首页 > 最新文献

Npg Asia Materials最新文献

英文 中文
Formation of a zirconium oxide crystal nucleus in the initial nucleation stage in aluminosilicate glass investigated by X-ray multiscale analysis 通过 X 射线多尺度分析法研究铝硅酸盐玻璃初始成核阶段氧化锆晶核的形成
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-04-19 DOI: 10.1038/s41427-024-00542-y
Yohei Onodera, Yasuyuki Takimoto, Hiroyuki Hijiya, Qing Li, Hiroo Tajiri, Toshiaki Ina, Shinji Kohara
Understanding the nucleation mechanism in glass is crucial for the development of new glass-ceramic materials. Herein, we report the structure of a commercially important glass-ceramic ZrO2-doped lithium aluminosilicate system during its initial nucleation stage. We conducted an X-ray multiscale analysis, and this analysis was used to observe the structure from the atomic to the nanometer scale by using diffraction, small-angle scattering, absorption, and anomalous scattering techniques. The inherent phase separation between the Zr-rich and Zr-poor regions in the pristine glass was enhanced by thermal treatment without changing the spatial geometry at the nanoscale. Element-specific pair distribution function analysis using anomalous X-ray scattering data showed the formation of a liquid ZrO2-like local structural motif and edge sharing between the ZrOx polyhedra and (Si/Al)O4 tetrahedra during the initial nucleation stage. Furthermore, the local structure of the Zr4+ ions resembled a cubic or tetragonal ZrO2 crystalline phase and formed after 2 h of annealing the pristine glass. Therefore, the Zr-centric periodic structure formed in the early stage of nucleation was potentially the initial crystal nucleus for the Zr-doped lithium aluminosilicate glass-ceramic. This research examines the early changes in the formation of zirconium-doped aluminosilicate glass-ceramic, a material used in many industrial goods. Led by Y. Onodera and Y. Takimoto, the study shows that during the formation process, a liquid-like local structure around a Zr4+ ion (a positively charged particle) and shared structures between ZrOx and (Si/Al)O4 tetrahedra (four-faced geometric shapes) are created. The researchers used various X-ray techniques to perform a detailed structural analysis. This study offers fresh understanding of the structure of formation agents in glasses and could improve our knowledge of the formation process in the early stages of glass-ceramic materials. Future studies could look into how these findings could be used in creating new materials. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. The structure of a commercially important glass-ceramic ZrO2-doped lithium aluminosilicate system during its initial nucleation stage was investigated by an X-ray multiscale analysis which enables us to observe the structure from the atomic to the nanometer scale by using diffraction, small-angle scattering, absorption, and anomalous scattering techniques. The combinatorial approach revealed that the formation of edge sharing between the ZrOx polyhedra and (Si/Al)O4 tetrahedra, and that the Zr-centric periodic structure in which the local structure of the Zr4+ ions resembled a cubic or tetragonal ZrO2 crystalline phase was potentially the initial crystal nucleus for the Zr-doped lithium aluminosilicate glass-ceramic.
了解玻璃中的成核机制对于开发新型玻璃陶瓷材料至关重要。在此,我们报告了一种具有重要商业价值的玻璃陶瓷 ZrO2 掺杂铝硅酸锂体系在其初始成核阶段的结构。我们进行了 X 射线多尺度分析,并利用衍射、小角散射、吸收和反常散射技术观察了从原子到纳米尺度的结构。原始玻璃中富锆区和贫锆区之间的固有相分离通过热处理得到了加强,但并没有改变纳米尺度的空间几何结构。利用反常 X 射线散射数据进行的元素特异对分布函数分析表明,在初始成核阶段形成了类似 ZrO2 的液态局部结构图案,ZrOx 多面体和(Si/Al)O4 四面体之间实现了边缘共享。此外,Zr4+ 离子的局部结构类似于立方或四方 ZrO2 结晶相,并在原始玻璃退火 2 小时后形成。因此,成核初期形成的以 Zr 为中心的周期性结构可能是掺杂 Zr 的锂铝硅酸盐玻璃陶瓷的初始晶核。
{"title":"Formation of a zirconium oxide crystal nucleus in the initial nucleation stage in aluminosilicate glass investigated by X-ray multiscale analysis","authors":"Yohei Onodera, Yasuyuki Takimoto, Hiroyuki Hijiya, Qing Li, Hiroo Tajiri, Toshiaki Ina, Shinji Kohara","doi":"10.1038/s41427-024-00542-y","DOIUrl":"10.1038/s41427-024-00542-y","url":null,"abstract":"Understanding the nucleation mechanism in glass is crucial for the development of new glass-ceramic materials. Herein, we report the structure of a commercially important glass-ceramic ZrO2-doped lithium aluminosilicate system during its initial nucleation stage. We conducted an X-ray multiscale analysis, and this analysis was used to observe the structure from the atomic to the nanometer scale by using diffraction, small-angle scattering, absorption, and anomalous scattering techniques. The inherent phase separation between the Zr-rich and Zr-poor regions in the pristine glass was enhanced by thermal treatment without changing the spatial geometry at the nanoscale. Element-specific pair distribution function analysis using anomalous X-ray scattering data showed the formation of a liquid ZrO2-like local structural motif and edge sharing between the ZrOx polyhedra and (Si/Al)O4 tetrahedra during the initial nucleation stage. Furthermore, the local structure of the Zr4+ ions resembled a cubic or tetragonal ZrO2 crystalline phase and formed after 2 h of annealing the pristine glass. Therefore, the Zr-centric periodic structure formed in the early stage of nucleation was potentially the initial crystal nucleus for the Zr-doped lithium aluminosilicate glass-ceramic. This research examines the early changes in the formation of zirconium-doped aluminosilicate glass-ceramic, a material used in many industrial goods. Led by Y. Onodera and Y. Takimoto, the study shows that during the formation process, a liquid-like local structure around a Zr4+ ion (a positively charged particle) and shared structures between ZrOx and (Si/Al)O4 tetrahedra (four-faced geometric shapes) are created. The researchers used various X-ray techniques to perform a detailed structural analysis. This study offers fresh understanding of the structure of formation agents in glasses and could improve our knowledge of the formation process in the early stages of glass-ceramic materials. Future studies could look into how these findings could be used in creating new materials. