首页 > 最新文献

Npg Asia Materials最新文献

英文 中文
Hemozoin in malaria eradication—from material science, technology to field test 根除疟疾中的半胱氨酸--从材料科学、技术到现场试验
IF 9.7 2区 材料科学 Q1 Mathematics Pub Date : 2023-12-22 DOI: 10.1038/s41427-023-00516-6
Ashutosh Rathi, Z. Chowdhry, Anand Patel, Siming Zuo, Thulya Chakkumpulakkal Puthan Veettil, John A. Adegoke, Hadi Heidari, Bayden R. Wood, V. Bhallamudi, Weng Kung Peng
{"title":"Hemozoin in malaria eradication—from material science, technology to field test","authors":"Ashutosh Rathi, Z. Chowdhry, Anand Patel, Siming Zuo, Thulya Chakkumpulakkal Puthan Veettil, John A. Adegoke, Hadi Heidari, Bayden R. Wood, V. Bhallamudi, Weng Kung Peng","doi":"10.1038/s41427-023-00516-6","DOIUrl":"https://doi.org/10.1038/s41427-023-00516-6","url":null,"abstract":"","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":null,"pages":null},"PeriodicalIF":9.7,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138944753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Swift 4D printing of thermoresponsive shape-memory polymers using vat photopolymerization 利用大桶光聚合技术实现热致伸缩形状记忆聚合物的快速 4D 打印
IF 9.7 2区 材料科学 Q1 Mathematics Pub Date : 2023-12-15 DOI: 10.1038/s41427-023-00511-x
Fahad Alam, Jabir Ubaid, Haider Butt, Nazek El-Atab

Shape-memory polymers (SMPs) are smart materials that have gained significant attention in recent years owing to their widespread application in smart structures and devices. Digital light processing (DLP), a vat-photopolymerization-based technique, is a significantly faster technology for printing a complete layer in a single step. The current study reports a facile and fast method for the 3D printing of SMP-based smart structures using a DLP 3D printer and a customized resin. A liquid crystal (LC, RM257) was combined with the resin to introduce shape-memory properties. The combination of LCs in photocurable resin provides the opportunity to directly 3D-print thermoresponsive structures, avoiding the complexity of SMP resin preparation. The structures were printed with different geometries, and the shape-memory response was measured. Lattice structures were fabricated and programmed to obtain tunable mechanical properties. Furthermore, the strain-sensing response was measured to demonstrate the utility of these lattice structures as smart patches for joint-movement sensing. The SMPs can be prepared conveniently and can potentially be used for various applications, such as smart tools, toys, and meta-material sensors.

形状记忆聚合物(SMPs)是一种智能材料,近年来因其在智能结构和设备中的广泛应用而备受关注。数字光处理(DLP)是一种基于大桶光聚合的技术,是一种可在一个步骤中打印完整层的快速技术。本研究报告了一种使用 DLP 3D 打印机和定制树脂轻松快速地 3D 打印基于 SMP 的智能结构的方法。液晶(LC,RM257)与树脂的结合引入了形状记忆特性。液晶与光固化树脂的结合为直接三维打印热致伸缩结构提供了机会,避免了 SMP 树脂制备的复杂性。打印出的结构具有不同的几何形状,并对形状记忆响应进行了测量。通过制造和编程晶格结构,获得了可调的机械性能。此外,还测量了应变传感响应,以证明这些晶格结构可用作关节运动传感的智能贴片。智能贴片的制备非常方便,可用于智能工具、玩具和超材料传感器等多种应用。
{"title":"Swift 4D printing of thermoresponsive shape-memory polymers using vat photopolymerization","authors":"Fahad Alam, Jabir Ubaid, Haider Butt, Nazek El-Atab","doi":"10.1038/s41427-023-00511-x","DOIUrl":"https://doi.org/10.1038/s41427-023-00511-x","url":null,"abstract":"<p>Shape-memory polymers (SMPs) are smart materials that have gained significant attention in recent years owing to their widespread application in smart structures and devices. Digital light processing (DLP), a vat-photopolymerization-based technique, is a significantly faster technology for printing a complete layer in a single step. The current study reports a facile and fast method for the 3D printing of SMP-based smart structures using a DLP 3D printer and a customized resin. A liquid crystal (LC, RM257) was combined with the resin to introduce shape-memory properties. The combination of LCs in photocurable resin provides the opportunity to directly 3D-print thermoresponsive structures, avoiding the complexity of SMP resin preparation. The structures were printed with different geometries, and the shape-memory response was measured. Lattice structures were fabricated and programmed to obtain tunable mechanical properties. Furthermore, the strain-sensing response was measured to demonstrate the utility of these lattice structures as smart patches for joint-movement sensing. The SMPs can be prepared conveniently and can potentially be used for various applications, such as smart tools, toys, and meta-material sensors.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":null,"pages":null},"PeriodicalIF":9.7,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138683505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging applications of tough ionogels 韧性离子凝胶的新兴应用
IF 9.7 2区 材料科学 Q1 Mathematics Pub Date : 2023-12-15 DOI: 10.1038/s41427-023-00514-8
Meixiang Wang, Jian Hu, Michael D. Dickey

