role of MCA in antiferromagnetism, thus extending our understanding to previously undetected limits and providing valuable insights for the development of spin-processing functionalities based on van der Waals magnets. Though the impact of magnetic anisotropy on antiferromagnetism is manifested in spin-flop transition, understanding the preservation of this transition in weak anisotropy remains elusive. By adopting an anisotropic spin model, we find that the spin-flop transition remains intact in extremely weak anisotropy, with a mere 0.12% of interlayer exchange interaction at 33 K, slightly below the Néel temperature of 38 K. We further establish a direct relationship between the visualized spin arrangements and the progressive reversal of magnetic torque in rotating magnetic fields. Our analysis provides valuable insights for exploring novel phenomena in the realm of low-dimensional magnetism.
{"title":"Probing the weak limit of magnetocrystalline anisotropy through a spin‒flop transition in the van der Waals antiferromagnet CrPS4","authors":"Jae Yeon Seo, Sunghyun Lim, Hyun Jun Shin, Ki Won Jeong, Jae Min Hong, Kyungsun Moon, Mi Kyung Kim, Nara Lee, Young Jai Choi","doi":"10.1038/s41427-024-00559-3","DOIUrl":"10.1038/s41427-024-00559-3","url":null,"abstract":"The influence of magnetocrystalline anisotropy (MCA) on antiferromagnetism is elucidated through the characterization of the spin‒flop transition. However, due to a lack of suitable candidates for investigation, a detailed understanding of the preservation of the spin‒flop transition in the presence of low MCA energy remains elusive. In this study, we introduce CrPS4, which is a two-dimensional van der Waals antiferromagnet, as an ideal system to explore the exceedingly weak limit of the thermally-evolved MCA energy. By employing a uniaxially anisotropic spin model and fitting it to the experimental magnetic properties, we quantify the MCA energy and identify the discernible spin configurations in different magnetic phases. Notably, even at the limit of extremely weak MCA, with a mere 0.12% of the interlayer antiferromagnetic exchange interaction at T = 33 K, which is slightly below the Néel temperature (TN) of 38 K, the spin‒flop transition remains intact. We further establish a direct correlation between the visualized spin arrangements and the progressive reversal of magnetic torque induced by rotating magnetic fields. This analysis reveals the essential role of MCA in antiferromagnetism, thus extending our understanding to previously undetected limits and providing valuable insights for the development of spin-processing functionalities based on van der Waals magnets. Though the impact of magnetic anisotropy on antiferromagnetism is manifested in spin-flop transition, understanding the preservation of this transition in weak anisotropy remains elusive. By adopting an anisotropic spin model, we find that the spin-flop transition remains intact in extremely weak anisotropy, with a mere 0.12% of interlayer exchange interaction at 33 K, slightly below the Néel temperature of 38 K. We further establish a direct relationship between the visualized spin arrangements and the progressive reversal of magnetic torque in rotating magnetic fields. Our analysis provides valuable insights for exploring novel phenomena in the realm of low-dimensional magnetism.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-9"},"PeriodicalIF":8.6,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00559-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141923705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermoregulatory integration in hand prostheses and humanoid robots through blood vessel simulation 通过血管模拟实现手部假肢和仿人机器人的体温调节一体化
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-26 DOI: 10.1038/s41427-024-00558-4
Sang-Mi Jeong, Jonguk Yang, Youngsoo Kang, Hee Sung Seo, Keumyoung Seo, Taekyung Lim, Sanghyun Ju
In this paper, we introduce an innovative approach for generating robotic faces with a thermal signature similar to that of humans and equipping prosthetic or robotic hands with a lifelike temperature distribution. This approach enhances their detection via infrared cameras and promotes more natural interactions between humans and robots. This method integrates a temperature regulation system into artificial skin, drawing inspiration from the human body’s natural temperature control via blood flow. Central to this technique is a fiber network simulating blood vessels within the artificial skin. Water flows through these fibers under specific temperature and flow conditions, forming a controlled heat release system. The heat emission can be adjusted by changing the dilation of these fibers, primarily by modulating the frequency of circulation. Our findings indicate that this approach can replicate the varied thermal characteristics of different human faces and hand areas. Consequently, the robotic faces appear more human-like in infrared images, aiding their identification by infrared cameras. At the same time, the prosthetic hands achieve a more natural temperature, reducing the discomfort typically felt in direct contact with synthetic limbs. The aim of this study was to address the challenges faced by the users of prosthetic hands. The results from this study show a promising direction in humanoid robotics, fostering improved tactile interactions and redefining human–robot relationships. This innovative technique facilitates further advancements, blurring the lines between artificial aids and natural biological systems. Robotic faces and hands with human-like thermal infrared emission and physiological temperature are achieved by replicating the circulatory system’s inherent temperature regulation mechanism. The keystone of our development is an intricate system of fibers, reminiscent of blood vessels, embedded within the artificial skin. The fiber network enables controlled heat dissipation by regulating water circulation to mimic human thermal signatures.