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. The structure of a commercially important glass-ceramic ZrO2-doped lithium aluminosilicate system during its initial nucleation stage was investigated by an X-ray multiscale analysis which enables us to observe the structure from the atomic to the nanometer scale by using diffraction, small-angle scattering, absorption, and anomalous scattering techniques. The combinatorial approach revealed that the formation of edge sharing between the ZrOx polyhedra and (Si/Al)O4 tetrahedra, and that the Zr-centric periodic structure in which the local structure of the Zr4+ ions resembled a cubic or tetragonal ZrO2 crystalline phase was potentially the initial crystal nucleus for the Zr-doped lithium aluminosilicate glass-ceramic.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-13"},"PeriodicalIF":8.6,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00542-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140628171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A bone adhesive enhances osteoporotic fracture repair by regulating bone homeostasis 骨粘合剂通过调节骨平衡增强骨质疏松性骨折的修复能力
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-04-12 DOI: 10.1038/s41427-024-00539-7
Shenghui Su, Jiajun Xie, Jian Gao, Shencai Liu, Xieping Dong, Jianwei Li, Zhong Feng Gao, Keyuan Chen, Weilu Liu
Patients suffering from osteoporotic fractures often require effective fixation and subsequent bone repair. However, the currently available materials are functionally limited and often fail to improve outcomes in this patient population. In this study, we developed orthopedic adhesives doped with romosozumab-loaded mesoporous bioactive glass nanoparticles to aid in osteoporotic fracture fixation and restore dysregulated bone homeostasis. These adhesives were designed to promote osteoblast formation while simultaneously inhibiting osteoclastic bone-resorbing activity, thus working synergistically to promote the healing of osteoporotic fractures. Orthopedic adhesives exhibit injectability, reversible adhesiveness, and malleability, enhancing their adaptability to complex clinical scenarios. Furthermore, the release of romosozumab from mesoporous bioactive glass nanoparticles accelerated osteogenesis and inhibited osteoclastogenesis, delaying the bone resorption process. This dual action contributes to the regulation of bone regeneration and remodeling. Notably, our orthopedic adhesive could restore the disrupted bone homeostasis associated with osteoporotic fractures. Schematic diagrams of GORoM adhesive and osteoporotic fractures treatment. A The process of OVX rat model establishment and GORoM adhesive implantation. B Osteoporotic fracture healing was mediated by the osteogenesis promotion and osteoclast inhibition.
骨质疏松性骨折患者往往需要有效的固定和后续骨修复。然而,目前可用的材料功能有限,往往无法改善这类患者的治疗效果。在这项研究中,我们开发了掺杂有罗莫单抗的介孔生物活性玻璃纳米颗粒的骨科粘合剂,以帮助骨质疏松性骨折的固定和恢复失调的骨平衡。这些粘合剂旨在促进成骨细胞的形成,同时抑制破骨细胞的骨吸收活性,从而协同促进骨质疏松性骨折的愈合。骨科粘合剂具有可注射性、可逆粘合性和延展性,能更好地适应复杂的临床情况。此外,介孔生物活性玻璃纳米粒子释放的罗莫索单抗可加速骨生成,抑制破骨细胞生成,延缓骨吸收过程。这种双重作用有助于调节骨再生和重塑。值得注意的是,我们的骨科粘合剂可以恢复与骨质疏松性骨折相关的骨平衡紊乱。
{"title":"A bone adhesive enhances osteoporotic fracture repair by regulating bone homeostasis","authors":"Shenghui Su, Jiajun Xie, Jian Gao, Shencai Liu, Xieping Dong, Jianwei Li, Zhong Feng Gao, Keyuan Chen, Weilu Liu","doi":"10.1038/s41427-024-00539-7","DOIUrl":"10.1038/s41427-024-00539-7","url":null,"abstract":"Patients suffering from osteoporotic fractures often require effective fixation and subsequent bone repair. However, the currently available materials are functionally limited and often fail to improve outcomes in this patient population. In this study, we developed orthopedic adhesives doped with romosozumab-loaded mesoporous bioactive glass nanoparticles to aid in osteoporotic fracture fixation and restore dysregulated bone homeostasis. These adhesives were designed to promote osteoblast formation while simultaneously inhibiting osteoclastic bone-resorbing activity, thus working synergistically to promote the healing of osteoporotic fractures. Orthopedic adhesives exhibit injectability, reversible adhesiveness, and malleability, enhancing their adaptability to complex clinical scenarios. Furthermore, the release of romosozumab from mesoporous bioactive glass nanoparticles accelerated osteogenesis and inhibited osteoclastogenesis, delaying the bone resorption process. This dual action contributes to the regulation of bone regeneration and remodeling. Notably, our orthopedic adhesive could restore the disrupted bone homeostasis associated with osteoporotic fractures. Schematic diagrams of GORoM adhesive and osteoporotic fractures treatment. A The process of OVX rat model establishment and GORoM adhesive implantation. B Osteoporotic fracture healing was mediated by the osteogenesis promotion and osteoclast inhibition.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-17"},"PeriodicalIF":8.6,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00539-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140560857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in functional materials and devices for Zn-Ion hybrid supercapacitors 用于锌离子混合超级电容器的功能材料和器件的最新进展
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-04-05 DOI: 10.1038/s41427-024-00537-9
Weijia Fan, Faxing Wang, Xiaosong Xiong, Bingyan Song, Tao Wang, Xinbing Cheng, Zhi Zhu, Jiarui He, Yankai Liu, Yuping Wu
Zinc-ion hybrid supercapacitors (ZHSCs) are attracting significant attention due to their high energies/power densities, safety, and low cost. In this review, recent advances in the development of ZHSCs are summarized. Particular emphasis is placed on state-of-the-art cathodes (including carbon, metal oxides, MXenes, and redox-active polymers), anodes (including Zn-based composites and Zn-free materials) and electrolytes for ZHSCs. Furthermore, the latest research on functional ZHSC devices with miniaturized ZHSCs, fiber-shaped ZHSCs, self-chargeable ZHSCs and self-healing devices is reported. Finally, further developments with ZHSCs are envisaged for future research in this thriving field. This research is emphasized particularly on cathodes (such as carbon, metal oxides, MXenes, and redox-active polymers), anodes (such as Zn-based composite materials and Zn-free materials), electrolytes (organic/ionic liquid electrolytes, WiSs, redox electrolytes, polymer or solid electrolytes) as well as the design of a novel device for ZHSCs.
