Pub Date : 2024-03-01DOI: 10.1038/s41427-023-00528-2
Gang Jian, Shangtao Zhu, Xiao Yuan, Shengqiao Fu, Ning Yang, Chao Yan, Xu Wang, Ching-Ping Wong
Implantable medical devices have played an important role in human medicine in recent decades. However, traditional implanted devices require battery replacement and a second surgery for device removal, which can cause pain to the patient. This work presents a biodegradable triboelectric nanogenerator (BI-TENG) made from both natural and synthetic biodegradable materials that is utilized to collect mechanical energy in vivo and transduce it into electricity. Reed film and polylactic acid were chosen among different biodegradable materials as the triboelectric layers due to having the best generator output performance by providing voltages that reached 368 V. The biocompatibility of the friction layer and the device was verified via a blood test. After implantation in mice, the BI-TENG exhibited an open-circuit voltage of 0.176 V and a short-circuit current of 192 nA as generated from body movement. The BI-TENG was connected to an interdigital electrode to generate an electric field, which stimulated the accelerated release of doxorubicin (DOX) from red blood cells in targeted drug delivery systems. After stopping the electric field, the release of DOX normalized, facilitating the precise killing of cancer cells. Our work demonstrates the broad potential of BI-TENGs in the field of cancer treatment. A biodegradable triboelectric nanogenerator made from both natural and synthetic biodegradable materials that is utilized to collect mechanical energy in vivo and transduce it into electricity. Reed film and polylactic acid were chosen among different biodegradable materials as the triboelectric layers due to having the best output performance. The nanogenerator was connected to an interdigital electrode to generate an electric field, which stimulated the accelerated release of doxorubicin from red blood cells in targeted drug delivery systems. The release of doxorubicin normalized, facilitating the precise killing of cancer cells, demonstrating the broad potential in the field of cancer treatments. Implantable electronic devices are vital in contemporary medicine, but often necessitate batteries or surgical removal, which can be painful and expensive. There’s a need for devices that can function within the body and then harmlessly dissolve. This research, led by Gang Jian, investigates a new kind of biodegradable triboelectric nanogenerator for cancer treatment. The scientists created a TENG using polylactic acid and reed membrane, which are materials that can safely degrade in the human body. The results demonstrated that the TENG-driven drug delivery system effectively eradicated tumor cells. The researchers conclude that the biodegradable TENG has potential for wider applications in cancer treatment. This progress could lead to less invasive and more targeted cancer therapies. Future implications include the creation of self-powered medical devices that safely dissolve in the body, reducing the need for extra surgeries. This summary was initially d
{"title":"Biodegradable triboelectric nanogenerator as a implantable power source for embedded medicine devices","authors":"Gang Jian, Shangtao Zhu, Xiao Yuan, Shengqiao Fu, Ning Yang, Chao Yan, Xu Wang, Ching-Ping Wong","doi":"10.1038/s41427-023-00528-2","DOIUrl":"10.1038/s41427-023-00528-2","url":null,"abstract":"Implantable medical devices have played an important role in human medicine in recent decades. However, traditional implanted devices require battery replacement and a second surgery for device removal, which can cause pain to the patient. This work presents a biodegradable triboelectric nanogenerator (BI-TENG) made from both natural and synthetic biodegradable materials that is utilized to collect mechanical energy in vivo and transduce it into electricity. Reed film and polylactic acid were chosen among different biodegradable materials as the triboelectric layers due to having the best generator output performance by providing voltages that reached 368 V. The biocompatibility of the friction layer and the device was verified via a blood test. After implantation in mice, the BI-TENG exhibited an open-circuit voltage of 0.176 V and a short-circuit current of 192 nA as generated from body movement. The BI-TENG was connected to an interdigital electrode to generate an electric field, which stimulated the accelerated release of doxorubicin (DOX) from red blood cells in targeted drug delivery systems. After stopping the electric field, the release of DOX normalized, facilitating the precise killing of cancer cells. Our work demonstrates the broad potential of BI-TENGs in the field of cancer treatment. A biodegradable triboelectric nanogenerator made from both natural and synthetic biodegradable materials that is utilized to collect mechanical energy in vivo and transduce it into electricity. Reed film and polylactic acid were chosen among different biodegradable materials as the triboelectric layers due to having the best output performance. The nanogenerator was connected to an interdigital electrode to generate an electric field, which stimulated the accelerated release of doxorubicin from red blood cells in targeted drug delivery systems. The release of doxorubicin normalized, facilitating the precise killing of cancer cells, demonstrating the broad potential in the field of cancer treatments. Implantable electronic devices are vital in contemporary medicine, but often necessitate batteries or surgical removal, which can be painful and expensive. There’s a need for devices that can function within the body and then harmlessly dissolve. This research, led by Gang Jian, investigates a new kind of biodegradable triboelectric nanogenerator for cancer treatment. The scientists created a TENG using polylactic acid and reed membrane, which are materials that can safely degrade in the human body. The results demonstrated that the TENG-driven drug delivery system effectively eradicated tumor cells. The researchers conclude that the biodegradable TENG has potential for wider applications in cancer treatment. This progress could lead to less invasive and more targeted cancer therapies. Future implications include the creation of self-powered medical devices that safely dissolve in the body, reducing the need for extra surgeries. This summary was initially d","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-11"},"PeriodicalIF":8.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-023-00528-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140011520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cryomicroneedles (cryoMNs) offer a convenient and minimally invasive way to precisely deliver therapeutic cells intradermally for treating local and systemic diseases. cryoMNs are manufactured by shaping and freezing the cell-containing cryogenic media in a microneedle template, which allows cells to be packaged in advance for direct usage in the clinic. However, the current cryoMNs require cold-chain transportation and storage and do not permit the loading of autologous cells in situ. This article introduces the second generation of cryoMNs (S-cryoMNs) that address these limitations. Specifically, S-cryoMNs are made by dipping a porous MN scaffold in the cell suspension before cryopreservation. The porous scaffold can be transported at room temperature, and researchers can load any cells with the optimized cryogenic medium. As a proof-of-concept, we examined the loading and intradermal delivery of three cell types in clinically relevant in vitro and in vivo models, including mesenchymal stem cells for wound healing, melanocytes for vitiligo treatment, and antigen-pulsed dendritic cells for cancer vaccination. This research presents a novel way to transport healing cells to the skin using a tool known as a cryomicroneedle. The scientists created a sponge-like microneedle (tiny needle) that can carry cells by immersing it in a cell suspension (liquid containing cells). This technique enables easy storage and movement of the microneedles, and the cells can be added on-site for immediate application or kept for future use. They tested this technique with three cell types related to wound healing, vitiligo (a skin condition that causes loss of skin color) treatment, and cancer vaccination. The findings revealed that the cryomicroneedles could effectively transport the cells to the skin and trigger the intended healing effects. This innovative method could potentially enhance the efficiency and convenience of cell treatments. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. Cryomicroneedles (cryoMNs) permit the precise delivery of therapeutic cells into the skin, but are limited by the cold-chain transportation and storage. This article introduces an innovative solution to use a prefabricated porous microneedle scaffold that can be shipped at room temperature and allow on-site cell loading and usage in the clinic (i.e., the second generation cryoMNs or S-cryoMNs). The study investigates the loading and intradermal delivery of three cell types in clinically relevant in vitro and in vivo models, including mesenchymal stem cells for wound healing, melanocytes for vitiligo treatment, and antigen-pulsed dendritic cells for cancer vaccination.
