首页 > 最新文献

Npg Asia Materials最新文献

英文 中文
Rejuvenation engineering in metallic glasses by complementary stress and structure modulation 基于互补应力和结构调制的金属玻璃回春工程
IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-11-24 DOI: 10.1038/s41427-023-00509-5
Daniel Şopu, Florian Spieckermann, Xilei Bian, Simon Fellner, Jonathan Wright, Megan Cordill, Christoph Gammer, Gang Wang, Mihai Stoica, Jürgen Eckert

Residual stress engineering is widely used in the design of new advanced lightweight materials. For metallic glasses, attention has been given to structural changes and rejuvenation processes. High-energy scanning X-ray diffraction strain mapping reveals large elastic fluctuations in notched metallic glasses after deformation under triaxial compression. Microindentation hardness mapping hints at a competing hardening–softening mechanism after compression and reveals the complementary effects of stress and structure modulation. Transmission electron microscopy proves that structure modulation and elastic heterogeneity distribution under room temperature deformation are related to shear band formation. Molecular dynamics simulations provide an atomistic understanding of the confined deformation mechanism in notched metallic glasses and the related fluctuations in the elastic and plastic strains. Thus, future focus should be given to stress modulation and elastic heterogeneity, which, together with structure modulation, may allow the design of metallic glasses with enhanced ductility and strain-hardening ability.

残余应力工程广泛应用于新型先进轻量化材料的设计。对于金属玻璃,人们关注的是结构变化和回春过程。高能扫描x射线衍射应变图揭示了缺口金属玻璃在三轴压缩变形后的弹性波动。微压痕硬度映射提示了压缩后的硬化-软化竞争机制,揭示了应力和结构调节的互补效应。透射电镜证实了室温变形下的结构调制和弹性非均质分布与剪切带的形成有关。分子动力学模拟提供了对缺口金属玻璃的受限变形机制和相关的弹性和塑性应变波动的原子性理解。因此,未来的重点应放在应力调制和弹性非均质性上,它们与结构调制一起,可以设计出具有增强延展性和应变硬化能力的金属玻璃。
{"title":"Rejuvenation engineering in metallic glasses by complementary stress and structure modulation","authors":"Daniel Şopu, Florian Spieckermann, Xilei Bian, Simon Fellner, Jonathan Wright, Megan Cordill, Christoph Gammer, Gang Wang, Mihai Stoica, Jürgen Eckert","doi":"10.1038/s41427-023-00509-5","DOIUrl":"https://doi.org/10.1038/s41427-023-00509-5","url":null,"abstract":"<p>Residual stress engineering is widely used in the design of new advanced lightweight materials. For metallic glasses, attention has been given to structural changes and rejuvenation processes. High-energy scanning X-ray diffraction strain mapping reveals large elastic fluctuations in notched metallic glasses after deformation under triaxial compression. Microindentation hardness mapping hints at a competing hardening–softening mechanism after compression and reveals the complementary effects of stress and structure modulation. Transmission electron microscopy proves that structure modulation and elastic heterogeneity distribution under room temperature deformation are related to shear band formation. Molecular dynamics simulations provide an atomistic understanding of the confined deformation mechanism in notched metallic glasses and the related fluctuations in the elastic and plastic strains. Thus, future focus should be given to stress modulation and elastic heterogeneity, which, together with structure modulation, may allow the design of metallic glasses with enhanced ductility and strain-hardening ability.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"103 ","pages":""},"PeriodicalIF":9.7,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138506402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Izod impact resistance of 3D printed discontinuous fibrous composites with Bouligand structure 3D打印Bouligand结构不连续纤维复合材料的抗冲击性能
IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-11-24 DOI: 10.1038/s41427-023-00508-6
Lizhi Guan, Weixiang Peng, Rachel Ng Jing Wen, Jingbo Fan, Hortense Le Ferrand

The Bouligand structure found in the dactyl club of mantis shrimps is known for its impact resistance. However, Bouligand-inspired reinforced composites with 3D shapes and impact resistance characteristics have not yet been demonstrated. Herein, direct ink writing was used to 3D print composites reinforced with glass microfibers assembled into Bouligand structures with controllable pitch angles. The energy absorption levels of the Bouligand composites under impact were found to surpass those of composites with unidirectional microfiber alignment. Additionally, the Bouligand composites with a pitch angle of 40° exhibited a maximum energy absorption of 2.4 kJ/m2, which was 140% higher than that of the unidirectional composites. Furthermore, the characterization of the topography of the fractured surface, supplemented with numerical simulations, revealed a combination of crack twisting and crack bridging mechanisms. Flexural tests conducted on the composites with a pitch angle of 40° revealed that these composites had the strongest properties, including a flexural strength of 36.9 MPa, a stiffness of 2.26 GPa, and energy absorption of 8 kJ/m2. These findings are promising for the microstructural design of engineered composites using direct ink writing for applications in aerospace, transportation, and defense.