Ionogels are crosslinked networks—typically polymeric networks—swollen with ionic liquids. The unique properties of ionogels, such as nonvolatility, ionic conductivity, nonflammability, and high thermal and electrochemical stability, make them promising for a variety of applications. Examples include sensors, adhesives, energy storage devices, and ionotronics. While many ionogels require complex syntheses and suffer from poor mechanical properties, simpler strategies are emerging to produce tough ionogels, thereby improving the durability, enabling 3D printing, and broadening the application space of ionogels. This perspective highlights promising applications and future opportunities of ionogels.

离子凝胶是用离子液体溶胀的交联网络(通常是聚合物网络)。离子凝胶具有不挥发性、离子导电性、不可燃性、高热稳定性和电化学稳定性等独特性能,因此在各种应用领域大有可为。例如传感器、粘合剂、储能设备和离子电子学。虽然许多离子凝胶需要复杂的合成工艺,且机械性能较差,但正在出现更简单的策略来生产坚韧的离子凝胶,从而提高耐用性,实现三维打印,并拓宽离子凝胶的应用空间。本视角强调了离子凝胶的前景广阔的应用和未来机遇。
{"title":"Emerging applications of tough ionogels","authors":"Meixiang Wang, Jian Hu, Michael D. Dickey","doi":"10.1038/s41427-023-00514-8","DOIUrl":"https://doi.org/10.1038/s41427-023-00514-8","url":null,"abstract":"<p>Ionogels are crosslinked networks—typically polymeric networks—swollen with ionic liquids. The unique properties of ionogels, such as nonvolatility, ionic conductivity, nonflammability, and high thermal and electrochemical stability, make them promising for a variety of applications. Examples include sensors, adhesives, energy storage devices, and ionotronics. While many ionogels require complex syntheses and suffer from poor mechanical properties, simpler strategies are emerging to produce tough ionogels, thereby improving the durability, enabling 3D printing, and broadening the application space of ionogels. This perspective highlights promising applications and future opportunities of ionogels.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":null,"pages":null},"PeriodicalIF":9.7,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138683510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light-enhanced osmotic energy generation with an aramid nanofiber membrane 利用芳纶纳米纤维膜进行光增强渗透发电
IF 9.7 2区 材料科学 Q1 Mathematics Pub Date : 2023-12-08 DOI: 10.1038/s41427-023-00507-7
Cheng Chen, Yunxiao Lin, Weiwei Lei, Guoliang Yang, Yuchen Liu, Mao Xu, Xinhao Li, Dan Liu

Osmotic energy generation with reverse electrodialysis through membranes provides a worldwide free energy resource. Photo-driven proton transport in photosynthesis supplies basal energy for plants and living organisms on the planet. Here, we utilized aramid nanofiber (ANF) semiconductor-based membranes to enable light-driven proton transport for osmotic energy generation. Under unilateral illumination, the light-driven proton transport system converted light energy into electrical energy and showed wavelength- and intensity-dependent transmembrane potentials and currents. Interestingly, the synergistic effects of simultaneous illumination and pressure provided a five-fold increase in the voltage and a three-fold increase in the current relative to pressure alone. Density functional theory calculations and spectroscopic measurements demonstrated that the ANF and photoinduced electrons enabled proton transport during illumination and generated a transmembrane potential and current. The light-driven proton transport system supports the development of devices with flexible and stable ANF membranes.