{"title":"In situ-formed cryomicroneedles for intradermal cell delivery","authors":"Mengjia Zheng, Tianli Hu, Yating Yang, Xuan Qie, Huaxin Yang, Yuyue Zhang, Qizheng Zhang, Ken-Tye Yong, Wei Liu, Chenjie Xu","doi":"10.1038/s41427-024-00531-1","DOIUrl":"10.1038/s41427-024-00531-1","url":null,"abstract":"Cryomicroneedles (cryoMNs) offer a convenient and minimally invasive way to precisely deliver therapeutic cells intradermally for treating local and systemic diseases. cryoMNs are manufactured by shaping and freezing the cell-containing cryogenic media in a microneedle template, which allows cells to be packaged in advance for direct usage in the clinic. However, the current cryoMNs require cold-chain transportation and storage and do not permit the loading of autologous cells in situ. This article introduces the second generation of cryoMNs (S-cryoMNs) that address these limitations. Specifically, S-cryoMNs are made by dipping a porous MN scaffold in the cell suspension before cryopreservation. The porous scaffold can be transported at room temperature, and researchers can load any cells with the optimized cryogenic medium. As a proof-of-concept, we examined the loading and intradermal delivery of three cell types in clinically relevant in vitro and in vivo models, including mesenchymal stem cells for wound healing, melanocytes for vitiligo treatment, and antigen-pulsed dendritic cells for cancer vaccination. This research presents a novel way to transport healing cells to the skin using a tool known as a cryomicroneedle. The scientists created a sponge-like microneedle (tiny needle) that can carry cells by immersing it in a cell suspension (liquid containing cells). This technique enables easy storage and movement of the microneedles, and the cells can be added on-site for immediate application or kept for future use. They tested this technique with three cell types related to wound healing, vitiligo (a skin condition that causes loss of skin color) treatment, and cancer vaccination. The findings revealed that the cryomicroneedles could effectively transport the cells to the skin and trigger the intended healing effects. This innovative method could potentially enhance the efficiency and convenience of cell treatments. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. Cryomicroneedles (cryoMNs) permit the precise delivery of therapeutic cells into the skin, but are limited by the cold-chain transportation and storage. This article introduces an innovative solution to use a prefabricated porous microneedle scaffold that can be shipped at room temperature and allow on-site cell loading and usage in the clinic (i.e., the second generation cryoMNs or S-cryoMNs). The study investigates the loading and intradermal delivery of three cell types in clinically relevant in vitro and in vivo models, including mesenchymal stem cells for wound healing, melanocytes for vitiligo treatment, and antigen-pulsed dendritic cells for cancer vaccination.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-14"},"PeriodicalIF":8.6,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00531-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139951660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-16DOI: 10.1038/s41427-024-00530-2
Li Zhe, Shi Wenxiao, Zhang Jine, Zheng Jie, Wang Mengqin, Zhu ZhaoZhao, Han Furong, Zhang Hui, Xie Liming, Yunzhong Chen, Fengxia Hu, Baogen Shen, Yuansha Chen, Jirong Sun
Due to the strong interactions from multiple degrees of freedom at the interfaces, electron-correlated oxide heterostructures have provided a promising platform for creating exotic quantum states. Understanding and controlling the coupling effects at the oxide interface are prerequisites for designing emergent interfacial phases with desired functionalities. Here, we report the dimensional control of the interface coupling-induced ferromagnetic (FM) phase in perovskite-CaRuO3/infinite-layered-SrCuO2 superlattices. Structural analysis reveals the occurrence of chain-type to planar-type structural transitions for the SrCuO2 layer as the layer thickness increases. The Hall and magnetoresistance measurements indicate the appearance of an interfacial FM state in the originally paramagnetic CaRuO3 layers when the CaRuO3 layer is in proximity to the chain-type SrCuO2 layers; this superlattice has the highest Curie temperature of ~75 K and perpendicular magnetic anisotropy. Along with the thickness-driven structural transition of the SrCuO2 layers, the interfacial FM order gradually deteriorates and finally disappears. As shown by the X-ray absorption results, the charge transfer at the CaRuO3/chain-SrCuO2 and CaRuO3/plane-SrCuO2 interfaces are different, resulting in dimensional control of the interfacial magnetic state. The results from our study can be used to facilitate a new method to manipulate interface coupling and create emergent interfacial phases in oxide heterostructures. Perovskite transition-metal oxides, known for their complex electron interactions, exhibit unique physical properties like superconductivity and magnetoresistance. However, layering these materials can result in new, unexpected behaviors at their interfaces. This study focuses on a layered structure of perovskite ruthenate and strontium cuprate. The research shows that by controlling the thickness of SCO layers in CRO/SCO superlattices, it is possible to induce ferromagnetism in CRO, which normally does not exhibit this property. The authors conclude that this manipulation of interface coupling can lead to new interfacial phases with potential applications in spintronics. The findings open up possibilities for future research into the control of quantum phases in complex oxide materials. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. In this paper, we report the dimensional control of the interface coupling-induced ferromagnetic phase in perovskite-CaRuO3/infinite-layered-SrCuO2 superlattices. The Hall and magnetoresistance measurements indicate the appearance of an interfacial ferromagnetic state in the originally paramagnetic CaRuO3 layers when the CaRuO3 layer is in proximity to the chain-type SrCuO2 layers; this superlattice has the highest Curie temperature of ~75 K and perpendicular magnetic anisotropy. Along with the thickness-driven structural transition from chain-type to planar-type of the SrCuO2 layer