在螳螂虾的dactyl俱乐部中发现的Bouligand结构以其抗冲击性而闻名。然而,bouligand启发的具有三维形状和抗冲击特性的增强复合材料尚未得到证实。本文采用直接墨水书写的方法,3D打印由玻璃微纤维增强的复合材料,将其组装成具有可控俯仰角的布利甘结构。结果表明,Bouligand复合材料在冲击作用下的能量吸收水平高于单向超细纤维定向复合材料。此外,当俯仰角为40°时,Bouligand复合材料的最大能量吸收为2.4 kJ/m2,比单向复合材料高140%。此外,通过对裂缝表面形貌的表征和数值模拟,揭示了裂缝扭转和裂缝桥接机制的结合。当俯仰角为40°时,复合材料的抗弯强度为36.9 MPa,刚度为2.26 GPa,吸能为8 kJ/m2,抗弯性能最强。这些发现对于在航空航天、交通运输和国防领域使用直接墨水书写的工程复合材料的微结构设计具有很大的前景。
{"title":"Izod impact resistance of 3D printed discontinuous fibrous composites with Bouligand structure","authors":"Lizhi Guan, Weixiang Peng, Rachel Ng Jing Wen, Jingbo Fan, Hortense Le Ferrand","doi":"10.1038/s41427-023-00508-6","DOIUrl":"https://doi.org/10.1038/s41427-023-00508-6","url":null,"abstract":"<p>The Bouligand structure found in the dactyl club of mantis shrimps is known for its impact resistance. However, Bouligand-inspired reinforced composites with 3D shapes and impact resistance characteristics have not yet been demonstrated. Herein, direct ink writing was used to 3D print composites reinforced with glass microfibers assembled into Bouligand structures with controllable pitch angles. The energy absorption levels of the Bouligand composites under impact were found to surpass those of composites with unidirectional microfiber alignment. Additionally, the Bouligand composites with a pitch angle of 40° exhibited a maximum energy absorption of 2.4 kJ/m<sup>2</sup>, which was 140% higher than that of the unidirectional composites. Furthermore, the characterization of the topography of the fractured surface, supplemented with numerical simulations, revealed a combination of crack twisting and crack bridging mechanisms. Flexural tests conducted on the composites with a pitch angle of 40° revealed that these composites had the strongest properties, including a flexural strength of 36.9 MPa, a stiffness of 2.26 GPa, and energy absorption of 8 kJ/m<sup>2</sup>. These findings are promising for the microstructural design of engineered composites using direct ink writing for applications in aerospace, transportation, and defense.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"492 ","pages":""},"PeriodicalIF":9.7,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138506378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two high-pressure superconducting phases in pressurized optical semiconductor GaP 加压光学半导体GaP中的两个高压超导相
2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-11-10 DOI: 10.1038/s41427-023-00506-8
Nixian Qian, Chunhua Chen, Yonghui Zhou, Shuyang Wang, Liangyu Li, Ranran Zhang, Xiangde Zhu, Yifang Yuan, Xuliang Chen, Chao An, Ying Zhou, Min Zhang, Xiaoping Yang, Zhaorong Yang
Abstract Pressure engineering in semiconductors leads to a variety of novel physical phenomena and has recently received considerable attention. Here, we report on pressure-induced superconductivity in III–V gallium phosphide (GaP), a commercially important semiconductor that exhibits excellent optical performance. We show that the emergence of superconductivity is accompanied by the concurrence of piezochromic transition and metallization and can be correlated to a structural transition from the cubic to orthorhombic phase. In line with the structural origin of superconductivity, the critical temperature T c monotonically decreases with increasing pressure up to ~50 GPa. Moreover, the superconductivity could be preserved toward ambient pressure because of the irreversibility of the structural transition. Nevertheless, the superconducting transition displays evident broadening associated with the presence of amorphization in the depressurized sample. The synchronous evolution of the structural and electronic properties not only shows a vivid structure-property relationship but also could facilitate the exploration of novel functionalities by means of pressure treatment.