通过膜反向电渗析产生的渗透能为全球提供了免费的能源资源。光合作用中的光驱动质子传输为地球上的植物和生物提供基础能源。在这里,我们利用芳纶纳米纤维(ANF)半导体膜实现了光驱动质子传输以产生渗透能。在单侧光照下,光驱动质子传输系统将光能转化为电能,并显示出与波长和强度相关的跨膜电位和电流。有趣的是,在同时光照和压力的协同作用下,电压增加了五倍,电流增加了三倍。密度泛函理论计算和光谱测量表明,ANF 和光诱导电子在光照期间促成了质子转运,并产生了跨膜电位和电流。光驱动质子传输系统有助于开发具有灵活稳定的 ANF 膜的设备。
{"title":"Light-enhanced osmotic energy generation with an aramid nanofiber membrane","authors":"Cheng Chen, Yunxiao Lin, Weiwei Lei, Guoliang Yang, Yuchen Liu, Mao Xu, Xinhao Li, Dan Liu","doi":"10.1038/s41427-023-00507-7","DOIUrl":"https://doi.org/10.1038/s41427-023-00507-7","url":null,"abstract":"<p>Osmotic energy generation with reverse electrodialysis through membranes provides a worldwide free energy resource. Photo-driven proton transport in photosynthesis supplies basal energy for plants and living organisms on the planet. Here, we utilized aramid nanofiber (ANF) semiconductor-based membranes to enable light-driven proton transport for osmotic energy generation. Under unilateral illumination, the light-driven proton transport system converted light energy into electrical energy and showed wavelength- and intensity-dependent transmembrane potentials and currents. Interestingly, the synergistic effects of simultaneous illumination and pressure provided a five-fold increase in the voltage and a three-fold increase in the current relative to pressure alone. Density functional theory calculations and spectroscopic measurements demonstrated that the ANF and photoinduced electrons enabled proton transport during illumination and generated a transmembrane potential and current. The light-driven proton transport system supports the development of devices with flexible and stable ANF membranes.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":null,"pages":null},"PeriodicalIF":9.7,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138553147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BaZrO3/MgO-templated epitaxy showing a conductivity increase of three orders of magnitude for the Ba0.95La0.05SnO3 films on Al2O3 substrates, with very high transparency and X-band electromagnetic shielding BaZrO3/ mgo模板外延在Al2O3衬底上的Ba0.95La0.05SnO3薄膜的电导率提高了3个数量级,具有很高的透明度和x波段电磁屏蔽
IF 9.7 2区 材料科学 Q1 Mathematics Pub Date : 2023-12-01 DOI: 10.1038/s41427-023-00512-w
Youngkyoung Ha, Jingyeong Jeon, Subhin Hwang, Judith L. MacManus-Driscoll, Shinbuhm Lee

Transparent conductors with electromagnetic shielding capabilities (TC-EMS) are rare, despite their significant potential for creating new functionalities in energy and military applications. Here, we investigate the potential of La-doped BaSnO3 (BLSO) for TC-EMS since its epitaxial film has been known to have low sheet resistance and high visible transmittance. However, films grown on industrially practical Al2O3 substrates exhibit a sheet resistance three orders of magnitude higher than that of reported films grown on perovskites. Here, this problem is addressed by templating a BaZrO3/MgO bilayer on (0001)-oriented Al2O3 substrates to yield single-crystalline BLSO epitaxial films. The absence of grain boundaries in the epitaxial films minimizes the electron scattering. Due to the affirmative correlation between the conductivity and crystallinity, 5% La doping is optimal among the 5−20% La concentrations studied; these 480-nm-thick films have the highest crystallinity and the lowest sheet resistances of ~28 Ω −1; this value is similar to that of single-crystalline levels. Due to their very high transmittances (~82% in a range 400−1000 nm) and effective X-band electromagnetic shielding (~18.6 dB), the BLSO epitaxial films grown on Al2O3 have great potential to be used for inexpensive TC-EMS applications.