{"title":"Dimensional control of interface coupling-induced ferromagnetism in CaRuO3/SrCuO2 superlattices","authors":"Li Zhe, Shi Wenxiao, Zhang Jine, Zheng Jie, Wang Mengqin, Zhu ZhaoZhao, Han Furong, Zhang Hui, Xie Liming, Yunzhong Chen, Fengxia Hu, Baogen Shen, Yuansha Chen, Jirong Sun","doi":"10.1038/s41427-024-00530-2","DOIUrl":"10.1038/s41427-024-00530-2","url":null,"abstract":"Due to the strong interactions from multiple degrees of freedom at the interfaces, electron-correlated oxide heterostructures have provided a promising platform for creating exotic quantum states. Understanding and controlling the coupling effects at the oxide interface are prerequisites for designing emergent interfacial phases with desired functionalities. Here, we report the dimensional control of the interface coupling-induced ferromagnetic (FM) phase in perovskite-CaRuO3/infinite-layered-SrCuO2 superlattices. Structural analysis reveals the occurrence of chain-type to planar-type structural transitions for the SrCuO2 layer as the layer thickness increases. The Hall and magnetoresistance measurements indicate the appearance of an interfacial FM state in the originally paramagnetic CaRuO3 layers when the CaRuO3 layer is in proximity to the chain-type SrCuO2 layers; this superlattice has the highest Curie temperature of ~75 K and perpendicular magnetic anisotropy. Along with the thickness-driven structural transition of the SrCuO2 layers, the interfacial FM order gradually deteriorates and finally disappears. As shown by the X-ray absorption results, the charge transfer at the CaRuO3/chain-SrCuO2 and CaRuO3/plane-SrCuO2 interfaces are different, resulting in dimensional control of the interfacial magnetic state. The results from our study can be used to facilitate a new method to manipulate interface coupling and create emergent interfacial phases in oxide heterostructures. Perovskite transition-metal oxides, known for their complex electron interactions, exhibit unique physical properties like superconductivity and magnetoresistance. However, layering these materials can result in new, unexpected behaviors at their interfaces. This study focuses on a layered structure of perovskite ruthenate and strontium cuprate. The research shows that by controlling the thickness of SCO layers in CRO/SCO superlattices, it is possible to induce ferromagnetism in CRO, which normally does not exhibit this property. The authors conclude that this manipulation of interface coupling can lead to new interfacial phases with potential applications in spintronics. The findings open up possibilities for future research into the control of quantum phases in complex oxide materials. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. In this paper, we report the dimensional control of the interface coupling-induced ferromagnetic phase in perovskite-CaRuO3/infinite-layered-SrCuO2 superlattices. The Hall and magnetoresistance measurements indicate the appearance of an interfacial ferromagnetic state in the originally paramagnetic CaRuO3 layers when the CaRuO3 layer is in proximity to the chain-type SrCuO2 layers; this superlattice has the highest Curie temperature of ~75 K and perpendicular magnetic anisotropy. Along with the thickness-driven structural transition from chain-type to planar-type of the SrCuO2 layer","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-9"},"PeriodicalIF":8.6,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00530-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139754212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-16DOI: 10.1038/s41427-024-00529-9
Hee-Sung Han, Sergio A. Montoya, Eric E. Fullerton, Weilun Chao, Soong-Geun Je, Ki‐Suk Lee, Mi-Young Im
Manipulating the topological properties of spin textures in magnetic materials is of great interest due to the rich physics and promising technological applications of these materials in advanced electronic devices. A spin texture with desired topological properties can be created by magnetic monopole injection, resulting in topological transitions involving changes in the topological charge. Therefore, controlling magnetic monopole injection has paramount importance for obtaining the desired spin textures but has not yet been reported. Here, we report the use of reliably manipulated magnetic monopole injection in the topological transition from stripe domains to skyrmions in an Fe/Gd multilayer. An easily tunable in-plane magnetic field applied to an Fe/Gd multilayer plays a key role in the magnetic monopole injection by modulating the local exchange energy. Our findings facilitate the efficient management of topological transitions by providing an important method for controlling magnetic monopole injection. In the nanomagnetism realm, scientists are intrigued by minuscule magnetic formations known as spin textures, possessing unique characteristics that could transform electronic devices. However, there’s a knowledge gap in controlling these structures’ transformation, especially creating stable formations called skyrmions. In a recent study, Mi-Young Im and team devised a technique to control the injection of a magnetic monopole a crucial step in forming skyrmions, in a ferrimagnetic multilayer film. They performed experiments and simulations demonstrating that a slight in-plane magnetic field can focus energy favoring MP injection, leading to skyrmion formation. The results indicated that the controlled injection of MPs is vital for the topological transition from stripe domains to skyrmions. The study concludes that the strength of the in-plane magnetic field is a critical factor in this process, offering a new method to manipulate magnetic structures for advanced technologies. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. Topological transition of a bubble to a skyrmion by the controlled magnetic monopoles injection in Fe/Gd magnetic multilayers. The magnetic monopoles injected from the top and bottom surfaces are topologically characterized by Q = −1 and Q = +1, respectively.