在本文中,我们介绍了一种创新方法,用于生成具有与人类相似热特征的机器人脸部,并为假肢或机器人手部配备逼真的温度分布。这种方法增强了通过红外摄像机对机器人的探测,促进了人类与机器人之间更自然的互动。这种方法将温度调节系统集成到人造皮肤中,从人体通过血液流动进行自然温度控制中汲取灵感。这项技术的核心是在人造皮肤内模拟血管的纤维网络。水在特定的温度和流动条件下流经这些纤维,形成一个受控的热释放系统。通过改变这些纤维的扩张程度,主要是通过调节循环频率,可以调节热量的释放。我们的研究结果表明,这种方法可以复制不同人脸和手部区域的不同热特性。因此,机器人脸部在红外图像中看起来更像人类,有助于红外相机对其进行识别。与此同时,假手的温度也更加自然,减少了与人造肢体直接接触时通常会产生的不适感。这项研究的目的是解决假手使用者面临的挑战。这项研究的结果表明,仿人机器人技术的发展方向大有可为,它可以改善触觉互动,重新定义人与机器人的关系。这种创新技术有助于进一步发展,模糊人工辅助工具与自然生物系统之间的界限。
{"title":"Thermoregulatory integration in hand prostheses and humanoid robots through blood vessel simulation","authors":"Sang-Mi Jeong, Jonguk Yang, Youngsoo Kang, Hee Sung Seo, Keumyoung Seo, Taekyung Lim, Sanghyun Ju","doi":"10.1038/s41427-024-00558-4","DOIUrl":"10.1038/s41427-024-00558-4","url":null,"abstract":"In this paper, we introduce an innovative approach for generating robotic faces with a thermal signature similar to that of humans and equipping prosthetic or robotic hands with a lifelike temperature distribution. This approach enhances their detection via infrared cameras and promotes more natural interactions between humans and robots. This method integrates a temperature regulation system into artificial skin, drawing inspiration from the human body’s natural temperature control via blood flow. Central to this technique is a fiber network simulating blood vessels within the artificial skin. Water flows through these fibers under specific temperature and flow conditions, forming a controlled heat release system. The heat emission can be adjusted by changing the dilation of these fibers, primarily by modulating the frequency of circulation. Our findings indicate that this approach can replicate the varied thermal characteristics of different human faces and hand areas. Consequently, the robotic faces appear more human-like in infrared images, aiding their identification by infrared cameras. At the same time, the prosthetic hands achieve a more natural temperature, reducing the discomfort typically felt in direct contact with synthetic limbs. The aim of this study was to address the challenges faced by the users of prosthetic hands. The results from this study show a promising direction in humanoid robotics, fostering improved tactile interactions and redefining human–robot relationships. This innovative technique facilitates further advancements, blurring the lines between artificial aids and natural biological systems. Robotic faces and hands with human-like thermal infrared emission and physiological temperature are achieved by replicating the circulatory system’s inherent temperature regulation mechanism. The keystone of our development is an intricate system of fibers, reminiscent of blood vessels, embedded within the artificial skin. The fiber network enables controlled heat dissipation by regulating water circulation to mimic human thermal signatures.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-12"},"PeriodicalIF":8.6,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00558-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141771071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging organic electrode materials for sustainable batteries +用于可持续电池的新兴有机电极材料
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-19 DOI: 10.1038/s41427-024-00557-5
P. M. Hari Prasad, G. Malavika, Anuraj Pillai, Sachu Sadan, Zeena S. Pillai
Organic electrode materials (OEMs) possess low discharge potentials and charge‒discharge rates, making them suitable for use as affordable and eco-friendly rechargeable energy storage systems without needing metals such as lithium or sodium. OEMs can provide a sustainable energy economy by their development into stable and efficient next-generation high-power batteries. Despite the presence of several classes of OEMs, such as conducting polymers, 2D and 3D metal-organic frameworks, organolithium derivatives, 2D covalent organic frameworks, aromatic heterocyclic imides, and viologen derivatives, since their introduction in the 1960s, carbonyl-based molecules have maintained low discharge potentials and stable charging/discharging properties. Nevertheless, several redox-active organic molecules, including carbonyl derivatives, show poor electrochemical stability and ionic mobility in standard battery electrolytes, hampering their commercial use. Therefore, with the increased demand for renewable energy, the synthesis and testing of carbonyl-based OEMs continue to be performed in energy research. This review summarizes recent advances in developing carbonyl-based OEMs and their performance in rechargeable batteries. Organic electrode materials have gained considerable interest in the area of energy storage owing to their cost effectiveness, stability, tunable nature and high power. The use of natural ingredients, carbon-based materials and polymers for fabrication impart flexibility and light weight to the gadgets. Organic electrode materials present the potential for biodegradable energy storage solutions in batteries and supercapacitors, fostering innovation in sustainable technology.