具有电磁屏蔽能力的透明导体(TC-EMS)非常罕见,尽管它们在能源和军事应用中具有创造新功能的巨大潜力。在这里,我们研究了la掺杂BaSnO3 (BLSO)用于TC-EMS的潜力,因为它的外延膜已知具有低片电阻和高可见光透过率。然而,在工业上实际使用的Al2O3衬底上生长的薄膜显示出比在钙钛矿上生长的薄膜高三个数量级的片电阻。本文通过在(0001)取向Al2O3衬底上模板化BaZrO3/MgO双分子层来制备单晶BLSO外延膜。外延薄膜中晶界的缺失使电子散射最小化。由于电导率与结晶度呈正相关关系,在5 ~ 20%的La浓度下,5%的La掺杂效果最佳;这些480 nm厚的薄膜具有最高的结晶度和最低的片电阻~28 Ω −1;这个值与单晶水平相似。由于在Al2O3上生长的BLSO外延膜具有很高的透射率(在400 ~ 1000 nm范围内~82%)和有效的x波段电磁屏蔽(~18.6 dB),因此在廉价的TC-EMS应用中具有很大的潜力。
{"title":"BaZrO3/MgO-templated epitaxy showing a conductivity increase of three orders of magnitude for the Ba0.95La0.05SnO3 films on Al2O3 substrates, with very high transparency and X-band electromagnetic shielding","authors":"Youngkyoung Ha, Jingyeong Jeon, Subhin Hwang, Judith L. MacManus-Driscoll, Shinbuhm Lee","doi":"10.1038/s41427-023-00512-w","DOIUrl":"https://doi.org/10.1038/s41427-023-00512-w","url":null,"abstract":"<p>Transparent conductors with electromagnetic shielding capabilities (TC-EMS) are rare, despite their significant potential for creating new functionalities in energy and military applications. Here, we investigate the potential of La-doped BaSnO<sub>3</sub> (BLSO) for TC-EMS since its epitaxial film has been known to have low sheet resistance and high visible transmittance. However, films grown on industrially practical Al<sub>2</sub>O<sub>3</sub> substrates exhibit a sheet resistance three orders of magnitude higher than that of reported films grown on perovskites. Here, this problem is addressed by templating a BaZrO<sub>3</sub>/MgO bilayer on (0001)-oriented Al<sub>2</sub>O<sub>3</sub> substrates to yield single-crystalline BLSO epitaxial films. The absence of grain boundaries in the epitaxial films minimizes the electron scattering. Due to the affirmative correlation between the conductivity and crystallinity, 5% La doping is optimal among the 5−20% La concentrations studied; these 480-nm-thick films have the highest crystallinity and the lowest sheet resistances of ~28 Ω <span>▯</span><sup>−1</sup>; this value is similar to that of single-crystalline levels. Due to their very high transmittances (~82% in a range 400−1000 nm) and effective X-band electromagnetic shielding (~18.6 dB), the BLSO epitaxial films grown on Al<sub>2</sub>O<sub>3</sub> have great potential to be used for inexpensive TC-EMS applications.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":null,"pages":null},"PeriodicalIF":9.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138506384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triplet-mediated spin entanglement between organic radicals: integrating first principles and open-quantum-system simulations 有机自由基之间的三重态介导自旋纠缠:整合第一原理和开放量子系统模拟
IF 9.7 2区 材料科学 Q1 Mathematics Pub Date : 2023-12-01 DOI: 10.1038/s41427-023-00510-y
Tianhong Huang, Jiawei Chang, Lin Ma, Andrew J. Fisher, Nicholas M. Harrison, Taoyu Zou, Hai Wang, Wei Wu

Controlling molecular spin quantum bits optically offers the potential to effectively reduce decoherence and raise the working temperature of quantum computers. Here, exchange interactions and spin dynamics, as mediated by an optically driven triplet state, are calculated for a molecule that consists of a pair of radicals and represents a potential quantum-circuit building block. Consistent with the previous experimental observation of spin coherence induced by the triplet state, our work demonstrates an optically driven quantum gate operation scheme in a molecule. A technological blueprint combining a two-dimensional molecular network and programmable nanophotonics, both of which are sufficiently developed, is proposed. We thus realize computational exploration of chemical databases to identify suitable candidates for molecular spin quantum bits and couplers to be hybridized with nanophotonic devices. The work presented here is proposed to realize a new approach for exploring molecular excited states and click chemistry, toward advancing molecular quantum technology.