{"title":"Manipulation of the magnetic monopole injection for topological transition","authors":"Hee-Sung Han, Sergio A. Montoya, Eric E. Fullerton, Weilun Chao, Soong-Geun Je, Ki‐Suk Lee, Mi-Young Im","doi":"10.1038/s41427-024-00529-9","DOIUrl":"10.1038/s41427-024-00529-9","url":null,"abstract":"Manipulating the topological properties of spin textures in magnetic materials is of great interest due to the rich physics and promising technological applications of these materials in advanced electronic devices. A spin texture with desired topological properties can be created by magnetic monopole injection, resulting in topological transitions involving changes in the topological charge. Therefore, controlling magnetic monopole injection has paramount importance for obtaining the desired spin textures but has not yet been reported. Here, we report the use of reliably manipulated magnetic monopole injection in the topological transition from stripe domains to skyrmions in an Fe/Gd multilayer. An easily tunable in-plane magnetic field applied to an Fe/Gd multilayer plays a key role in the magnetic monopole injection by modulating the local exchange energy. Our findings facilitate the efficient management of topological transitions by providing an important method for controlling magnetic monopole injection. In the nanomagnetism realm, scientists are intrigued by minuscule magnetic formations known as spin textures, possessing unique characteristics that could transform electronic devices. However, there’s a knowledge gap in controlling these structures’ transformation, especially creating stable formations called skyrmions. In a recent study, Mi-Young Im and team devised a technique to control the injection of a magnetic monopole a crucial step in forming skyrmions, in a ferrimagnetic multilayer film. They performed experiments and simulations demonstrating that a slight in-plane magnetic field can focus energy favoring MP injection, leading to skyrmion formation. The results indicated that the controlled injection of MPs is vital for the topological transition from stripe domains to skyrmions. The study concludes that the strength of the in-plane magnetic field is a critical factor in this process, offering a new method to manipulate magnetic structures for advanced technologies. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. Topological transition of a bubble to a skyrmion by the controlled magnetic monopoles injection in Fe/Gd magnetic multilayers. The magnetic monopoles injected from the top and bottom surfaces are topologically characterized by Q = −1 and Q = +1, respectively.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-10"},"PeriodicalIF":8.6,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00529-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139754180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-09DOI: 10.1038/s41427-023-00513-9
Zhifu Yin, Yang Yang, Cong Hu, Jinzhe Li, Boyu Qin, Xue Yang
Real-time monitoring and early warning of human health conditions is an important function of wearable devices. Along with the development of the Internet of Things and the medical drive for early detection and treatment, wearable devices will become increasingly important in the future. Compared with traditional sensors, wearable sensors with mechanical softness and deformability are able to adapt to geometric nonlinearities and deformations caused by motion that occurs in application scenarios, thus ensuring stable and effective signal output under various complex working conditions. Various novel sensing materials have been developed for the detection of various biomarkers of respiration over the past few years. Here, we summarize the latest innovations in wearable respiratory sensors, highlighting the dominant sensing materials, designs, sensing mechanisms, and clinical implications. Finally, the future challenges and directions of wearable respiratory sensors are outlined toward promoting advancement in the field of wearable respiratory monitoring. Wearable devices provide an alternative way to clinically diagnose respiratory diseases in a non-invasive and real-time manner. In this review, we summarize the recent developments in the field of wearable respiratory sensors, including the methods to synthesize various sensing materials, the ways to improve respiratory sensing performances, and the feature comparison among different sensing materials. We also summarize the concentrations, sources and associated diseases of various biomarkers in exhaled gas. Finally, we discuss current trends in the field to provide predictions for the future trajectory of wearable respiratory sensors.
{"title":"Wearable respiratory sensors for health monitoring","authors":"Zhifu Yin, Yang Yang, Cong Hu, Jinzhe Li, Boyu Qin, Xue Yang","doi":"10.1038/s41427-023-00513-9","DOIUrl":"10.1038/s41427-023-00513-9","url":null,"abstract":"Real-time monitoring and early warning of human health conditions is an important function of wearable devices. Along with the development of the Internet of Things and the medical drive for early detection and treatment, wearable devices will become increasingly important in the future. Compared with traditional sensors, wearable sensors with mechanical softness and deformability are able to adapt to geometric nonlinearities and deformations caused by motion that occurs in application scenarios, thus ensuring stable and effective signal output under various complex working conditions. Various novel sensing materials have been developed for the detection of various biomarkers of respiration over the past few years. Here, we summarize the latest innovations in wearable respiratory sensors, highlighting the dominant sensing materials, designs, sensing mechanisms, and clinical implications. Finally, the future challenges and directions of wearable respiratory sensors are outlined toward promoting advancement in the field of wearable respiratory monitoring. Wearable devices provide an alternative way to clinically diagnose respiratory diseases in a non-invasive and real-time manner. In this review, we summarize the recent developments in the field of wearable respiratory sensors, including the methods to synthesize various sensing materials, the ways to improve respiratory sensing performances, and the feature comparison among different sensing materials. We also summarize the concentrations, sources and associated diseases of various biomarkers in exhaled gas. Finally, we discuss current trends in the field to provide predictions for the future trajectory of wearable respiratory sensors.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-29"},"PeriodicalIF":8.6,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-023-00513-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139753825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-02DOI: 10.1038/s41427-023-00527-3
Minseop Kim, Sieun Choi, Dong-Hee Choi, Jinchul Ahn, Dain Lee, Euijeong Song, Hyun Soo Kim, Mijin Kim, Sowoong Choi, Soojung Oh, Minsuh Kim, Seok Chung, Phil June Park