锌离子混合超级电容器(ZHSCs)因其高能量/功率密度、安全性和低成本而备受关注。本综述总结了锌离子混合超级电容器的最新研发进展。其中特别强调了用于 ZHSCs 的最先进阴极(包括碳、金属氧化物、MXenes 和氧化还原活性聚合物)、阳极(包括锌基复合材料和无锌材料)和电解质。此外,报告还介绍了有关微型 ZHSC、纤维状 ZHSC、可自充电 ZHSC 和自修复器件等功能 ZHSC 器件的最新研究。最后,还展望了 ZHSCs 在这一蓬勃发展的研究领域的未来发展。
{"title":"Recent advances in functional materials and devices for Zn-Ion hybrid supercapacitors","authors":"Weijia Fan, Faxing Wang, Xiaosong Xiong, Bingyan Song, Tao Wang, Xinbing Cheng, Zhi Zhu, Jiarui He, Yankai Liu, Yuping Wu","doi":"10.1038/s41427-024-00537-9","DOIUrl":"10.1038/s41427-024-00537-9","url":null,"abstract":"Zinc-ion hybrid supercapacitors (ZHSCs) are attracting significant attention due to their high energies/power densities, safety, and low cost. In this review, recent advances in the development of ZHSCs are summarized. Particular emphasis is placed on state-of-the-art cathodes (including carbon, metal oxides, MXenes, and redox-active polymers), anodes (including Zn-based composites and Zn-free materials) and electrolytes for ZHSCs. Furthermore, the latest research on functional ZHSC devices with miniaturized ZHSCs, fiber-shaped ZHSCs, self-chargeable ZHSCs and self-healing devices is reported. Finally, further developments with ZHSCs are envisaged for future research in this thriving field. This research is emphasized particularly on cathodes (such as carbon, metal oxides, MXenes, and redox-active polymers), anodes (such as Zn-based composite materials and Zn-free materials), electrolytes (organic/ionic liquid electrolytes, WiSs, redox electrolytes, polymer or solid electrolytes) as well as the design of a novel device for ZHSCs.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-20"},"PeriodicalIF":8.6,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00537-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140560938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Giant gate modulation of antiferromagnetic spin reversal by the magnetoelectric effect 磁电效应对反铁磁自旋反转的巨门调制
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-04-05 DOI: 10.1038/s41427-024-00541-z
Kakeru Ujimoto, Hiroki Sameshima, Kentaro Toyoki, Takahiro Moriyama, Kohji Nakamura, Yoshinori Kotani, Motohiro Suzuki, Ion Iino, Naomi Kawamura, Ryoichi Nakatani, Yu Shiratsuchi
In this study, using the Pt/Cr2O3/Pt epitaxial trilayer, we demonstrate the giant voltage modulation of the antiferromagnetic spin reversal and the voltage-induced 180° switching of the Néel vector in maintaining a permanent magnetic field. We obtained a significant modulation efficiency of the switching field, Δμ0HSW/ΔV (Δμ0HSW/ΔE), reaching a maximum of −500 mT/V (−4.80 T nm/V); this value was more than 50 times greater than that of the ferromagnetic-based counterparts. From the temperature dependence of the modulation efficiency, X-ray magnetic circular dichroism measurements and first-principles calculations, we showed that the origin of the giant modulation efficiency relied on the electric field modulation of the net magnetization due to the magnetoelectric effect. From the first-principles calculation and the thickness effect on the offset electric field, we found that the interfacial magnetoelectric effect emerged. Our demonstration reveals the energy-efficient and widely applicable operation of an antiferromagnetic spin based on a mechanism distinct from magnetic anisotropy control. We demonstrate the magnetic-field induced reversal of antiferromagnetic spins and the electric field modulation of the switching field. The modulation efficiency is significantly high, greater than 4 T nm/V, and this giant modulation efficiency is attributed to the magnetoelectric effect of the antiferromagnetic Cr2O3. The magnetoelectric (ME) based mechanism provides a scheme for the energy-efficient, nonvolatile, deterministic 180° switching of the magnetic state in the pure antiferromagnetic (AFM) component. This study represents a great advancement in the AFM-based ME random access memory with ultralow writing power, an inherently fast switching speed and superior robustness to the magnetic state.