半导体领域的压力工程引发了一系列新的物理现象,近年来受到了广泛的关注。在这里,我们报告了III-V磷化镓(GaP)的压力诱导超导性,这是一种具有优异光学性能的重要商业半导体。我们发现超导性的出现伴随着压致变色转变和金属化的同时发生,并且可以与从立方相到正交相的结构转变相关。临界温度随压力的增加而单调降低,直至~50 GPa,这与超导性的结构起源一致。此外,由于结构转变的不可逆性,超导性可以在环境压力下保持。然而,在减压样品中,由于非晶化的存在,超导转变显示出明显的展宽。结构性能和电子性能的同步演变不仅显示了一种生动的结构-性能关系,而且可以通过压力处理促进新功能的探索。
{"title":"Two high-pressure superconducting phases in pressurized optical semiconductor GaP","authors":"Nixian Qian, Chunhua Chen, Yonghui Zhou, Shuyang Wang, Liangyu Li, Ranran Zhang, Xiangde Zhu, Yifang Yuan, Xuliang Chen, Chao An, Ying Zhou, Min Zhang, Xiaoping Yang, Zhaorong Yang","doi":"10.1038/s41427-023-00506-8","DOIUrl":"https://doi.org/10.1038/s41427-023-00506-8","url":null,"abstract":"Abstract Pressure engineering in semiconductors leads to a variety of novel physical phenomena and has recently received considerable attention. Here, we report on pressure-induced superconductivity in III–V gallium phosphide (GaP), a commercially important semiconductor that exhibits excellent optical performance. We show that the emergence of superconductivity is accompanied by the concurrence of piezochromic transition and metallization and can be correlated to a structural transition from the cubic to orthorhombic phase. In line with the structural origin of superconductivity, the critical temperature T c monotonically decreases with increasing pressure up to ~50 GPa. Moreover, the superconductivity could be preserved toward ambient pressure because of the irreversibility of the structural transition. Nevertheless, the superconducting transition displays evident broadening associated with the presence of amorphization in the depressurized sample. The synchronous evolution of the structural and electronic properties not only shows a vivid structure-property relationship but also could facilitate the exploration of novel functionalities by means of pressure treatment.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135092377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualizing the spatial distribution of inflammation in the depressed brain with a targeted MRI nanoprobe in vivo 用靶向MRI纳米探针在体内观察抑郁脑内炎症的空间分布
2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-10-27 DOI: 10.1038/s41427-023-00505-9
Peisen Zhang, Jiaoqiong Guan, Ni Zhang, Lichong Zhu, Yu Wang, Wenyue Li, Zhe Shi, Xueyuan Liu, Xue Li, Meng Qin, Yi Hou, Yue Lan
Abstract Depression is a prevalent mental illness that imposes a substantial public health burden. However, the diverse clinical phenotypes observed in patients make it difficult to realize precise diagnosis. Recently, accumulating preclinical and clinical evidence has suggested that inflammation is involved in the pathophysiology of depression. Herein, a molecular imaging–based strategy was proposed as a means to diagnose depression precisely by specifically visualizing the inflammation status associated with depression. Inflammation-targeting MRI nanoprobes were constructed by attaching an intercellular cell adhesion molecule-1 (ICAM-1)-targeting peptide to biocompatible Fe 3 O 4 nanoparticles. Systematic studies demonstrated that the nanoprobes could specifically target inflamed vascular endothelial cells and visualize the spatial distribution of inflammation in the depressed brain in vivo through susceptibility-weighted imaging (SWI), which was further confirmed by histological analysis. Additionally, these inflammatory brain regions identified by nanoprobe-based imaging are consistent with the focal regions closely associated with the symptoms of depression as reported in previous behavioral studies. Overall, this is the first study to directly visualize the distribution of inflammation in the depressed brain in vivo through a molecular imaging strategy, which may not only facilitate insight into the biological mechanism underlying depression but also provide a potential target within the depressed brain for the further development of anti-inflammatory therapies.
抑郁症是一种普遍存在的精神疾病,对公众健康造成了沉重的负担。然而,患者观察到的临床表型多样,难以实现精确诊断。近年来,越来越多的临床前和临床证据表明,炎症参与了抑郁症的病理生理。本文提出了一种基于分子成像的策略,通过特异性地可视化与抑郁症相关的炎症状态来精确诊断抑郁症。通过将细胞间细胞粘附分子-1 (ICAM-1)靶向肽连接到生物相容性铁3o纳米颗粒上,构建了炎症靶向MRI纳米探针。系统研究表明,纳米探针可以特异性靶向炎症血管内皮细胞,并通过敏感性加权成像(SWI)在体内可视化炎症在抑郁脑中的空间分布,组织学分析进一步证实了这一点。此外,这些由纳米探针成像确定的炎症脑区与先前行为研究中报道的与抑郁症状密切相关的病灶区域一致。总的来说,这是第一个通过分子成像策略直接可视化炎症在抑郁症大脑中的体内分布的研究,这不仅有助于深入了解抑郁症的生物学机制,而且还为进一步开发抗炎疗法提供了抑郁症大脑内的潜在靶点。