有机电极材料(OEM)具有较低的放电电位和充放电速率,因此适合用作经济环保的可充电储能系统,而无需使用锂或钠等金属。通过将 OEM 发展成稳定、高效的下一代高功率电池,可实现可持续的能源经济。尽管存在几类 OEM,如导电聚合物、二维和三维金属有机框架、有机锂衍生物、二维共价有机框架、芳香杂环亚胺和紫胶衍生物,但自 20 世纪 60 年代问世以来,羰基分子一直保持着较低的放电电位和稳定的充电/放电特性。然而,包括羰基衍生物在内的一些具有氧化还原活性的有机分子在标准电池电解液中的电化学稳定性和离子迁移性较差,阻碍了它们的商业应用。因此,随着对可再生能源需求的增加,羰基 OEM 的合成和测试仍在能源研究中继续进行。本综述总结了开发羰基 OEM 的最新进展及其在充电电池中的性能。
{"title":"Emerging organic electrode materials for sustainable batteries","authors":"P. M. Hari Prasad, G. Malavika, Anuraj Pillai, Sachu Sadan, Zeena S. Pillai","doi":"10.1038/s41427-024-00557-5","DOIUrl":"10.1038/s41427-024-00557-5","url":null,"abstract":"Organic electrode materials (OEMs) possess low discharge potentials and charge‒discharge rates, making them suitable for use as affordable and eco-friendly rechargeable energy storage systems without needing metals such as lithium or sodium. OEMs can provide a sustainable energy economy by their development into stable and efficient next-generation high-power batteries. Despite the presence of several classes of OEMs, such as conducting polymers, 2D and 3D metal-organic frameworks, organolithium derivatives, 2D covalent organic frameworks, aromatic heterocyclic imides, and viologen derivatives, since their introduction in the 1960s, carbonyl-based molecules have maintained low discharge potentials and stable charging/discharging properties. Nevertheless, several redox-active organic molecules, including carbonyl derivatives, show poor electrochemical stability and ionic mobility in standard battery electrolytes, hampering their commercial use. Therefore, with the increased demand for renewable energy, the synthesis and testing of carbonyl-based OEMs continue to be performed in energy research. This review summarizes recent advances in developing carbonyl-based OEMs and their performance in rechargeable batteries. Organic electrode materials have gained considerable interest in the area of energy storage owing to their cost effectiveness, stability, tunable nature and high power. The use of natural ingredients, carbon-based materials and polymers for fabrication impart flexibility and light weight to the gadgets. Organic electrode materials present the potential for biodegradable energy storage solutions in batteries and supercapacitors, fostering innovation in sustainable technology.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-19"},"PeriodicalIF":8.6,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00557-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Twist angle-dependent transport properties of twisted bilayer graphene 扭曲双层石墨烯的扭曲角度输运特性
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-12 DOI: 10.1038/s41427-024-00556-6
Jin Hong Kim, Seoung-Hun Kang, Duhee Yoon, Hakseong Kim, Jin-Soo Kim, Mohd Musaib Haidari, Dong Jin Jang, Jin-Yong Ko, Young-Woo Son, Bae Ho Park, Jin Sik Choi
Twisted bilayer graphene (tBLG) with small twist angles has attracted significant attention because of its unique electronic properties arising from the formation of a moiré superlattice. In this study, we systematically characterized the twist-angle-dependent electronic and transport properties of tBLG grown via chemical vapor deposition. This characterization included parameters such as the charge-neutral point voltage, carrier concentration, resistance, and mobility, covering a wide range of twist angles from 0° to 30°. We experimentally demonstrated that these parameters exhibited twist-angle-dependent moiré period trends, with high twist angles exceeding 9°, revealing more practically useful features, including improved mobilities compared to those of single-layer graphene. In addition, we demonstrated that the doping states and work functions were weakly dependent on the twist angles, as confirmed by additional first-principles calculations. This study provides valuable insights into the transport properties of tBLG and its potential for practical applications in the emerging field of twistronics. We systematically characterized the twist-angle-dependent electronic and transport properties of twisted bilayer graphene (tBLG) grown via chemical vapor deposition. Parameters such as charge-neutral point voltage, carrier concentration, resistance, and mobility were examined across a wide range of twist angles from 0° to 30°. Our experimental results demonstrated that these parameters exhibited twist-angle-dependent trends corresponding to the moiré period. Notably, high twist angles exceeding 9° displayed practically useful features, including improved mobilities compared to single-layer graphene. Additionally, we found that the doping states and work functions showed weak dependence on the twist angles, a finding corroborated by first-principles calculations.