光学控制分子自旋量子比特提供了有效降低退相干和提高量子计算机工作温度的潜力。在这里,交换相互作用和自旋动力学,作为介导的光驱动三重态,计算了一个分子,由一对自由基组成,代表一个潜在的量子电路的构建块。与之前实验观察到的三重态诱导的自旋相干性一致,我们的工作证明了分子中光驱动的量子门操作方案。提出了一种将二维分子网络与可编程纳米光子学相结合的技术蓝图。因此,我们实现了对化学数据库的计算探索,以确定分子自旋量子比特和耦合器与纳米光子器件杂交的合适候选者。本文提出的工作是为了实现探索分子激发态和点击化学的新方法,朝着推进分子量子技术的方向发展。
{"title":"Triplet-mediated spin entanglement between organic radicals: integrating first principles and open-quantum-system simulations","authors":"Tianhong Huang, Jiawei Chang, Lin Ma, Andrew J. Fisher, Nicholas M. Harrison, Taoyu Zou, Hai Wang, Wei Wu","doi":"10.1038/s41427-023-00510-y","DOIUrl":"https://doi.org/10.1038/s41427-023-00510-y","url":null,"abstract":"<p>Controlling molecular spin quantum bits optically offers the potential to effectively reduce decoherence and raise the working temperature of quantum computers. Here, exchange interactions and spin dynamics, as mediated by an optically driven triplet state, are calculated for a molecule that consists of a pair of radicals and represents a potential quantum-circuit building block. Consistent with the previous experimental observation of spin coherence induced by the triplet state, our work demonstrates an optically driven quantum gate operation scheme in a molecule. A technological blueprint combining a two-dimensional molecular network and programmable nanophotonics, both of which are sufficiently developed, is proposed. We thus realize computational exploration of chemical databases to identify suitable candidates for molecular spin quantum bits and couplers to be hybridized with nanophotonic devices. The work presented here is proposed to realize a new approach for exploring molecular excited states and click chemistry, toward advancing molecular quantum technology.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":null,"pages":null},"PeriodicalIF":9.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138506382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rejuvenation engineering in metallic glasses by complementary stress and structure modulation 基于互补应力和结构调制的金属玻璃回春工程
IF 9.7 2区 材料科学 Q1 Mathematics Pub Date : 2023-11-24 DOI: 10.1038/s41427-023-00509-5
Daniel Şopu, Florian Spieckermann, Xilei Bian, Simon Fellner, Jonathan Wright, Megan Cordill, Christoph Gammer, Gang Wang, Mihai Stoica, Jürgen Eckert

Residual stress engineering is widely used in the design of new advanced lightweight materials. For metallic glasses, attention has been given to structural changes and rejuvenation processes. High-energy scanning X-ray diffraction strain mapping reveals large elastic fluctuations in notched metallic glasses after deformation under triaxial compression. Microindentation hardness mapping hints at a competing hardening–softening mechanism after compression and reveals the complementary effects of stress and structure modulation. Transmission electron microscopy proves that structure modulation and elastic heterogeneity distribution under room temperature deformation are related to shear band formation. Molecular dynamics simulations provide an atomistic understanding of the confined deformation mechanism in notched metallic glasses and the related fluctuations in the elastic and plastic strains. Thus, future focus should be given to stress modulation and elastic heterogeneity, which, together with structure modulation, may allow the design of metallic glasses with enhanced ductility and strain-hardening ability.

残余应力工程广泛应用于新型先进轻量化材料的设计。对于金属玻璃,人们关注的是结构变化和回春过程。高能扫描x射线衍射应变图揭示了缺口金属玻璃在三轴压缩变形后的弹性波动。微压痕硬度映射提示了压缩后的硬化-软化竞争机制,揭示了应力和结构调节的互补效应。透射电镜证实了室温变形下的结构调制和弹性非均质分布与剪切带的形成有关。分子动力学模拟提供了对缺口金属玻璃的受限变形机制和相关的弹性和塑性应变波动的原子性理解。因此,未来的重点应放在应力调制和弹性非均质性上,它们与结构调制一起,可以设计出具有增强延展性和应变硬化能力的金属玻璃。
{"title":"Rejuvenation engineering in metallic glasses by complementary stress and structure modulation","authors":"Daniel Şopu, Florian Spieckermann, Xilei Bian, Simon Fellner, Jonathan Wright, Megan Cordill, Christoph Gammer, Gang Wang, Mihai Stoica, Jürgen Eckert","doi":"10.1038/s41427-023-00509-5","DOIUrl":"https://doi.org/10.1038/s41427-023-00509-5","url":null,"abstract":"<p>Residual stress engineering is widely used in the design of new advanced lightweight materials. For metallic glasses, attention has been given to structural changes and rejuvenation processes. High-energy scanning X-ray diffraction strain mapping reveals large elastic fluctuations in notched metallic glasses after deformation under triaxial compression. Microindentation hardness mapping hints at a competing hardening–softening mechanism after compression and reveals the complementary effects of stress and structure modulation. Transmission electron microscopy proves that structure modulation and elastic heterogeneity distribution under room temperature deformation are related to shear band formation. Molecular dynamics simulations provide an atomistic understanding of the confined deformation mechanism in notched metallic glasses and the related fluctuations in the elastic and plastic strains. Thus, future focus should be given to stress modulation and elastic heterogeneity, which, together with structure modulation, may allow the design of metallic glasses with enhanced ductility and strain-hardening ability.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":null,"pages":null},"PeriodicalIF":9.7,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138506402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Izod impact resistance of 3D printed discontinuous fibrous composites with Bouligand structure 3D打印Bouligand结构不连续纤维复合材料的抗冲击性能
IF 9.7 2区 材料科学 Q1 Mathematics Pub Date : 2023-11-24 DOI: 10.1038/s41427-023-00508-6
Lizhi Guan, Weixiang Peng, Rachel Ng Jing Wen, Jingbo Fan, Hortense Le Ferrand