在这项研究中,我们利用 Pt/Cr2O3/Pt 外延三层,展示了反铁磁性自旋反转的巨电压调制,以及在维持永久磁场时电压诱导的奈尔矢量 180° 切换。我们获得了开关磁场的显著调制效率Δμ0HSW/ΔV(Δμ0HSW/ΔE),最大值为-500 mT/V (-4.80 T nm/V);该值比铁磁基对应物高出 50 多倍。从调制效率的温度依赖性、X 射线磁圆二色性测量和第一性原理计算中,我们发现巨调制效率的起源依赖于磁电效应对净磁化的电场调制。通过第一原理计算和厚度对偏移电场的影响,我们发现出现了界面磁电效应。我们的演示揭示了基于不同于磁各向异性控制机制的反铁磁自旋的高能效和广泛应用。
{"title":"Giant gate modulation of antiferromagnetic spin reversal by the magnetoelectric effect","authors":"Kakeru Ujimoto, Hiroki Sameshima, Kentaro Toyoki, Takahiro Moriyama, Kohji Nakamura, Yoshinori Kotani, Motohiro Suzuki, Ion Iino, Naomi Kawamura, Ryoichi Nakatani, Yu Shiratsuchi","doi":"10.1038/s41427-024-00541-z","DOIUrl":"10.1038/s41427-024-00541-z","url":null,"abstract":"In this study, using the Pt/Cr2O3/Pt epitaxial trilayer, we demonstrate the giant voltage modulation of the antiferromagnetic spin reversal and the voltage-induced 180° switching of the Néel vector in maintaining a permanent magnetic field. We obtained a significant modulation efficiency of the switching field, Δμ0HSW/ΔV (Δμ0HSW/ΔE), reaching a maximum of −500 mT/V (−4.80 T nm/V); this value was more than 50 times greater than that of the ferromagnetic-based counterparts. From the temperature dependence of the modulation efficiency, X-ray magnetic circular dichroism measurements and first-principles calculations, we showed that the origin of the giant modulation efficiency relied on the electric field modulation of the net magnetization due to the magnetoelectric effect. From the first-principles calculation and the thickness effect on the offset electric field, we found that the interfacial magnetoelectric effect emerged. Our demonstration reveals the energy-efficient and widely applicable operation of an antiferromagnetic spin based on a mechanism distinct from magnetic anisotropy control. We demonstrate the magnetic-field induced reversal of antiferromagnetic spins and the electric field modulation of the switching field. The modulation efficiency is significantly high, greater than 4 T nm/V, and this giant modulation efficiency is attributed to the magnetoelectric effect of the antiferromagnetic Cr2O3. The magnetoelectric (ME) based mechanism provides a scheme for the energy-efficient, nonvolatile, deterministic 180° switching of the magnetic state in the pure antiferromagnetic (AFM) component. This study represents a great advancement in the AFM-based ME random access memory with ultralow writing power, an inherently fast switching speed and superior robustness to the magnetic state.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-11"},"PeriodicalIF":8.6,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00541-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian optimization-driven enhancement of the thermoelectric properties of polycrystalline III-V semiconductor thin films 贝叶斯优化驱动的多晶 III-V 族半导体薄膜热电性能增强技术
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-03-29 DOI: 10.1038/s41427-024-00536-w
Takamitsu Ishiyama, Koki Nozawa, Takeshi Nishida, Takashi Suemasu, Kaoru Toko
Studying the properties of thermoelectric materials needs substantial effort owing to the interplay of the trade-off relationships among the influential parameters. In view of this issue, artificial intelligence has recently been used to investigate and optimize thermoelectric materials. Here, we used Bayesian optimization to improve the thermoelectric properties of multicomponent III–V materials; this domain warrants comprehensive investigation due to the need to simultaneously control multiple parameters. We designated the figure of merit ZT as the objective function to improve and search for a five-dimensional space comprising the composition of InGaAsSb thin films, dopant concentration, and film-deposition temperatures. After six Bayesian optimization cycles, ZT exhibited an approximately threefold improvement compared to its values obtained in the random initial experimental trials. Additional analysis employing Gaussian process regression elucidated that a high In composition and low substrate temperature were particularly effective at increasing ZT. The optimal substrate temperature (205 °C) demonstrated the potential for depositing InGaAsSb thermoelectric thin films onto plastic substrates. These findings not only promote the development of thermoelectric devices based on III–V semiconductors but also highlight the effectiveness of using Bayesian optimization for multicomponent materials. Bayesian optimization improved the thermoelectric properties of InGaAsSb thin films; this domain warrants comprehensive investigation due to the need to simultaneously control multiple parameters, such as, the composition, dopant concentration, and film-deposition temperatures. After six optimization cycles, the dimensionless figure of merit exhibited an approximately threefold improvement compared to its values obtained in the random initial experimental trials. These findings not only promote the development of thermoelectric devices based on III–V semiconductors but also highlight the effectiveness of using Bayesian optimization for multicomponent materials.