具有小扭曲角的扭曲双层石墨烯(tBLG)因形成摩尔超晶格而具有独特的电子特性,因而备受关注。在这项研究中,我们系统地描述了通过化学气相沉积法生长的 tBLG 与扭转角相关的电子和传输特性。这种表征包括电荷中性点电压、载流子浓度、电阻和迁移率等参数,涵盖了从 0° 到 30° 的广泛扭曲角范围。我们通过实验证明,这些参数表现出与扭转角相关的摩尔期趋势,高扭转角超过 9°,揭示了更多实际有用的特性,包括与单层石墨烯相比更好的迁移率。此外,我们还证明了掺杂态和功函数与扭转角的微弱相关性,这一点也得到了更多第一性原理计算的证实。这项研究为了解 tBLG 的传输特性及其在新兴双电子学领域的实际应用潜力提供了宝贵的见解。
{"title":"Twist angle-dependent transport properties of twisted bilayer graphene","authors":"Jin Hong Kim, Seoung-Hun Kang, Duhee Yoon, Hakseong Kim, Jin-Soo Kim, Mohd Musaib Haidari, Dong Jin Jang, Jin-Yong Ko, Young-Woo Son, Bae Ho Park, Jin Sik Choi","doi":"10.1038/s41427-024-00556-6","DOIUrl":"10.1038/s41427-024-00556-6","url":null,"abstract":"Twisted bilayer graphene (tBLG) with small twist angles has attracted significant attention because of its unique electronic properties arising from the formation of a moiré superlattice. In this study, we systematically characterized the twist-angle-dependent electronic and transport properties of tBLG grown via chemical vapor deposition. This characterization included parameters such as the charge-neutral point voltage, carrier concentration, resistance, and mobility, covering a wide range of twist angles from 0° to 30°. We experimentally demonstrated that these parameters exhibited twist-angle-dependent moiré period trends, with high twist angles exceeding 9°, revealing more practically useful features, including improved mobilities compared to those of single-layer graphene. In addition, we demonstrated that the doping states and work functions were weakly dependent on the twist angles, as confirmed by additional first-principles calculations. This study provides valuable insights into the transport properties of tBLG and its potential for practical applications in the emerging field of twistronics. We systematically characterized the twist-angle-dependent electronic and transport properties of twisted bilayer graphene (tBLG) grown via chemical vapor deposition. Parameters such as charge-neutral point voltage, carrier concentration, resistance, and mobility were examined across a wide range of twist angles from 0° to 30°. Our experimental results demonstrated that these parameters exhibited twist-angle-dependent trends corresponding to the moiré period. Notably, high twist angles exceeding 9° displayed practically useful features, including improved mobilities compared to single-layer graphene. Additionally, we found that the doping states and work functions showed weak dependence on the twist angles, a finding corroborated by first-principles calculations.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-9"},"PeriodicalIF":8.6,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00556-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141608630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulation of the electromagnetic shielding effectiveness through micro/macrostructure design for electronic packaging 通过微/宏观结构设计调节电子封装的电磁屏蔽效果
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-05 DOI: 10.1038/s41427-024-00554-8
Lizhi Guan, Jingbo Fan, Zhi Kai Ng, Edwin Hang Tong Teo, Hortense Le Ferrand
Lightweight electronic packaging that provides mechanical protection, cooling ability, and customizable electromagnetic interference (EMI) shielding effectiveness (SE) is needed for next-generation electronics. Although electronic packaging solutions with excellent EMI SE exist, there is limited research on how hierarchical design can modulate the EMI SE of an electronic packaging material on demand. In this study, the deliberate precise micro/macrostructure design of graphite-based materials using magnetically assisted 3D printing allows tuning of the EMI SE in the X band (8–12 GHz), leading to a maximum total shielding performance of 90 dB. Aligning high-density graphite microplatelets during 3D printing also remarkably amplified the total SE by 200%. Subsequently, rationally designing the oriented microstructure within a geometrical shape increases the reflection and improves the EMI SE from 40 to 60 dB in a specific direction. Our proof-of-concept samples demonstrate the potential of