The Bouligand structure found in the dactyl club of mantis shrimps is known for its impact resistance. However, Bouligand-inspired reinforced composites with 3D shapes and impact resistance characteristics have not yet been demonstrated. Herein, direct ink writing was used to 3D print composites reinforced with glass microfibers assembled into Bouligand structures with controllable pitch angles. The energy absorption levels of the Bouligand composites under impact were found to surpass those of composites with unidirectional microfiber alignment. Additionally, the Bouligand composites with a pitch angle of 40° exhibited a maximum energy absorption of 2.4 kJ/m2, which was 140% higher than that of the unidirectional composites. Furthermore, the characterization of the topography of the fractured surface, supplemented with numerical simulations, revealed a combination of crack twisting and crack bridging mechanisms. Flexural tests conducted on the composites with a pitch angle of 40° revealed that these composites had the strongest properties, including a flexural strength of 36.9 MPa, a stiffness of 2.26 GPa, and energy absorption of 8 kJ/m2. These findings are promising for the microstructural design of engineered composites using direct ink writing for applications in aerospace, transportation, and defense.

在螳螂虾的dactyl俱乐部中发现的Bouligand结构以其抗冲击性而闻名。然而,bouligand启发的具有三维形状和抗冲击特性的增强复合材料尚未得到证实。本文采用直接墨水书写的方法,3D打印由玻璃微纤维增强的复合材料,将其组装成具有可控俯仰角的布利甘结构。结果表明,Bouligand复合材料在冲击作用下的能量吸收水平高于单向超细纤维定向复合材料。此外,当俯仰角为40°时,Bouligand复合材料的最大能量吸收为2.4 kJ/m2,比单向复合材料高140%。此外,通过对裂缝表面形貌的表征和数值模拟,揭示了裂缝扭转和裂缝桥接机制的结合。当俯仰角为40°时,复合材料的抗弯强度为36.9 MPa,刚度为2.26 GPa,吸能为8 kJ/m2,抗弯性能最强。这些发现对于在航空航天、交通运输和国防领域使用直接墨水书写的工程复合材料的微结构设计具有很大的前景。
{"title":"Izod impact resistance of 3D printed discontinuous fibrous composites with Bouligand structure","authors":"Lizhi Guan, Weixiang Peng, Rachel Ng Jing Wen, Jingbo Fan, Hortense Le Ferrand","doi":"10.1038/s41427-023-00508-6","DOIUrl":"https://doi.org/10.1038/s41427-023-00508-6","url":null,"abstract":"<p>The Bouligand structure found in the dactyl club of mantis shrimps is known for its impact resistance. However, Bouligand-inspired reinforced composites with 3D shapes and impact resistance characteristics have not yet been demonstrated. Herein, direct ink writing was used to 3D print composites reinforced with glass microfibers assembled into Bouligand structures with controllable pitch angles. The energy absorption levels of the Bouligand composites under impact were found to surpass those of composites with unidirectional microfiber alignment. Additionally, the Bouligand composites with a pitch angle of 40° exhibited a maximum energy absorption of 2.4 kJ/m<sup>2</sup>, which was 140% higher than that of the unidirectional composites. Furthermore, the characterization of the topography of the fractured surface, supplemented with numerical simulations, revealed a combination of crack twisting and crack bridging mechanisms. Flexural tests conducted on the composites with a pitch angle of 40° revealed that these composites had the strongest properties, including a flexural strength of 36.9 MPa, a stiffness of 2.26 GPa, and energy absorption of 8 kJ/m<sup>2</sup>. These findings are promising for the microstructural design of engineered composites using direct ink writing for applications in aerospace, transportation, and defense.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":null,"pages":null},"PeriodicalIF":9.7,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138506378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two high-pressure superconducting phases in pressurized optical semiconductor GaP 加压光学半导体GaP中的两个高压超导相
2区 材料科学 Q1 Mathematics Pub Date : 2023-11-10 DOI: 10.1038/s41427-023-00506-8
Nixian Qian, Chunhua Chen, Yonghui Zhou, Shuyang Wang, Liangyu Li, Ranran Zhang, Xiangde Zhu, Yifang Yuan, Xuliang Chen, Chao An, Ying Zhou, Min Zhang, Xiaoping Yang, Zhaorong Yang