由于各影响参数之间存在相互影响的权衡关系,因此研究热电材料的特性需要投入大量精力。有鉴于此,人工智能最近被用于研究和优化热电材料。在此,我们使用贝叶斯优化法来改善多组分 III-V 材料的热电特性;由于需要同时控制多个参数,这一领域值得全面研究。我们将功勋值 ZT 指定为需要改进的目标函数,并搜索由 InGaAsSb 薄膜成分、掺杂浓度和薄膜沉积温度组成的五维空间。经过六个贝叶斯优化周期后,ZT 与随机初始实验试验中获得的值相比提高了约三倍。利用高斯过程回归进行的其他分析表明,高 In 成分和低衬底温度对提高 ZT 特别有效。最佳衬底温度(205 °C)证明了在塑料衬底上沉积 InGaAsSb 热电薄膜的潜力。这些发现不仅促进了基于 III-V 族半导体的热电设备的开发,而且凸显了使用贝叶斯优化技术对多组分材料进行优化的有效性。
{"title":"Bayesian optimization-driven enhancement of the thermoelectric properties of polycrystalline III-V semiconductor thin films","authors":"Takamitsu Ishiyama, Koki Nozawa, Takeshi Nishida, Takashi Suemasu, Kaoru Toko","doi":"10.1038/s41427-024-00536-w","DOIUrl":"10.1038/s41427-024-00536-w","url":null,"abstract":"Studying the properties of thermoelectric materials needs substantial effort owing to the interplay of the trade-off relationships among the influential parameters. In view of this issue, artificial intelligence has recently been used to investigate and optimize thermoelectric materials. Here, we used Bayesian optimization to improve the thermoelectric properties of multicomponent III–V materials; this domain warrants comprehensive investigation due to the need to simultaneously control multiple parameters. We designated the figure of merit ZT as the objective function to improve and search for a five-dimensional space comprising the composition of InGaAsSb thin films, dopant concentration, and film-deposition temperatures. After six Bayesian optimization cycles, ZT exhibited an approximately threefold improvement compared to its values obtained in the random initial experimental trials. Additional analysis employing Gaussian process regression elucidated that a high In composition and low substrate temperature were particularly effective at increasing ZT. The optimal substrate temperature (205 °C) demonstrated the potential for depositing InGaAsSb thermoelectric thin films onto plastic substrates. These findings not only promote the development of thermoelectric devices based on III–V semiconductors but also highlight the effectiveness of using Bayesian optimization for multicomponent materials. Bayesian optimization improved the thermoelectric properties of InGaAsSb thin films; this domain warrants comprehensive investigation due to the need to simultaneously control multiple parameters, such as, the composition, dopant concentration, and film-deposition temperatures. After six optimization cycles, the dimensionless figure of merit exhibited an approximately threefold improvement compared to its values obtained in the random initial experimental trials. These findings not only promote the development of thermoelectric devices based on III–V semiconductors but also highlight the effectiveness of using Bayesian optimization for multicomponent materials.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-7"},"PeriodicalIF":8.6,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00536-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140323397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formulation of energy loss due to magnetostriction to design ultraefficient soft magnets 计算磁致伸缩导致的能量损失,设计超高效软磁体
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-03-26 DOI: 10.1038/s41427-024-00538-8
Hiroshi Tsukahara, Haodong Huang, Kiyonori Suzuki, Kanta Ono
The mechanism of energy loss due to magnetostriction in soft magnetic materials was analytically formulated, and our experiments validated this formulation. The viscosity of magnetic materials causes the resistive force acting on magnetic domain walls through strain due to magnetostriction, and magnetic energy is eventually dissipated by friction even without eddy currents. This energy loss mechanism explains the frequency dependence of the excess loss observed in the experiments, and the excess loss is dominated by the contribution of magnetostriction when the magnetostriction constant exceeds approximately 20 ppm. The random anisotropy model was extended by considering the effect of local magnetostriction as a correction to the magnetocrystalline anisotropy. The effect of magnetostriction was considerably suppressed by the exchange-averaging effect. The estimated effective random magnetoelastic anisotropy for nanocrystalline α-Fe reached as low as 18.6 J/m3, but this static effect could not explain the high excess loss at high frequencies observed in the experiments. The results of this research could provide new design criteria for high-performance soft magnetic materials based on low magnetostriction to reduce the excess loss. The energy loss mechanism due to magnetostriction was clarified by analytical formulation considering the viscosity of magnetic materials. Effects of magnetostriction have been focused on contributions to magnetic anisotropy. However, our formulation shows that the magnetic anisotropy due to magnetostriction cannot explain excess losses in nanocrystalline soft magnetic materials, and the viscosity causes resistance forces acting on domain wall motions. This viscous resistance dissipates the magnetic energy and generates the energy loss, which has the same frequency dependence as anomalous eddy current loss. The results of this research provide new design criteria for ultra-efficient soft magnetic materials.
我们分析了软磁材料中磁致伸缩导致能量损耗的机理,并通过实验验证了这一机理。磁性材料的粘度通过磁致伸缩引起的应变作用于磁畴壁上的阻力,即使没有涡流,磁能最终也会通过摩擦耗散。这种能量损耗机制解释了实验中观察到的过量损耗的频率依赖性,当磁致伸缩常数超过约 20 ppm 时,过量损耗主要由磁致伸缩贡献。将局部磁致伸缩的影响视为对磁晶各向异性的修正,从而扩展了随机各向异性模型。磁致伸缩效应在很大程度上被交换平均效应所抑制。纳米晶 α-Fe 的有效随机磁弹性各向异性估计值低至 18.6 J/m3,但这种静态效应无法解释实验中观察到的高频率下的高过量损耗。这项研究的结果可为基于低磁致伸缩的高性能软磁材料提供新的设计标准,以降低过量损耗。