precise micro/macrostructure design for customizing and enhancing electronic packaging’s EMI SE while achieving good heat dissipation and mechanical protection using a versatile 3D printing method. These advances pave the way for more reliable and safer electronic systems. Magnetically assisted 3D printing allows customizable electromagnetic interference (EMI) shielding effectiveness (SE). Aligning high-density graphite microplatelets during the 3D printing parallel or perpendicularly to incident waves leads to their tailored reflection and transmission. Designing the micro/macrostructure of materials allows customization and enhancement of electronic packaging’s EMI SE while achieving good heat dissipation and mechanical protection. These advances pave the way for more reliable and safer electronic systems.
下一代电子产品需要能提供机械保护、冷却能力和可定制电磁干扰(EMI)屏蔽效果(SE)的轻型电子封装。虽然目前已有具有出色电磁干扰屏蔽效果的电子封装解决方案,但有关分层设计如何按需调节电子封装材料的电磁干扰屏蔽效果的研究还很有限。在这项研究中,利用磁辅助三维打印技术对石墨基材料进行有意的精确微/宏观结构设计,可以调整 X 波段(8-12 GHz)的 EMI SE,使总屏蔽性能最大达到 90 dB。在三维打印过程中对齐高密度石墨微板还可将总屏蔽性能显著提高 200%。随后,在几何形状内合理设计定向微结构可增加反射,并将特定方向的 EMI SE 从 40 dB 提高到 60 dB。我们的概念验证样品证明了精确的微/宏观结构设计在定制和增强电子封装的 EMI SE 方面的潜力,同时利用多功能 3D 打印方法实现了良好的散热和机械保护。这些进步为更可靠、更安全的电子系统铺平了道路。
{"title":"Modulation of the electromagnetic shielding effectiveness through micro/macrostructure design for electronic packaging","authors":"Lizhi Guan, Jingbo Fan, Zhi Kai Ng, Edwin Hang Tong Teo, Hortense Le Ferrand","doi":"10.1038/s41427-024-00554-8","DOIUrl":"10.1038/s41427-024-00554-8","url":null,"abstract":"Lightweight electronic packaging that provides mechanical protection, cooling ability, and customizable electromagnetic interference (EMI) shielding effectiveness (SE) is needed for next-generation electronics. Although electronic packaging solutions with excellent EMI SE exist, there is limited research on how hierarchical design can modulate the EMI SE of an electronic packaging material on demand. In this study, the deliberate precise micro/macrostructure design of graphite-based materials using magnetically assisted 3D printing allows tuning of the EMI SE in the X band (8–12 GHz), leading to a maximum total shielding performance of 90 dB. Aligning high-density graphite microplatelets during 3D printing also remarkably amplified the total SE by 200%. Subsequently, rationally designing the oriented microstructure within a geometrical shape increases the reflection and improves the EMI SE from 40 to 60 dB in a specific direction. Our proof-of-concept samples demonstrate the potential of precise micro/macrostructure design for customizing and enhancing electronic packaging’s EMI SE while achieving good heat dissipation and mechanical protection using a versatile 3D printing method. These advances pave the way for more reliable and safer electronic systems. Magnetically assisted 3D printing allows customizable electromagnetic interference (EMI) shielding effectiveness (SE). Aligning high-density graphite microplatelets during the 3D printing parallel or perpendicularly to incident waves leads to their tailored reflection and transmission. Designing the micro/macrostructure of materials allows customization and enhancement of electronic packaging’s EMI SE while achieving good heat dissipation and mechanical protection. These advances pave the way for more reliable and safer electronic systems.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-12"},"PeriodicalIF":8.6,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00554-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141551337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inorganic Cs3Bi2I9 lead-free halide perovskite film for large-area X-ray detector via low-cost ambient spray coating 用于大面积 X 射线探测器的无机 Cs3Bi2I9 无铅卤化物包晶薄膜(通过低成本环境喷雾涂层实现
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-28 DOI: 10.1038/s41427-024-00552-w
Yen-Ting Chen, Zi-Xiang Wen, Chen-Fu Lin, Ming-Hsien Li, Peter Chen