{"title":"Visualizing the spatial distribution of inflammation in the depressed brain with a targeted MRI nanoprobe in vivo","authors":"Peisen Zhang, Jiaoqiong Guan, Ni Zhang, Lichong Zhu, Yu Wang, Wenyue Li, Zhe Shi, Xueyuan Liu, Xue Li, Meng Qin, Yi Hou, Yue Lan","doi":"10.1038/s41427-023-00505-9","DOIUrl":"https://doi.org/10.1038/s41427-023-00505-9","url":null,"abstract":"Abstract Depression is a prevalent mental illness that imposes a substantial public health burden. However, the diverse clinical phenotypes observed in patients make it difficult to realize precise diagnosis. Recently, accumulating preclinical and clinical evidence has suggested that inflammation is involved in the pathophysiology of depression. Herein, a molecular imaging–based strategy was proposed as a means to diagnose depression precisely by specifically visualizing the inflammation status associated with depression. Inflammation-targeting MRI nanoprobes were constructed by attaching an intercellular cell adhesion molecule-1 (ICAM-1)-targeting peptide to biocompatible Fe 3 O 4 nanoparticles. Systematic studies demonstrated that the nanoprobes could specifically target inflamed vascular endothelial cells and visualize the spatial distribution of inflammation in the depressed brain in vivo through susceptibility-weighted imaging (SWI), which was further confirmed by histological analysis. Additionally, these inflammatory brain regions identified by nanoprobe-based imaging are consistent with the focal regions closely associated with the symptoms of depression as reported in previous behavioral studies. Overall, this is the first study to directly visualize the distribution of inflammation in the depressed brain in vivo through a molecular imaging strategy, which may not only facilitate insight into the biological mechanism underlying depression but also provide a potential target within the depressed brain for the further development of anti-inflammatory therapies.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"24 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136317994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
All-optical observation of giant spin transparency at the topological insulator BiSbTe1.5Se1.5/Co20Fe60B20 interface 拓扑绝缘体bisbte1.5 . se1.5 /Co20Fe60B20界面巨型自旋透明的全光学观察
2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-10-20 DOI: 10.1038/s41427-023-00504-w
Suchetana Mukhopadhyay, Pratap Kumar Pal, Subhadeep Manna, Chiranjib Mitra, Anjan Barman
Abstract The rise of three-dimensional topological insulators as an attractive playground for the observation and control of various spin-orbit effects has ushered in the field of topological spintronics. To fully exploit their potential as efficient spin-orbit torque generators, it is crucial to investigate the efficiency of spin injection and transport at various topological insulator/ferromagnet interfaces, as characterized by their spin-mixing conductances and interfacial spin transparencies. Here, we use all-optical time-resolved magneto-optical Kerr effect magnetometry to demonstrate efficient room-temperature spin pumping in Sub/BiSbTe 1.5 Se 1.5 (BSTS)/Co 20 Fe 60 B 20 (CoFeB)/SiO 2 thin films. From the modulation of Gilbert damping with BSTS and CoFeB thicknesses, the spin-mixing conductances of the BSTS/CoFeB interface and the spin diffusion length in BSTS are determined. For BSTS thicknesses far exceeding the spin diffusion length, in the so-called “perfect spin sink” regime, we obtain an interfacial spin transparency as high as 0.9, promoting such systems as scintillating candidates for spin-orbitronic devices.
三维拓扑绝缘体的兴起为观察和控制各种自旋轨道效应提供了一个有吸引力的平台,从而迎来了拓扑自旋电子学领域的发展。为了充分发挥其作为高效自旋轨道转矩发生器的潜力,研究自旋注入和输运在不同拓扑绝缘体/铁磁体界面上的效率是至关重要的,其特征是自旋混合电导和界面自旋透明度。在这里,我们使用全光时间分辨磁光克尔效应磁强计来证明在Sub/BiSbTe 1.5 Se 1.5 (BSTS)/Co 20 Fe 60 b20 (CoFeB)/ sio2薄膜中有效的室温自旋泵浦。通过BSTS和CoFeB厚度对Gilbert阻尼的调制,确定了BSTS/CoFeB界面的自旋混合电导和BSTS中的自旋扩散长度。当BSTS厚度远远超过自旋扩散长度时,在所谓的“完美自旋汇”机制下,我们获得了高达0.9的界面自旋透明度,促进了该系统成为自旋轨道电子器件的闪烁候点。