{"title":"Formulation of energy loss due to magnetostriction to design ultraefficient soft magnets","authors":"Hiroshi Tsukahara, Haodong Huang, Kiyonori Suzuki, Kanta Ono","doi":"10.1038/s41427-024-00538-8","DOIUrl":"10.1038/s41427-024-00538-8","url":null,"abstract":"The mechanism of energy loss due to magnetostriction in soft magnetic materials was analytically formulated, and our experiments validated this formulation. The viscosity of magnetic materials causes the resistive force acting on magnetic domain walls through strain due to magnetostriction, and magnetic energy is eventually dissipated by friction even without eddy currents. This energy loss mechanism explains the frequency dependence of the excess loss observed in the experiments, and the excess loss is dominated by the contribution of magnetostriction when the magnetostriction constant exceeds approximately 20 ppm. The random anisotropy model was extended by considering the effect of local magnetostriction as a correction to the magnetocrystalline anisotropy. The effect of magnetostriction was considerably suppressed by the exchange-averaging effect. The estimated effective random magnetoelastic anisotropy for nanocrystalline α-Fe reached as low as 18.6 J/m3, but this static effect could not explain the high excess loss at high frequencies observed in the experiments. The results of this research could provide new design criteria for high-performance soft magnetic materials based on low magnetostriction to reduce the excess loss. The energy loss mechanism due to magnetostriction was clarified by analytical formulation considering the viscosity of magnetic materials. Effects of magnetostriction have been focused on contributions to magnetic anisotropy. However, our formulation shows that the magnetic anisotropy due to magnetostriction cannot explain excess losses in nanocrystalline soft magnetic materials, and the viscosity causes resistance forces acting on domain wall motions. This viscous resistance dissipates the magnetic energy and generates the energy loss, which has the same frequency dependence as anomalous eddy current loss. The results of this research provide new design criteria for ultra-efficient soft magnetic materials.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-12"},"PeriodicalIF":8.6,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00538-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140298485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanocomposite magnetic hydrogel with dual anisotropic properties induces osteogenesis through the NOTCH-dependent pathways 具有双重各向异性的纳米复合磁性水凝胶通过 NOTCH 依赖性途径诱导骨生成
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-03-22 DOI: 10.1038/s41427-024-00535-x
Shijia Tang, Yue Yan, Xiaoli Lu, Peng Wang, Xueqin Xu, Ke Hu, Sen Yan, Zhaobin Guo, Xiao Han, Feimin Zhang, Ning Gu
Physical factors in the cellular microenvironment have critical effects on stem cell differentiation. The utilization of physical factors to promote the osteogenic differentiation of stem cells has been established as a new strategy for developing bone tissue engineering scaffolds. In this context, scaffolds with multiscale anisotropy are considered to possess biomimetic properties, which are advantageous for their biological performance. In the present study, a novel magnetic anisotropic hydrogel (MAH) with magnetic and topographic anisotropy was designed by combining static magnetic field-induced magnetic nanomaterials and a hydrogel. In in vitro studies, the MAH exhibited excellent biocompatibility and osteogenic bioactivity. The alkaline phosphatase activity and the expression of osteogenic-related genes and proteins induced by the MAH were greater than those induced by the pure PEGDA–GelMA hydrogel (PGH) and the magnetic isotropic hydrogel (MIH). In addition, the present study revealed that the dual anisotropic properties of the MAH activated the NOTCH1/2 pathway by upregulating SNHG5 and downstream SIRT6, which modulates the level of NOTCH1/2 by antagonizing DNMT1 protein stability, ultimately inducing the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Furthermore, the MAH, MIH, and PGH were tested for in vivo bone regeneration in rabbits with femur defects, and the results demonstrated that the MAH effectively stimulated bone regeneration. Taken together, these findings suggest that this magnetically and topographically anisotropic biomimetic hydrogel might be a promising candidate for application in the field of bone tissue regeneration. A novel magnetic anisotropic hydrogel (MAH) with magnetic and topographic anisotropy was designed by combining static magnetic field-induced magnetic nanomaterials and a hydrogel. The duel anisotropic hydrogel promotes osteogenic differentiation of BMSCs through upregulating SNHG5 and downstream SIRT6, which modulated the level of NOTCH1/2 by antagonizing DNMT1 protein stability.
细胞微环境中的物理因素对干细胞分化有至关重要的影响。利用物理因素促进干细胞成骨分化已被确立为开发骨组织工程支架的新策略。在这种情况下,具有多尺度各向异性的支架被认为具有生物仿生特性,这对其生物学性能十分有利。在本研究中,通过将静态磁场诱导的磁性纳米材料与水凝胶相结合,设计出了一种具有磁性和地形各向异性的新型磁性各向异性水凝胶(MAH)。在体外研究中,MAH 表现出优异的生物相容性和成骨生物活性。与纯 PEGDA-GelMA 水凝胶(PGH)和磁性各向同性水凝胶(MIH)相比,MAH 诱导的碱性磷酸酶活性以及成骨相关基因和蛋白质的表达量更高。此外,本研究还发现,MAH的双重各向异性特性通过上调SNHG5和下游SIRT6激活了NOTCH1/2通路,而SIRT6则通过拮抗DNMT1蛋白的稳定性调节NOTCH1/2的水平,最终诱导骨髓间充质干细胞(BMSCs)的成骨分化。此外,还对 MAH、MIH 和 PGH 在股骨缺损家兔体内的骨再生进行了测试,结果表明 MAH 能有效刺激骨再生。综上所述,这些研究结果表明,这种具有磁性和地形各向异性的仿生水凝胶有望应用于骨组织再生领域。
{"title":"Nanocomposite magnetic hydrogel with dual anisotropic properties induces osteogenesis through the NOTCH-dependent pathways","authors":"Shijia Tang, Yue Yan, Xiaoli Lu, Peng Wang, Xueqin Xu, Ke Hu, Sen Yan, Zhaobin Guo, Xiao Han, Feimin Zhang, Ning Gu","doi":"10.1038/s41427-024-00535-x","DOIUrl":"10.1038/s41427-024-00535-x","url":null,"abstract":"Physical factors in the cellular microenvironment have critical effects on stem cell differentiation. The utilization of physical factors to promote the osteogenic differentiation of stem cells has been established as a new strategy for developing bone tissue engineering scaffolds. In this context, scaffolds with multiscale anisotropy are considered to possess biomimetic properties, which are advantageous for their biological performance. In the present study, a novel magnetic anisotropic hydrogel (MAH) with magnetic and topographic anisotropy was designed by combining static magnetic field-induced magnetic nanomaterials and a hydrogel. In in vitro studies, the MAH exhibited excellent biocompatibility and