Lead-free Cs3Bi2I9 single crystals have been demonstrated to be promising materials for direct X-ray detectors with remarkable performance. However, their application for 2D X-ray imaging is hindered by their time-consuming preparation and limited crystal size. In this paper, a thick Cs3Bi2I9 perovskite film fabricated via facile spray coating at a low processing temperature, which increases the area of the photoactive film, reduces the processing time, decreases the energy budget and the production cost, and enhances the production yield due to high material utilization, has great potential for commercial applications. Careful control of the processing temperature and intervals during spray coating results in a dense and thick perovskite film with well-stacked perovskite domains. The compact perovskite film enhances the charge transport capability of the Cs3Bi2I9 perovskite film and reduces the dark current density of the X-ray detector. The resultant X-ray detector, prepared through a two-step spray coating process, exhibited a sensitivity of 127.23 μC Gyair−1 cm−2 and a detection limit of 7.4 μGyair s−1. In addition, the device delivers long-term stability with a consistent photoresponse when exposed to consecutive X-ray pulse irradiation. A two-step spray coating process (first step: 20 cycles of spray coating at 110 °C with 40 s intervals; second step: 180 cycles of spray coating at 130 °C with 20 s intervals) was employed to a produce large-area, compact, and thick Cs3Bi2I9 perovskite film for the application of direct X-ray detectors. The fabricated device achieved a large active area of 150 mm2, a sensitivity of 127.23 μC Gyair−1 cm−2, a detection limit of 7.4 μGyairs−1, and durability after long-term X-ray pulse irradiation.
无铅 Cs3Bi2I9 单晶已被证明是性能卓越的直接 X 射线探测器的理想材料。然而,它们在二维 X 射线成像中的应用却因制备耗时和晶体尺寸有限而受到阻碍。本文在低加工温度下通过简便的喷涂方法制备了厚的 Cs3Bi2I9 包晶石薄膜,增加了光活性薄膜的面积,缩短了加工时间,降低了能源预算和生产成本,并因材料利用率高而提高了产量,具有巨大的商业应用潜力。在喷涂过程中,对加工温度和间隔时间的精心控制可获得致密厚实、包晶畴堆积良好的包晶薄膜。致密的包晶薄膜增强了 Cs3Bi2I9 包晶薄膜的电荷传输能力,降低了 X 射线探测器的暗电流密度。通过两步喷涂工艺制备的 X 射线探测器的灵敏度为 127.23 μC Gyair-1 cm-2,探测极限为 7.4 μGyair s-1。此外,该装置在连续接受 X 射线脉冲照射时具有长期稳定性和一致的光响应。
{"title":"Inorganic Cs3Bi2I9 lead-free halide perovskite film for large-area X-ray detector via low-cost ambient spray coating","authors":"Yen-Ting Chen, Zi-Xiang Wen, Chen-Fu Lin, Ming-Hsien Li, Peter Chen","doi":"10.1038/s41427-024-00552-w","DOIUrl":"10.1038/s41427-024-00552-w","url":null,"abstract":"Lead-free Cs3Bi2I9 single crystals have been demonstrated to be promising materials for direct X-ray detectors with remarkable performance. However, their application for 2D X-ray imaging is hindered by their time-consuming preparation and limited crystal size. In this paper, a thick Cs3Bi2I9 perovskite film fabricated via facile spray coating at a low processing temperature, which increases the area of the photoactive film, reduces the processing time, decreases the energy budget and the production cost, and enhances the production yield due to high material utilization, has great potential for commercial applications. Careful control of the processing temperature and intervals during spray coating results in a dense and thick perovskite film with well-stacked perovskite domains. The compact perovskite film enhances the charge transport capability of the Cs3Bi2I9 perovskite film and reduces the dark current density of the X-ray detector. The resultant X-ray detector, prepared through a two-step spray coating process, exhibited a sensitivity of 127.23 μC Gyair−1 cm−2 and a detection limit of 7.4 μGyair s−1. In addition, the device delivers long-term stability with a consistent photoresponse when exposed to consecutive X-ray pulse irradiation. A two-step spray coating process (first step: 20 cycles of spray coating at 110 °C with 40 s intervals; second step: 180 cycles of spray coating at 130 °C with 20 s intervals) was employed to a produce large-area, compact, and thick Cs3Bi2I9 perovskite film for the application of direct X-ray detectors. The fabricated device achieved a large active area of 150 mm2, a sensitivity of 127.23 μC Gyair−1 cm−2, a detection limit of 7.4 μGyairs−1, and durability after long-term X-ray pulse irradiation.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-15"},"PeriodicalIF":8.6,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00552-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Science and applications of 2.5D materials: development, opportunities and challenges 2.5D 材料的科学与应用:发展、机遇与挑战