{"title":"All-optical observation of giant spin transparency at the topological insulator BiSbTe1.5Se1.5/Co20Fe60B20 interface","authors":"Suchetana Mukhopadhyay, Pratap Kumar Pal, Subhadeep Manna, Chiranjib Mitra, Anjan Barman","doi":"10.1038/s41427-023-00504-w","DOIUrl":"https://doi.org/10.1038/s41427-023-00504-w","url":null,"abstract":"Abstract The rise of three-dimensional topological insulators as an attractive playground for the observation and control of various spin-orbit effects has ushered in the field of topological spintronics. To fully exploit their potential as efficient spin-orbit torque generators, it is crucial to investigate the efficiency of spin injection and transport at various topological insulator/ferromagnet interfaces, as characterized by their spin-mixing conductances and interfacial spin transparencies. Here, we use all-optical time-resolved magneto-optical Kerr effect magnetometry to demonstrate efficient room-temperature spin pumping in Sub/BiSbTe 1.5 Se 1.5 (BSTS)/Co 20 Fe 60 B 20 (CoFeB)/SiO 2 thin films. From the modulation of Gilbert damping with BSTS and CoFeB thicknesses, the spin-mixing conductances of the BSTS/CoFeB interface and the spin diffusion length in BSTS are determined. For BSTS thicknesses far exceeding the spin diffusion length, in the so-called “perfect spin sink” regime, we obtain an interfacial spin transparency as high as 0.9, promoting such systems as scintillating candidates for spin-orbitronic devices.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135566618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Implanting HxYO2−x sites into Ru-doped graphene and oxygen vacancies for low-overpotential alkaline hydrogen evolution 在钌掺杂石墨烯和氧空位中植入HxYO2−x位用于低过电位碱性析氢
2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-10-20 DOI: 10.1038/s41427-023-00501-z
Xiang Li, Wei Deng, Yun Weng, Jingjing Zhang, Haifang Mao, Tiandong Lu, Wenqian Zhang, Renqiang Yang, Fei Jiang
Abstract Highly efficient electrocatalysts for the hydrogen evolution reaction (HER) are essential for sustainable hydrogen energy. The controllable production of hydrogen energy by water decomposition depends heavily on the catalyst, and it is extremely important to seek sustainable and highly efficient water-splitting electrocatalysts for energy applications. Herein, bimetallic RuYO 2 − x nanoparticles (Ru: 8.84 at.% and Y: 13 at.%) with high densities and low loadings were synthesized and anchored on graphene through a simple solvothermal strategy by synthesizing hydrogen yttrium ketone (H x YO 2 − x ) serving as an inserted medium. Electron microscopy demonstrated that the RuYO 2 − x /C was composed of densely arranged particles and graphene flakes. Electrochemical results showed that the RuYO 2 − x /C had a remarkably low overpotential of η 10 = 56 mV at a current density of 10 mA cm −2 in alkaline media, a Tafel slope of 63.18 mV dec −1 , and 24 h of stability. The oxygen vacancies of RuYO 2 − x /C provided a large proton storage capacity and a strong tendency to bind hydrogen atoms. DFT calculations showed that RuYO 2 − x/ C catalysts with more Ru-O-Y bonds and V O dramatically decreased the energy barrier for breaking H-OH bonds. Moreover, the robust metal-support interactions provided optimized energies for hydrogen adsorption and desorption, which explained the high activity and favorable kinetics for RuYO 2 − x /C catalytic hydrogen precipitation in alkaline electrolyte reactions. This work presents a hydrogen insertion method for the preparation of low-loading, high-density, high-performance and stable water decomposition catalysts for hydrogen production.
高效的析氢反应电催化剂是实现可持续氢能的必要条件。水分解氢能源的可控生产在很大程度上依赖于催化剂,寻求可持续、高效的水分解电催化剂对能源应用至关重要。本文制备了双金属RuYO 2−x纳米粒子(Ru: 8.84 at。通过简单的溶剂热策略,通过合成氢钇酮(H x YO 2 - x)作为插入介质,合成了高密度和低负载的氢钇酮(Y: 13 at.%)并锚定在石墨烯上。电镜观察表明,RuYO 2−x /C由致密排列的颗粒和石墨烯薄片组成。电化学结果表明,在碱性介质中,当电流密度为10 mA cm−2时,RuYO 2−x /C具有较低的过电位η 10 = 56 mV, Tafel斜率为63.18 mV dec−1,稳定时间为24 h。RuYO 2−x /C的氧空位提供了大的质子存储容量和强的结合氢原子的倾向。DFT计算表明,含有较多Ru-O-Y键和vo的RuYO 2−x/ C催化剂显著降低了H-OH键断裂的能垒。此外,强大的金属-载体相互作用为氢的吸附和解吸提供了优化的能量,这解释了在碱性电解质反应中RuYO 2−x /C催化氢沉淀的高活性和良好的动力学。提出了一种低负荷、高密度、高性能、稳定的水分解制氢催化剂的插氢方法。
{"title":"Implanting HxYO2−x sites into Ru-doped graphene and oxygen vacancies for low-overpotential alkaline hydrogen evolution","authors":"Xiang Li, Wei Deng, Yun Weng, Jingjing Zhang, Haifang Mao, Tiandong Lu, Wenqian Zhang, Renqiang Yang, Fei Jiang","doi":"10.1038/s41427-023-00501-z","DOIUrl":"https://doi.org/10.1038/s41427-023-00501-z","url":null,"abstract":"Abstract Highly efficient electrocatalysts for the hydrogen evolution reaction (HER) are essential for sustainable hydrogen energy. The controllable production of hydrogen energy by water decomposition depends heavily on the catalyst, and it is extremely important to seek sustainable and highly efficient water-splitting electrocatalysts for energy applications. Herein, bimetallic RuYO 2 − x nanoparticles (Ru: 8.84 at.% and Y: 13 at.