Abstract Pressure engineering in semiconductors leads to a variety of novel physical phenomena and has recently received considerable attention. Here, we report on pressure-induced superconductivity in III–V gallium phosphide (GaP), a commercially important semiconductor that exhibits excellent optical performance. We show that the emergence of superconductivity is accompanied by the concurrence of piezochromic transition and metallization and can be correlated to a structural transition from the cubic to orthorhombic phase. In line with the structural origin of superconductivity, the critical temperature T c monotonically decreases with increasing pressure up to ~50 GPa. Moreover, the superconductivity could be preserved toward ambient pressure because of the irreversibility of the structural transition. Nevertheless, the superconducting transition displays evident broadening associated with the presence of amorphization in the depressurized sample. The synchronous evolution of the structural and electronic properties not only shows a vivid structure-property relationship but also could facilitate the exploration of novel functionalities by means of pressure treatment.
半导体领域的压力工程引发了一系列新的物理现象,近年来受到了广泛的关注。在这里,我们报告了III-V磷化镓(GaP)的压力诱导超导性,这是一种具有优异光学性能的重要商业半导体。我们发现超导性的出现伴随着压致变色转变和金属化的同时发生,并且可以与从立方相到正交相的结构转变相关。临界温度随压力的增加而单调降低,直至~50 GPa,这与超导性的结构起源一致。此外,由于结构转变的不可逆性,超导性可以在环境压力下保持。然而,在减压样品中,由于非晶化的存在,超导转变显示出明显的展宽。结构性能和电子性能的同步演变不仅显示了一种生动的结构-性能关系,而且可以通过压力处理促进新功能的探索。
{"title":"Two high-pressure superconducting phases in pressurized optical semiconductor GaP","authors":"Nixian Qian, Chunhua Chen, Yonghui Zhou, Shuyang Wang, Liangyu Li, Ranran Zhang, Xiangde Zhu, Yifang Yuan, Xuliang Chen, Chao An, Ying Zhou, Min Zhang, Xiaoping Yang, Zhaorong Yang","doi":"10.1038/s41427-023-00506-8","DOIUrl":"https://doi.org/10.1038/s41427-023-00506-8","url":null,"abstract":"Abstract Pressure engineering in semiconductors leads to a variety of novel physical phenomena and has recently received considerable attention. Here, we report on pressure-induced superconductivity in III–V gallium phosphide (GaP), a commercially important semiconductor that exhibits excellent optical performance. We show that the emergence of superconductivity is accompanied by the concurrence of piezochromic transition and metallization and can be correlated to a structural transition from the cubic to orthorhombic phase. In line with the structural origin of superconductivity, the critical temperature T c monotonically decreases with increasing pressure up to ~50 GPa. Moreover, the superconductivity could be preserved toward ambient pressure because of the irreversibility of the structural transition. Nevertheless, the superconducting transition displays evident broadening associated with the presence of amorphization in the depressurized sample. The synchronous evolution of the structural and electronic properties not only shows a vivid structure-property relationship but also could facilitate the exploration of novel functionalities by means of pressure treatment.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135092377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualizing the spatial distribution of inflammation in the depressed brain with a targeted MRI nanoprobe in vivo 用靶向MRI纳米探针在体内观察抑郁脑内炎症的空间分布
2区 材料科学 Q1 Mathematics Pub Date : 2023-10-27 DOI: 10.1038/s41427-023-00505-9
Peisen Zhang, Jiaoqiong Guan, Ni Zhang, Lichong Zhu, Yu Wang, Wenyue Li, Zhe Shi, Xueyuan Liu, Xue Li, Meng Qin, Yi Hou, Yue Lan