osteogenic bioactivity. The alkaline phosphatase activity and the expression of osteogenic-related genes and proteins induced by the MAH were greater than those induced by the pure PEGDA–GelMA hydrogel (PGH) and the magnetic isotropic hydrogel (MIH). In addition, the present study revealed that the dual anisotropic properties of the MAH activated the NOTCH1/2 pathway by upregulating SNHG5 and downstream SIRT6, which modulates the level of NOTCH1/2 by antagonizing DNMT1 protein stability, ultimately inducing the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Furthermore, the MAH, MIH, and PGH were tested for in vivo bone regeneration in rabbits with femur defects, and the results demonstrated that the MAH effectively stimulated bone regeneration. Taken together, these findings suggest that this magnetically and topographically anisotropic biomimetic hydrogel might be a promising candidate for application in the field of bone tissue regeneration. A novel magnetic anisotropic hydrogel (MAH) with magnetic and topographic anisotropy was designed by combining static magnetic field-induced magnetic nanomaterials and a hydrogel. The duel anisotropic hydrogel promotes osteogenic differentiation of BMSCs through upregulating SNHG5 and downstream SIRT6, which modulated the level of NOTCH1/2 by antagonizing DNMT1 protein stability.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-15"},"PeriodicalIF":8.6,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00535-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spontaneous Small Biskyrmions in a Centrosymmetric Rare-Earth Kagome Ferrimagnet 中心对称稀土卡戈梅铁磁体中的自发小比斯基米尔离子
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-03-15 DOI: 10.1038/s41427-024-00534-y
Shulan Zuo, Kaiming Qiao, Zhan Wang, Ying Zhang, Chengbao Jiang, Baogen Shen
Magnetic skyrmions with nontrivial topologies have great potential to serve as memory cells in novel spintronic devices. Small skyrmions were theoretically and experimentally confirmed to be generated under the influence of external fields in ferrimagnetic films via Dzyaloshinskii–Moriya interactions (DMIs). However, this topological state has yet to be verified in ferrimagnetic crystals, especially in the absence of external fields and DMIs. Here, spontaneous biskyrmions were directly observed in the Tb0.2Gd0.8Co2 ferrimagnetic crystal with a Kagome lattice using Lorentz transmission electron microscopy. The high-density biskyrmions exhibited a small size (approximately 50 nm) over a wide temperature range, were closely related to subtle magnetic interaction competition, and coexisted with some broken stripes that could be easily converted into zero-field biskyrmions by utilizing proper field-cooling manipulation. These results can be used to establish a platform for investigating functional sub-50-nm skyrmions in ferrimagnetic crystals and to facilitate advanced applications in magnetic devices. Scientists have found a new method to control small skyrmions, which are tiny magnetic patterns, in ferrimagnetic materials (materials that have a net magnetic moment even without an external magnetic field arising from the two opposite magnetic sublattices). The research, led by S.L. Zuo and K.M. Qiao, revealed that these skyrmions can be maintained in ferrimagnetic materials without requiring an external magnetic field. The researchers used a technique called Lorentz transmission electron microscopy to observe the skyrmions in a specific ferrimagnetic crystal, Tb0.2Gd0.8Co2. They discovered that the skyrmions remained stable across a broad temperature range and could be easily controlled by altering the temperature or applying a minor magnetic field. This finding could be crucial for the creation of future spintronic devices, devices that use the rotation of electrons to store and process data. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
具有非复杂拓扑结构的磁天线具有在新型自旋电子器件中用作存储单元的巨大潜力。理论和实验证实,在铁磁性薄膜的外部磁场影响下,可以通过 Dzyaloshinskii-Moriya 相互作用(DMIs)产生小型天幕。然而,这种拓扑状态尚未在铁磁晶体中得到验证,尤其是在没有外场和 DMI 的情况下。在这里,我们利用洛伦兹透射电子显微镜直接观察到了具有 Kagome 晶格的 Tb0.2Gd0.8Co2 铁磁晶体中的自发双yrmions。在很宽的温度范围内,高密度双yrmions 的尺寸很小(约 50 nm),与微妙的磁相互作用竞争密切相关,并与一些断裂的条纹共存,通过适当的场冷却操作,这些断裂的条纹可以很容易地转化为零场双yrmions。这些结果可用于建立一个平台,以研究铁磁晶体中 50 纳米以下的功能性天戎,并促进磁性器件的先进应用。
{"title":"Spontaneous Small Biskyrmions in a Centrosymmetric Rare-Earth Kagome Ferrimagnet","authors":"Shulan Zuo, Kaiming Qiao, Zhan Wang, Ying Zhang, Chengbao Jiang, Baogen Shen","doi":"10.1038/s41427-024-00534-y","DOIUrl":"10.1038/s41427-024-00534-y","url":null,"abstract":"Magnetic skyrmions with nontrivial topologies have great potential to serve as memory cells in novel spintronic devices. Small skyrmions were theoretically and experimentally confirmed to be generated under the influence of external fields in ferrimagnetic films via Dzyaloshinskii–Moriya interactions (DMIs). However, this topological state has yet to be verified in ferrimagnetic crystals, especially in the absence of external fields and DMIs. Here, spontaneous biskyrmions were directly observed in the Tb0.2Gd0.8Co2 ferrimagnetic crystal with a Kagome lattice using Lorentz transmission electron microscopy. The high-density biskyrmions exhibited a small size (approximately 50 nm) over a wide temperature range, were closely related to subtle magnetic interaction competition, and coexisted with some broken stripes that could be easily converted into zero-field biskyrmions by utilizing proper field-cooling manipulation. These results can be used to establish a platform for investigating functional sub-50-nm skyrmions in ferrimagnetic crystals and to facilitate advanced applications in magnetic devices. Scientists have found a new method to control small skyrmions, which are tiny magnetic patterns, in ferrimagnetic materials (materials that have a net magnetic moment even without an external magnetic field arising from the two opposite magnetic sublattices). The research, led by S.L. Zuo and K.M. Qiao, revealed that these skyrmions can be maintained in ferrimagnetic materials without requiring an external magnetic field. The researchers used a technique called Lorentz transmission electron microscopy to observe the skyrmions in a specific ferrimagnetic crystal, Tb0.2Gd0.8Co2. They discovered that the skyrmions remained stable across a broad temperature range and could be easily controlled by altering the temperature or applying a minor magnetic field. This finding could be crucial for the creation of future spintronic devices, devices that use the rotation of electrons to store and process data. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-7"},"PeriodicalIF":8.6,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00534-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140154952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced construction strategies to obtain nanocomposite hydrogels for bone repair and regeneration 获取用于骨修复和再生的纳米复合水凝胶的先进构建策略