%) with high densities and low loadings were synthesized and anchored on graphene through a simple solvothermal strategy by synthesizing hydrogen yttrium ketone (H x YO 2 − x ) serving as an inserted medium. Electron microscopy demonstrated that the RuYO 2 − x /C was composed of densely arranged particles and graphene flakes. Electrochemical results showed that the RuYO 2 − x /C had a remarkably low overpotential of η 10 = 56 mV at a current density of 10 mA cm −2 in alkaline media, a Tafel slope of 63.18 mV dec −1 , and 24 h of stability. The oxygen vacancies of RuYO 2 − x /C provided a large proton storage capacity and a strong tendency to bind hydrogen atoms. DFT calculations showed that RuYO 2 − x/ C catalysts with more Ru-O-Y bonds and V O dramatically decreased the energy barrier for breaking H-OH bonds. Moreover, the robust metal-support interactions provided optimized energies for hydrogen adsorption and desorption, which explained the high activity and favorable kinetics for RuYO 2 − x /C catalytic hydrogen precipitation in alkaline electrolyte reactions. This work presents a hydrogen insertion method for the preparation of low-loading, high-density, high-performance and stable water decomposition catalysts for hydrogen production.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135566807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational engineering of high-entropy oxides for Li-ion battery anodes with finely tuned combustion syntheses 精细调节燃烧合成的锂离子电池阳极高熵氧化物的合理工程
2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-10-13 DOI: 10.1038/s41427-023-00502-y
Dongjoon Shin, Seunghoon Chae, Seonghyun Park, Byungseok Seo, Wonjoon Choi
Abstract High-entropy oxides (HEOs) are promising conversion-type anode materials for Li-ion batteries (LIBs) owing to their excellent cycling stabilities and rate capabilities. However, the conventional syntheses and screening processes are time-consuming and complex and require phase and interfacial segregation of individual elements. Herein, we report a rational screening strategy for LIB anodes using precisely tunable HEOs fabricated by one-step combustion syntheses with different fuel-to-oxidizer ratios (φ). A slightly lean fuel mixture (φ-0.95) enabled a suitable temperature and non-reducing atmosphere for optimal HEO syntheses. This provided high crystallinity, perfectly homogeneous elemental distributions, and adequate pore structures without selective precipitation, whereas lower or higher fuel-to-oxidizer ratios resulted in excessively porous morphologies or elemental segregation. HEO-based anodes with φ-0.95 exhibited outstanding specific capacities (1165 mAh g −1 , 80.9% retention at 0.1 A g −1 , and 791 mAh g −1 even at 3 A g −1 ), excellent rate capabilities, and stable cycling lifetimes (1252 mAh g −1 , 80.9% retention after 100 cycles at 0.2 A g −1 ). This design strategy will provide fascinating HEO electrodes that cannot be prepared with conventional fabrication methods.
摘要:高熵氧化物(HEOs)具有良好的循环稳定性和倍率性能,是锂离子电池(LIBs)极有前途的转换型负极材料。然而,传统的合成和筛选过程耗时且复杂,并且需要对单个元素进行相分离和界面分离。在此,我们报告了一种合理的筛选策略,使用一步燃烧合成的具有不同燃料-氧化剂比(φ)的精确可调谐HEOs来筛选锂离子电池阳极。稍稀薄的燃料混合物(φ-0.95)为最佳的HEO合成提供了合适的温度和非还原气氛。这提供了高结晶度、完全均匀的元素分布和足够的孔隙结构,没有选择性沉淀,而较低或较高的燃料与氧化剂比会导致过度多孔形态或元素偏析。φ-0.95的heo基阳极具有出色的比容量(1165 mAh g−1,在0.1 A g−1下保持80.9%,在3 A g−1下保持791 mAh g−1),优异的倍率能力和稳定的循环寿命(1252 mAh g−1,在0.2 A g−1下循环100次后保持80.9%)。这种设计策略将提供传统制造方法无法制备的令人着迷的HEO电极。
{"title":"Rational engineering of high-entropy oxides for Li-ion battery anodes with finely tuned combustion syntheses","authors":"Dongjoon Shin, Seunghoon Chae, Seonghyun Park, Byungseok Seo, Wonjoon Choi","doi":"10.1038/s41427-023-00502-y","DOIUrl":"https://doi.org/10.1038/s41427-023-00502-y","url":null,"abstract":"Abstract High-entropy oxides (HEOs) are promising conversion-type anode materials for Li-ion batteries (LIBs) owing to their excellent cycling stabilities and rate capabilities. However, the conventional syntheses and screening processes are time-consuming and complex and require phase and interfacial segregation of individual elements. Herein, we report a rational screening strategy for LIB anodes using precisely tunable HEOs fabricated by one-step combustion syntheses with different fuel-to-oxidizer ratios (φ). A slightly lean fuel mixture (φ-0.95) enabled a suitable temperature and non-reducing atmosphere for optimal HEO syntheses. This provided high crystallinity, perfectly homogeneous elemental distributions, and adequate pore structures without selective precipitation, whereas lower or higher fuel-to-oxidizer ratios resulted in excessively porous morphologies or elemental segregation. HEO-based anodes with φ-0.95 exhibited outstanding specific capacities (1165 mAh g −1 , 80.9% retention at 0.1 A g −1 , and 791 mAh g −1 even at 3 A g −1 ), excellent rate capabilities, and stable cycling lifetimes (1252 mAh g −1 , 80.9% retention after 100 cycles at 0.2 A g −1 ). This design strategy will provide fascinating HEO electrodes that cannot be prepared with conventional fabrication methods.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135805511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interfacial co-assembly strategy towards gradient mesoporous hollow sheet for molecule filtration 梯度介孔中空膜分子过滤的界面共组装策略