The human cutaneous lymphatic system strictly controls lymphatic functions by coordinating with skin cells. The lymphatic system plays important roles in removing cell waste, residual proteins, various antigens, and immune cells from tissues to maintain homeostasis and activate the immune system through the drainage of interstitial fluid1,2. The skin protects our body from external stimuli such as pathogens through the cutaneous lymphatic system3,4. Herein, to develop an in vitro human cutaneous lymphatic model, we present two 3D microfluidic platforms: a lymphangiogenesis model with a precollecting lymphatic vessel-like structure and an advanced lymphangiogenesis model with a functional cutaneous barrier and a precollecting lymphatic vessel-like structure. In addition, we rapidly analyzed prolymphangiogenic effects using methods that incorporate a high-speed image processing system and a deep learning-based vascular network analysis algorithm by 12 indices. Using these platforms, we evaluated the pro-lymphangiogenic effect of Lymphanax, a natural product derived from fresh ginseng. As a result, we demonstrated that Lymphanax induces robust lymphangiogenesis without any structural abnormalities. In conclusion, we suggest that these innovative platforms are useful for studying the interaction between the skin and lymphatic system as well as evaluating the prolymphangiogenic effects of drugs and cosmetics. The lymphatic system, crucial for maintaining our body’s equilibrium by eliminating waste and surplus fluid from tissues, is complex to understand, especially under unusual conditions like inflammation or tumor growth. To aid in this, researchers created a microfluidic chip model (a miniature device that simulates bodily functions) to examine lymphangiogenesis (the creation of new lymphatic vessels) in a regulated setting. This model lets scientists explore how a natural substance, Lymphanax, derived from the root of Panax Ginseng (a type of plant), impacts lymphangiogenesis. The study discovered that Lymphanax encourages the growth of new lymphatic vessels without inducing structural abnormalities, hinting at its potential medicinal value. This investigation paves the way for future study of the lymphatic system and potential treatment trials. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. The lymphatic system is essential for maintaining homeostasis of our body. Understanding the impact of environmental factors on the lymphatic system and regulating its condition are therefore crucial. We developed a microfluidic device culturing functional skin barrier and lymphatic vessel monolayer. A deep-learning algorithm was employed to validate the pro-lymphangiogenic character of a natural substance Lymphanax™, an extract of Panax Ginseng root. We foresee this platform functioning as a valuable research tool for the pharmaceutical and cosmetic industries, replacing the need for animal model
{"title":"An advanced 3D lymphatic system for assaying human cutaneous lymphangiogenesis in a microfluidic platform","authors":"Minseop Kim, Sieun Choi, Dong-Hee Choi, Jinchul Ahn, Dain Lee, Euijeong Song, Hyun Soo Kim, Mijin Kim, Sowoong Choi, Soojung Oh, Minsuh Kim, Seok Chung, Phil June Park","doi":"10.1038/s41427-023-00527-3","DOIUrl":"10.1038/s41427-023-00527-3","url":null,"abstract":"The human cutaneous lymphatic system strictly controls lymphatic functions by coordinating with skin cells. The lymphatic system plays important roles in removing cell waste, residual proteins, various antigens, and immune cells from tissues to maintain homeostasis and activate the immune system through the drainage of interstitial fluid1,2. The skin protects our body from external stimuli such as pathogens through the cutaneous lymphatic system3,4. Herein, to develop an in vitro human cutaneous lymphatic model, we present two 3D microfluidic platforms: a lymphangiogenesis model with a precollecting lymphatic vessel-like structure and an advanced lymphangiogenesis model with a functional cutaneous barrier and a precollecting lymphatic vessel-like structure. In addition, we rapidly analyzed prolymphangiogenic effects using methods that incorporate a high-speed image processing system and a deep learning-based vascular network analysis algorithm by 12 indices. Using these platforms, we evaluated the pro-lymphangiogenic effect of Lymphanax, a natural product derived from fresh ginseng. As a result, we demonstrated that Lymphanax induces robust lymphangiogenesis without any structural abnormalities. In conclusion, we suggest that these innovative platforms are useful for studying the interaction between the skin and lymphatic system as well as evaluating the prolymphangiogenic effects of drugs and cosmetics. The lymphatic system, crucial for maintaining our body’s equilibrium by eliminating waste and surplus fluid from tissues, is complex to understand, especially under unusual conditions like inflammation or tumor growth. To aid in this, researchers created a microfluidic chip model (a miniature device that simulates bodily functions) to examine lymphangiogenesis (the creation of new lymphatic vessels) in a regulated setting. This model lets scientists explore how a natural substance, Lymphanax, derived from the root of Panax Ginseng (a type of plant), impacts lymphangiogenesis. The study discovered that Lymphanax encourages the growth of new lymphatic vessels without inducing structural abnormalities, hinting at its potential medicinal value. This investigation paves the way for future study of the lymphatic system and potential treatment trials. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. The lymphatic system is essential for maintaining homeostasis of our body. Understanding the impact of environmental factors on the lymphatic system and regulating its condition are therefore crucial. We developed a microfluidic device culturing functional skin barrier and lymphatic vessel monolayer. A deep-learning algorithm was employed to validate the pro-lymphangiogenic character of a natural substance Lymphanax™, an extract of Panax Ginseng root. We foresee this platform functioning as a valuable research tool for the pharmaceutical and cosmetic industries, replacing the need for animal model","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-12"},"PeriodicalIF":8.6,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-023-00527-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139663012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-26DOI: 10.1038/s41427-023-00525-5
Brahim Marfoua, Jisang Hong