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-21 DOI: 10.1038/s41427-024-00551-x
Hiroki Ago, Pablo Solís-Fernández
Research on two-dimensional (2D) materials has made tremendous progress reflecting their unique properties and promising applications. In this perspective, we review the novel concept of “2.5-dimensional (2.5D) materials”, which represent new opportunities to extend the field of materials science beyond 2D materials. This concept consists of controlling van der Waals interactions and using interlayer nanospaces to synthesize new materials and explore their intriguing properties. It also includes combination with other dimensional materials, the fabrication of three-dimensional (3D) architectures of 2D materials, and practical applications in our 3D everyday life. We discuss recent research based on this concept and provide future perspectives. Although atomically thin 2D materials have attracted great interest from their unique properties and promising applications, the integration of multiple 2D materials or their modifications are more exciting because they offer opportunities to explore new frontier of materials science. This perspective illustrates the new concept of “2.5-dimensional (2.5D) materials”, which symbolically represents the great potential offered by different routes to extend the realm of 2D materials. Some examples of 2.5D materials are reviewed, such as multicomponent heterostructures, intercalation, combination with other dimensional materials, functionalization, and application to 3D devices. In this perspective, we present the recent progress of this 2.5D materials research and future outlook.
二维(2D)材料的研究取得了巨大进展,反映了其独特的性能和广阔的应用前景。在这一视角中,我们回顾了 "2.5 维(2.5D)材料 "这一新颖概念,它代表了将材料科学领域扩展到二维材料之外的新机遇。这一概念包括控制范德华相互作用和利用层间纳米空间来合成新材料并探索其奇妙特性。它还包括与其他维度材料的结合、二维材料三维(3D)结构的制造以及在我们三维日常生活中的实际应用。我们将讨论基于这一概念的最新研究,并展望未来。
{"title":"Science and applications of 2.5D materials: development, opportunities and challenges","authors":"Hiroki Ago, Pablo Solís-Fernández","doi":"10.1038/s41427-024-00551-x","DOIUrl":"10.1038/s41427-024-00551-x","url":null,"abstract":"Research on two-dimensional (2D) materials has made tremendous progress reflecting their unique properties and promising applications. In this perspective, we review the novel concept of “2.5-dimensional (2.5D) materials”, which represent new opportunities to extend the field of materials science beyond 2D materials. This concept consists of controlling van der Waals interactions and using interlayer nanospaces to synthesize new materials and explore their intriguing properties. It also includes combination with other dimensional materials, the fabrication of three-dimensional (3D) architectures of 2D materials, and practical applications in our 3D everyday life. We discuss recent research based on this concept and provide future perspectives. Although atomically thin 2D materials have attracted great interest from their unique properties and promising applications, the integration of multiple 2D materials or their modifications are more exciting because they offer opportunities to explore new frontier of materials science. This perspective illustrates the new concept of “2.5-dimensional (2.5D) materials”, which symbolically represents the great potential offered by different routes to extend the realm of 2D materials. Some examples of 2.5D materials are reviewed, such as multicomponent heterostructures, intercalation, combination with other dimensional materials, functionalization, and application to 3D devices. In this perspective, we present the recent progress of this 2.5D materials research and future outlook.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-7"},"PeriodicalIF":8.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00551-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Npg Asia Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1