Abstract Depression is a prevalent mental illness that imposes a substantial public health burden. However, the diverse clinical phenotypes observed in patients make it difficult to realize precise diagnosis. Recently, accumulating preclinical and clinical evidence has suggested that inflammation is involved in the pathophysiology of depression. Herein, a molecular imaging–based strategy was proposed as a means to diagnose depression precisely by specifically visualizing the inflammation status associated with depression. Inflammation-targeting MRI nanoprobes were constructed by attaching an intercellular cell adhesion molecule-1 (ICAM-1)-targeting peptide to biocompatible Fe 3 O 4 nanoparticles. Systematic studies demonstrated that the nanoprobes could specifically target inflamed vascular endothelial cells and visualize the spatial distribution of inflammation in the depressed brain in vivo through susceptibility-weighted imaging (SWI), which was further confirmed by histological analysis. Additionally, these inflammatory brain regions identified by nanoprobe-based imaging are consistent with the focal regions closely associated with the symptoms of depression as reported in previous behavioral studies. Overall, this is the first study to directly visualize the distribution of inflammation in the depressed brain in vivo through a molecular imaging strategy, which may not only facilitate insight into the biological mechanism underlying depression but also provide a potential target within the depressed brain for the further development of anti-inflammatory therapies.
抑郁症是一种普遍存在的精神疾病,对公众健康造成了沉重的负担。然而,患者观察到的临床表型多样,难以实现精确诊断。近年来,越来越多的临床前和临床证据表明,炎症参与了抑郁症的病理生理。本文提出了一种基于分子成像的策略,通过特异性地可视化与抑郁症相关的炎症状态来精确诊断抑郁症。通过将细胞间细胞粘附分子-1 (ICAM-1)靶向肽连接到生物相容性铁3o纳米颗粒上,构建了炎症靶向MRI纳米探针。系统研究表明,纳米探针可以特异性靶向炎症血管内皮细胞,并通过敏感性加权成像(SWI)在体内可视化炎症在抑郁脑中的空间分布,组织学分析进一步证实了这一点。此外,这些由纳米探针成像确定的炎症脑区与先前行为研究中报道的与抑郁症状密切相关的病灶区域一致。总的来说,这是第一个通过分子成像策略直接可视化炎症在抑郁症大脑中的体内分布的研究,这不仅有助于深入了解抑郁症的生物学机制,而且还为进一步开发抗炎疗法提供了抑郁症大脑内的潜在靶点。
{"title":"Visualizing the spatial distribution of inflammation in the depressed brain with a targeted MRI nanoprobe in vivo","authors":"Peisen Zhang, Jiaoqiong Guan, Ni Zhang, Lichong Zhu, Yu Wang, Wenyue Li, Zhe Shi, Xueyuan Liu, Xue Li, Meng Qin, Yi Hou, Yue Lan","doi":"10.1038/s41427-023-00505-9","DOIUrl":"https://doi.org/10.1038/s41427-023-00505-9","url":null,"abstract":"Abstract Depression is a prevalent mental illness that imposes a substantial public health burden. However, the diverse clinical phenotypes observed in patients make it difficult to realize precise diagnosis. Recently, accumulating preclinical and clinical evidence has suggested that inflammation is involved in the pathophysiology of depression. Herein, a molecular imaging–based strategy was proposed as a means to diagnose depression precisely by specifically visualizing the inflammation status associated with depression. Inflammation-targeting MRI nanoprobes were constructed by attaching an intercellular cell adhesion molecule-1 (ICAM-1)-targeting peptide to biocompatible Fe 3 O 4 nanoparticles. Systematic studies demonstrated that the nanoprobes could specifically target inflamed vascular endothelial cells and visualize the spatial distribution of inflammation in the depressed brain in vivo through susceptibility-weighted imaging (SWI), which was further confirmed by histological analysis. Additionally, these inflammatory brain regions identified by nanoprobe-based imaging are consistent with the focal regions closely associated with the symptoms of depression as reported in previous behavioral studies. Overall, this is the first study to directly visualize the distribution of inflammation in the depressed brain in vivo through a molecular imaging strategy, which may not only facilitate insight into the biological mechanism underlying depression but also provide a potential target within the depressed brain for the further development of anti-inflammatory therapies.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136317994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Npg Asia Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1