Anomalous transverse conductivities, such as anomalous Hall conductivity (AHC), anomalous Nernst conductivity (ANC), and anomalous thermal Hall conductivity (ATHC), play a crucial role in the emerging field of spintronics. Motivated by the recent fabrication of two-dimensional (2D) ferromagnetic thin film Fe3GaTe2, we investigate the thickness-dependent anomalous transverse conductivities of the 2D Fe3GaTe2 system (from one to four layers). The atomically ultrathin 2D Fe3GaTe2 system shows above-room-temperature ferromagnetism with a large perpendicular magnetic anisotropy energy. Furthermore, we obtain a large AHC of −485 S/cm in the four-layer thickness, and this is further enhanced to −550 S/cm with small electron doping. This AHC is seven times larger than the measured AHC in thicker 2D Fe3GaTe2 (178 nm). The ANC also reaches 0.55 A/K.m in the four-layer structure. Along with these, the four-layer system exhibits a large ATHC (−0.105 ~ −0.135 W/K.m). This ATHC is comparable to the large ATHC found in Weyl semimetal Co3Sn2S2. Based on our results, the atomically ultrathin 2D Fe3GaTe2 system shows outstanding anomalous transverse conductivities and can be utilized as a potential platform for future spintronics and spin caloritronic device applications. Two-dimensional materials have become popular in science due to their unique characteristics and potential for new technologies. In this study, researchers examined a specific 2D material, Fe3GaTe2, which has shown potential due to its strong magnetism at high temperatures, making it suitable for spintronics devices that operate at room temperature or above. The team performed calculations to investigate how the thickness of Fe3GaTe2 layers impacts their magnetic and anomalous transport properties. In conclusion, the study showed that adding more layers to the Fe3GaTe2 single layer improves its anomalous transverse conductivities, which could lead to better performance in future spintronic devices. The findings suggest that ultra-thin layers of this material could be very useful in the field of spintronics, potentially leading to more efficient and powerful technology. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. We investigate the anomalous transverse conductivities of a two-dimensional (2D) magnetic Fe3GaTe2 system (monolayer to four-layer thickness). A giant anomalous thermal Hall conductivity (ATHC) of -0.14 W/K.m is obtained in the four-layer structure, and this value is comparable to the typical ATHC found in bulk materials which is rare to find in low-dimensional systems. Our findings suggest that the ultra-thin 2D Fe3GaTe2 system could be a promising platform for future spintronics and spin caloritronics device applications.
{"title":"Large anomalous transverse transport properties in atomically thin 2D Fe3GaTe2","authors":"Brahim Marfoua, Jisang Hong","doi":"10.1038/s41427-023-00525-5","DOIUrl":"10.1038/s41427-023-00525-5","url":null,"abstract":"Anomalous transverse conductivities, such as anomalous Hall conductivity (AHC), anomalous Nernst conductivity (ANC), and anomalous thermal Hall conductivity (ATHC), play a crucial role in the emerging field of spintronics. Motivated by the recent fabrication of two-dimensional (2D) ferromagnetic thin film Fe3GaTe2, we investigate the thickness-dependent anomalous transverse conductivities of the 2D Fe3GaTe2 system (from one to four layers). The atomically ultrathin 2D Fe3GaTe2 system shows above-room-temperature ferromagnetism with a large perpendicular magnetic anisotropy energy. Furthermore, we obtain a large AHC of −485 S/cm in the four-layer thickness, and this is further enhanced to −550 S/cm with small electron doping. This AHC is seven times larger than the measured AHC in thicker 2D Fe3GaTe2 (178 nm). The ANC also reaches 0.55 A/K.m in the four-layer structure. Along with these, the four-layer system exhibits a large ATHC (−0.105 ~ −0.135 W/K.m). This ATHC is comparable to the large ATHC found in Weyl semimetal Co3Sn2S2. Based on our results, the atomically ultrathin 2D Fe3GaTe2 system shows outstanding anomalous transverse conductivities and can be utilized as a potential platform for future spintronics and spin caloritronic device applications. Two-dimensional materials have become popular in science due to their unique characteristics and potential for new technologies. In this study, researchers examined a specific 2D material, Fe3GaTe2, which has shown potential due to its strong magnetism at high temperatures, making it suitable for spintronics devices that operate at room temperature or above. The team performed calculations to investigate how the thickness of Fe3GaTe2 layers impacts their magnetic and anomalous transport properties. In conclusion, the study showed that adding more layers to the Fe3GaTe2 single layer improves its anomalous transverse conductivities, which could lead to better performance in future spintronic devices. The findings suggest that ultra-thin layers of this material could be very useful in the field of spintronics, potentially leading to more efficient and powerful technology. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. We investigate the anomalous transverse conductivities of a two-dimensional (2D) magnetic Fe3GaTe2 system (monolayer to four-layer thickness). A giant anomalous thermal Hall conductivity (ATHC) of -0.14 W/K.m is obtained in the four-layer structure, and this value is comparable to the typical ATHC found in bulk materials which is rare to find in low-dimensional systems. Our findings suggest that the ultra-thin 2D Fe3GaTe2 system could be a promising platform for future spintronics and spin caloritronics device applications.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-11"},"PeriodicalIF":8.6,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-023-00525-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139589746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-19DOI: 10.1038/s41427-023-00522-8
Ryo Furukawa, Shoki Nezu, Takuro Eguchi, Koji Sekiguchi
The performance of magnonic devices such as converters, switches, and multiplexers greatly depends on magnonic noise. While a peculiar discrete magnonic noise has been previously reported, the sources of underlying magnon dynamics occurring in high-magnon density conditions have not been clarified. Here, zero-span measurements of the spectrum analyzer were recorded to accurately detect magnonic noise as a fluctuation of the spin-wave amplitude. The results of low-frequency magnonic noise demonstrated a spin-wave mode dependency, indicating the existence of a peculiar magnon surface state. Furthermore, the energy thresholds of four-magnon scattering and autooscillation were determined using magnonic white noise. The noise data obtained in this study can help promote theoretical and experimental research on magnons. This study examines magnonic noise, a variation in spin-wave amplitude, which could offer crucial data about carrier dynamics in magnonic devices. The researchers, headed by R.F. and K.S., utilized a method known as zero-span operation of a spectrum analyser (an instrument used to examine the spectral composition of electrical, acoustic, or optical waveform) to measure magnonic noise. The study showed that magnonic noise is sensitive to both surface and internal spin-wave turbulence. They also discovered that the noise measurements permitted the direct assessment of the energy thresholds of four-magnon scattering and auto-oscillation. The findings propose that magnonic noise measurements could be a potent tool in designing future magnonic devices. The study concludes that more research is needed to detect magnonic noise at low magnon density for more efficient magnonic device design. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. Magnonic noise has unveiled magnon dynamics, including nonlinear scattering processes.