2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-10-13 DOI: 10.1038/s41427-023-00500-0
Yangbo Dong, Danyang Feng, Wei Li, Rui Zhang, Shuzhen Dou, Luoqi Wang, Yan Yang, Li Wang, Yang Yang, Feng Wei, Zhen-An Qiao
Abstract Gradient porous structures enable the fast capillary-directed mass transport and enhance the chemical reaction rate with optimal efficiency and minimal energy consumption. Rational design and facile synthesis of functional mesoporous materials with sheet structure and gradient mesopores still face challenges of stacked structures and unadjustable pore sizes. Herein, an interfacial co-assembly strategy for gradient mesoporous hollow silica sheets is reported. The modulated oil-water interface allows the assembly of gradient mesoporous silica layers on the water-removable ammonium sulfate crystals. The obtained mesoporous silica layers possess narrow pore size distributions (~2.2 nm and ~6.6 nm). Owing to the good mono-dispersity, sheet structure and proper pore size, the designed gradient mesoporous hollow silica sheets can serve as flexible building blocks for fabricating nanoscale molecule filtration device. Experiments reveal that the obtained nanofiltration device shows remarkable gradient rejection rates (range from 23.5 to 99.9%) for molecules with different sizes (range from 1.2 to 4.4 nm).
梯度多孔结构可以实现快速的毛细管导向质量传递,以最佳的效率和最小的能耗提高化学反应速率。具有片状结构和梯度介孔的功能介孔材料的合理设计和简便合成仍然面临着堆积结构和孔径不可调节的挑战。本文报道了一种梯度介孔中空二氧化硅片的界面共组装策略。调制的油水界面允许在可水去除的硫酸铵晶体上组装梯度介孔二氧化硅层。得到的介孔二氧化硅层具有较窄的孔径分布(~2.2 nm和~6.6 nm)。所设计的梯度介孔中空硅片具有良好的单分散性、片状结构和合适的孔径,可作为制备纳米级分子过滤器件的柔性构件。实验表明,所制备的纳滤装置对不同粒径(1.2 ~ 4.4 nm)的分子具有显著的梯度截留率(23.5 ~ 99.9%)。
{"title":"Interfacial co-assembly strategy towards gradient mesoporous hollow sheet for molecule filtration","authors":"Yangbo Dong, Danyang Feng, Wei Li, Rui Zhang, Shuzhen Dou, Luoqi Wang, Yan Yang, Li Wang, Yang Yang, Feng Wei, Zhen-An Qiao","doi":"10.1038/s41427-023-00500-0","DOIUrl":"https://doi.org/10.1038/s41427-023-00500-0","url":null,"abstract":"Abstract Gradient porous structures enable the fast capillary-directed mass transport and enhance the chemical reaction rate with optimal efficiency and minimal energy consumption. Rational design and facile synthesis of functional mesoporous materials with sheet structure and gradient mesopores still face challenges of stacked structures and unadjustable pore sizes. Herein, an interfacial co-assembly strategy for gradient mesoporous hollow silica sheets is reported. The modulated oil-water interface allows the assembly of gradient mesoporous silica layers on the water-removable ammonium sulfate crystals. The obtained mesoporous silica layers possess narrow pore size distributions (~2.2 nm and ~6.6 nm). Owing to the good mono-dispersity, sheet structure and proper pore size, the designed gradient mesoporous hollow silica sheets can serve as flexible building blocks for fabricating nanoscale molecule filtration device. Experiments reveal that the obtained nanofiltration device shows remarkable gradient rejection rates (range from 23.5 to 99.9%) for molecules with different sizes (range from 1.2 to 4.4 nm).","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"235 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135806023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Microenvironmental cue-regulated exosomes as therapeutic strategies for improving chronic wound healing 作者更正:微环境线索调节外泌体作为改善慢性伤口愈合的治疗策略
2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-10-12 DOI: 10.1038/s41427-023-00503-x
Wei Dai, Yuchen Dong, Ting Han, Jing Wang, Bin Gao, Hui Guo, Feng Xu, Jing Li, Yufei Ma