{"title":"Mode-dependent magnonic noise","authors":"Ryo Furukawa, Shoki Nezu, Takuro Eguchi, Koji Sekiguchi","doi":"10.1038/s41427-023-00522-8","DOIUrl":"10.1038/s41427-023-00522-8","url":null,"abstract":"The performance of magnonic devices such as converters, switches, and multiplexers greatly depends on magnonic noise. While a peculiar discrete magnonic noise has been previously reported, the sources of underlying magnon dynamics occurring in high-magnon density conditions have not been clarified. Here, zero-span measurements of the spectrum analyzer were recorded to accurately detect magnonic noise as a fluctuation of the spin-wave amplitude. The results of low-frequency magnonic noise demonstrated a spin-wave mode dependency, indicating the existence of a peculiar magnon surface state. Furthermore, the energy thresholds of four-magnon scattering and autooscillation were determined using magnonic white noise. The noise data obtained in this study can help promote theoretical and experimental research on magnons. This study examines magnonic noise, a variation in spin-wave amplitude, which could offer crucial data about carrier dynamics in magnonic devices. The researchers, headed by R.F. and K.S., utilized a method known as zero-span operation of a spectrum analyser (an instrument used to examine the spectral composition of electrical, acoustic, or optical waveform) to measure magnonic noise. The study showed that magnonic noise is sensitive to both surface and internal spin-wave turbulence. They also discovered that the noise measurements permitted the direct assessment of the energy thresholds of four-magnon scattering and auto-oscillation. The findings propose that magnonic noise measurements could be a potent tool in designing future magnonic devices. The study concludes that more research is needed to detect magnonic noise at low magnon density for more efficient magnonic device design. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. Magnonic noise has unveiled magnon dynamics, including nonlinear scattering processes.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-10"},"PeriodicalIF":8.6,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-023-00522-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139499542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As one of the most intractable neurological diseases, spinal cord injury (SCI) often leads to permanent neurological impairment in patients. Unfortunately, due to the complex pathological mechanisms and unique postinjury microenvironment, there is currently no way to completely repair the injured spinal cord. In recent years, with the rapid development of tissue engineering technology, the combination of biomaterials and medicine has provided a new idea for treating SCI. Here, we systematically summarize representative biomaterials, including natural, synthetic, nano, and hybrid materials, and their applications in SCI treatment. In addition, we describe several state-of-the-art fabrication techniques for tissue engineering. Importantly, we provide novel insights for the use of biomaterial-based therapeutic strategies to reduce secondary damage and promote repair. Finally, we discuss several biomaterial clinical studies. This review aims to provide a reference and new insights for the future exploration of spinal cord regeneration strategies. Biomaterial fabrication techniques and therapeutic strategies for spinal cord injury. This review focuses on the most recent advancements of biomaterial-based therapeutics for the treatment of spinal cord injury. The outer ring of the figure shows four fabrication techniques for tissue engineering: hydrogel, electrospinning, 3D printing and decellularization. The inner ring shows the injured spinal cord and the roles of biomaterials in spinal cord injury repair, for instance, restoring the blood‒spinal cord barrier (BSCB). Spinal cord injuries disrupt the pathways that allow the brain to communicate with the body, often resulting in paralysis and loss of sensation below the injury site. Despite advances in care, we still lack definitive treatments to fully restore function after SCI. This study focuses on the potential of biomaterials to aid in spinal cord repair. The results of these experiments have shown promise, with some materials supporting nerve growth and reducing inflammation at the injury site. However, the translation of these findings into human treatments requires further study to ensure safety and effectiveness. In conclusion, the research advances our understanding of how biomaterials can be used to promote spinal cord repair. The potential future implications of this work include the development of new treatments that could improve the quality of life for individuals with SCI. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
{"title":"Biomaterial-based regenerative therapeutic strategies for spinal cord injury","authors":"Keyi Chen, Wei Yu, Genjiang Zheng, Zeng Xu, Chen Yang, Yunhao Wang, Zhihao Yue, Weien Yuan, Bo Hu, Huajiang Chen","doi":"10.1038/s41427-023-00526-4","DOIUrl":"10.1038/s41427-023-00526-4","url":null,"abstract":"As one of the most intractable neurological diseases, spinal cord injury (SCI) often leads to permanent neurological impairment in patients. Unfortunately, due to the complex pathological mechanisms and unique postinjury microenvironment, there is currently no way to completely repair the injured spinal cord. In recent years, with the rapid development of tissue engineering technology, the combination of biomaterials and medicine has provided a new idea for treating SCI. Here, we systematically summarize representative biomaterials, including natural, synthetic, nano, and hybrid materials, and their applications in SCI treatment. In addition, we describe several state-of-the-art fabrication techniques for tissue engineering. Importantly, we provide novel insights for the use of biomaterial-based therapeutic strategies to reduce secondary damage and promote repair. Finally, we discuss several biomaterial clinical studies. This review aims to provide a reference and new insights for the future exploration of spinal cord regeneration strategies. Biomaterial fabrication techniques and therapeutic strategies for spinal cord injury. This review focuses on the most recent advancements of biomaterial-based therapeutics for the treatment of spinal cord injury. The outer ring of the figure shows four fabrication techniques for tissue engineering: hydrogel, electrospinning, 3D printing and decellularization. The inner ring shows the injured spinal cord and the roles of biomaterials in spinal cord injury repair, for instance, restoring the blood‒spinal cord barrier (BSCB). Spinal cord injuries disrupt the pathways that allow the brain to communicate with the body, often resulting in paralysis and loss of sensation below the injury site. Despite advances in care, we still lack definitive treatments to fully restore function after SCI. This study focuses on the potential of biomaterials to aid in spinal cord repair. The results of these experiments have shown promise, with some materials supporting nerve growth and reducing inflammation at the injury site. However, the translation of these findings into human treatments requires further study to ensure safety and effectiveness. In conclusion, the research advances our understanding of how biomaterials can be used to promote spinal cord repair. The potential future implications of this work include the development of new treatments that could improve the quality of life for individuals with SCI. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-29"},"PeriodicalIF":8.6,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-023-00526-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139499447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-19DOI: 10.1038/s41427-023-00523-7
Myeongcheol Go, Inju Hong, Dasol Lee, Sanghoon Kim, Junho Jang, Keon-Woo Kim, Sangmin Shim, Kijung Yong, Junsuk Rho, Jin Kon Kim
As an environmentally friendly and renewable method for hydrogen production powered by solar energy, photocatalytic hydrogen evolution reactions (HERs) using broadband absorbers have received much attention. Here, we report the fabrication and characterization of an ultrabroadband absorber for the photocatalytic HER. The absorber is composed of titanium nitride and titanium dioxide heterostructures deposited onto a porous anodized aluminum oxide template. The absorber shows ultrabroadband absorption in both the visible and near-infrared regions (400–2500 nm), with averages of 99.1% and 80.1%, respectively. Additionally, the presence of the TiO2 layer within the absorber extends the lifetime of the hot carriers by 2.7 times longer than that without the TiO2 layer, enhancing the transfer of hot electrons and improving the efficiency of hydrogen production by 1.9 times. This novel ultrabroadband absorber has potential use in advanced photocatalytic HER applications, providing a sustainable and cost-effective route for hydrogen generation from solar energy. Researchers have developed an ultrabroadband absorber for reactions that produce hydrogen using light (photocatalytic hydrogen evolution reactions), which could improve the efficiency of hydrogen production using solar energy. The team, led by M. G. and I. H., used a porous AAO template (a structure used for depositing materials), depositing TiO2 and TiN (types of chemical compounds) onto it to create a material that can absorb light across a wide spectrum. The study showed that adding the TiO2 layer increased the lifetime of hot carriers (energized particles called electrons and holes) by 2.7 times, leading to better electron transfer and improved hydrogen production efficiency. They believe this new absorber could be used for affordable hydrogen production, using environmentally friendly and renewable solar energy. Future research will explore the potential uses and scalability of this technology. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. The ultrabroadband absorptive refractory plasmonics is demonstrated with TiN and TiO2 deposited onto an anodized aluminum oxide template. The absorber shows ultrabroadband absorption in the solar spectrum (400–2500 nm). Furthermore, the absorber shows an extended hot carrier lifetime and improved efficiency of photocatalytic hydrogen production. This novel ultrabroadband absorber has great potential to provide a sustainable and cost-effective route for hydrogen generation from solar energy.
{"title":"Ultrabroadband absorptive refractory plasmonics for photocatalytic hydrogen evolution reactions","authors":"Myeongcheol Go, Inju Hong, Dasol Lee, Sanghoon Kim, Junho Jang, Keon-Woo Kim, Sangmin Shim, Kijung Yong, Junsuk Rho, Jin Kon Kim","doi":"10.1038/s41427-023-00523-7","DOIUrl":"10.1038/s41427-023-00523-7","url":null,"abstract":"As an environmentally friendly and renewable method for hydrogen production powered by solar energy, photocatalytic hydrogen evolution reactions (HERs) using broadband absorbers have received much attention. Here, we report the fabrication and characterization of an ultrabroadband absorber for the photocatalytic HER. The absorber is composed of titanium nitride and titanium dioxide heterostructures deposited onto a porous anodized aluminum oxide template. The absorber shows ultrabroadband absorption in both the visible and near-infrared regions (400–2500 nm), with averages of 99.1% and 80.1%, respectively. Additionally, the presence of the TiO2 layer within the absorber extends the lifetime of the hot carriers by 2.7 times longer than that without the TiO2 layer, enhancing the transfer of hot electrons and improving the efficiency of hydrogen production by 1.9 times. This novel ultrabroadband absorber has potential use in advanced photocatalytic HER applications, providing a sustainable and cost-effective route for hydrogen generation from solar energy. Researchers have developed an ultrabroadband absorber for reactions that produce hydrogen using light (photocatalytic hydrogen evolution reactions), which could improve the efficiency of hydrogen production using solar energy. The team, led by M. G. and I. H., used a porous AAO template (a structure used for depositing materials), depositing TiO2 and TiN (types of chemical compounds) onto it to create a material that can absorb light across a wide spectrum. The study showed that adding the TiO2 layer increased the lifetime of hot carriers (energized particles called electrons and holes) by 2.7 times, leading to better electron transfer and improved hydrogen production efficiency. They believe this new absorber could be used for affordable hydrogen production, using environmentally friendly and renewable solar energy. Future research will explore the potential uses and scalability of this technology. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. The ultrabroadband absorptive refractory plasmonics is demonstrated with TiN and TiO2 deposited onto an anodized aluminum oxide template. The absorber shows ultrabroadband absorption in the solar spectrum (400–2500 nm). Furthermore, the absorber shows an extended hot carrier lifetime and improved efficiency of photocatalytic hydrogen production. This novel ultrabroadband absorber has great potential to provide a sustainable and cost-effective route for hydrogen generation from solar energy.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-8"},"PeriodicalIF":8.6,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-023-00523-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139510406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}