{"title":"Author Correction: Microenvironmental cue-regulated exosomes as therapeutic strategies for improving chronic wound healing","authors":"Wei Dai, Yuchen Dong, Ting Han, Jing Wang, Bin Gao, Hui Guo, Feng Xu, Jing Li, Yufei Ma","doi":"10.1038/s41427-023-00503-x","DOIUrl":"https://doi.org/10.1038/s41427-023-00503-x","url":null,"abstract":"","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136012672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pressure-induced superconductivity in the nonsymmorphic topological insulator KHgAs 非对称拓扑绝缘体KHgAs的压力诱导超导性
2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-10-06 DOI: 10.1038/s41427-023-00496-7
Guangyang Dai, Yating Jia, Bo Gao, Yi Peng, Jianfa Zhao, Yanming Ma, Changfeng Chen, Jinlong Zhu, Quan Li, Runze Yu, Changqing Jin
Abstract Recently, topological insulators (TIs) KHgX (X = As, Sb, Bi) with hourglass-shaped dispersion have attracted great interest. Different from the TIs protected by either time-reversal or mirror crystal symmorphic symmetry tested in previous experiments, these materials were proposed as the first material class whose band topology relies on nonsymmorphic symmetries. As a result, KHgX shows many exotic properties, such as hourglass-shaped electronic channels and three-dimensional doubled quantum spin Hall effects. To date, high-pressure experimental studies on these nonsymmorphic TIs are minimal. Here, we carried out high-pressure electrical measurements up to 55 GPa, together with high-pressure X-ray diffraction measurements and high-pressure structure prediction on KHgAs. We found a pressure-induced semiconductor-metal transition between ~16 and 20 GPa, followed by the appearance of superconductivity with a T c of ~3.5 K at approximately 21 GPa. The superconducting transition temperature was enhanced to a maximum of ~6.6 K at 31.8 GPa and then slowly decreased until 55 GPa. Furthermore, three high-pressure phases within 55 GPa were observed, and their crystal structures were established. Our results showed the high-pressure phase diagram of KHgAs and determined the pressure-induced superconductivity in nonsymmorphic TIs. Thus, our study can be used to facilitate further research on superconductivity and topologically nontrivial features protected by nonsymmorphic symmetries.
摘要近年来,具有沙漏状色散的拓扑绝缘体(TIs) KHgX (X = As, Sb, Bi)引起了人们的广泛关注。不同于以往实验中由时间反转或镜像晶体对称保护的ti,这些材料被认为是第一类带拓扑依赖于非对称对称的材料。因此,KHgX表现出许多奇异的特性,如沙漏形电子通道和三维双量子自旋霍尔效应。迄今为止,对这些非对称ti的高压实验研究很少。在这里,我们对KHgAs进行了高达55 GPa的高压电测量,以及高压x射线衍射测量和高压结构预测。我们发现在~16和20gpa之间出现了压力诱导的半导体-金属转变,随后在大约21gpa时出现了超导性,温度为~3.5 K。超导转变温度在31.8 GPa时达到~6.6 K,然后缓慢降低至55 GPa。在55 GPa范围内观察到3个高压相,并建立了它们的晶体结构。我们的结果显示了KHgAs的高压相图,并确定了非对称ti的压力诱导超导性。因此,我们的研究可以为进一步研究超导性和受非对称对称性保护的拓扑非平凡特征提供便利。
{"title":"Pressure-induced superconductivity in the nonsymmorphic topological insulator KHgAs","authors":"Guangyang Dai, Yating Jia, Bo Gao, Yi Peng, Jianfa Zhao, Yanming Ma, Changfeng Chen, Jinlong Zhu, Quan Li, Runze Yu, Changqing Jin","doi":"10.1038/s41427-023-00496-7","DOIUrl":"https://doi.org/10.1038/s41427-023-00496-7","url":null,"abstract":"Abstract Recently, topological insulators (TIs) KHgX (X = As, Sb, Bi) with hourglass-shaped dispersion have attracted great interest. Different from the TIs protected by either time-reversal or mirror crystal symmorphic symmetry tested in previous experiments, these materials were proposed as the first material class whose band topology relies on nonsymmorphic symmetries. As a result, KHgX shows many exotic properties, such as hourglass-shaped electronic channels and three-dimensional doubled quantum spin Hall effects. To date, high-pressure experimental studies on these nonsymmorphic TIs are minimal. Here, we carried out high-pressure electrical measurements up to 55 GPa, together with high-pressure X-ray diffraction measurements and high-pressure structure prediction on KHgAs. We found a pressure-induced semiconductor-metal transition between ~16 and 20 GPa, followed by the appearance of superconductivity with a T c of ~3.5 K at approximately 21 GPa. The superconducting transition temperature was enhanced to a maximum of ~6.6 K at 31.8 GPa and then slowly decreased until 55 GPa. Furthermore, three high-pressure phases within 55 GPa were observed, and their crystal structures were established. Our results showed the high-pressure phase diagram of KHgAs and determined the pressure-induced superconductivity in nonsymmorphic TIs. Thus, our study can be used to facilitate further research on superconductivity and topologically nontrivial features protected by nonsymmorphic symmetries.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135303754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Npg Asia Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1