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-03-08 DOI: 10.1038/s41427-024-00533-z
Wang Ding, Yuxiang Ge, Tikai Zhang, Cheng Zhang, Xiaofan Yin
Bone tissue engineering is pivotal in facilitating bone reconstruction by promoting persistent angiogenesis and osteogenesis. Initially, the hot gel composite hydrogel scaffold technique was employed. However, to address various limitations, numerous gel structures have since been developed, including osteogenic gellan gels, semi-interpenetrating network hydrogels, photoinduced crosslinking methacrylate gels, and supramolecular hydrogels. This review examines the mechanisms, formation principles, and medical benefits of these gel structures. In addition, novel bioengineering techniques to regulate human bone growth are expected to emerge in the future. This work is expected to significantly expedite the advancement of hydrogel membranes in the field of bone repair. Despite years of exploration, numerous challenges remain unresolved in the field of hydrogels and hydrogel membranes for bone repair. In this review, we provide a comprehensive overview of the fundamental principles and current development status of hydrogel materials for bone repair, including their mechanisms, formation principles, and medical benefits in bone regeneration. Additionally, we summarize recent effective strategies to develop advanced hydrogels and technical approaches for bone repair while also discussing future directions.
骨组织工程通过促进持久的血管生成和骨生成,在促进骨重建方面发挥着关键作用。最初采用的是热凝胶复合水凝胶支架技术。然而,为了解决各种局限性,后来又开发了许多凝胶结构,包括成骨结冷胶、半穿透网络水凝胶、光诱导交联甲基丙烯酸酯凝胶和超分子水凝胶。本综述探讨了这些凝胶结构的机理、形成原理和医疗功效。此外,调节人体骨骼生长的新型生物工程技术有望在未来出现。这项工作有望大大加快水凝胶膜在骨修复领域的发展。
{"title":"Advanced construction strategies to obtain nanocomposite hydrogels for bone repair and regeneration","authors":"Wang Ding, Yuxiang Ge, Tikai Zhang, Cheng Zhang, Xiaofan Yin","doi":"10.1038/s41427-024-00533-z","DOIUrl":"10.1038/s41427-024-00533-z","url":null,"abstract":"Bone tissue engineering is pivotal in facilitating bone reconstruction by promoting persistent angiogenesis and osteogenesis. Initially, the hot gel composite hydrogel scaffold technique was employed. However, to address various limitations, numerous gel structures have since been developed, including osteogenic gellan gels, semi-interpenetrating network hydrogels, photoinduced crosslinking methacrylate gels, and supramolecular hydrogels. This review examines the mechanisms, formation principles, and medical benefits of these gel structures. In addition, novel bioengineering techniques to regulate human bone growth are expected to emerge in the future. This work is expected to significantly expedite the advancement of hydrogel membranes in the field of bone repair. Despite years of exploration, numerous challenges remain unresolved in the field of hydrogels and hydrogel membranes for bone repair. In this review, we provide a comprehensive overview of the fundamental principles and current development status of hydrogel materials for bone repair, including their mechanisms, formation principles, and medical benefits in bone regeneration. Additionally, we summarize recent effective strategies to develop advanced hydrogels and technical approaches for bone repair while also discussing future directions.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-18"},"PeriodicalIF":8.6,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00533-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140072210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transparent vertical nanotube electrode arrays on graphene for cellular recording and optical imaging 用于细胞记录和光学成像的石墨烯透明垂直纳米管电极阵列
IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-03-01 DOI: 10.1038/s41427-024-00532-0
Jamin Lee, Keundong Lee, Kyumeen Kang, Asad Ali, Dong Wook Kim, Hyerim Ahn, Gwanho Ko, Myunghwan Choi, Youngbin Tchoe, Hye Yoon Park, Gyu-Chul Yi
Here, we report the fabrication of transparent multichannel vertical nanotube electrode arrays for detecting cellular activity and optically imaging neuronal networks. To fabricate these transparent electrode arrays, position- and morphology-controlled ZnO nanotube arrays consisting of ultrathin nanowalls were grown on transparent graphene layers and coated with Ti/Au metal layers. Using these multichannel arrays, electrophysiological signals were individually recorded from primary mouse hippocampal neurons and recorded distinctive intracellular potential-like signals. Moreover, the transparent electrode array enabled fluorescence imaging of neuron cell bodies and neurite connections. This transparent graphene- and nanotube-based recording device is proposed to greatly increase the versatility of capabilities for investigating neuronal activity through simultaneous recording and imaging of neuron cultures. The figure depicts a new type of transparent electrode recording array made of vertically aligned zinc oxide nanotubes grown on graphene (top middle). The nanotubes are formed by sharp nanowalls to penetrate the cell (top left) while transparent graphene layers allow imaging the neurons using with conventional microscopy (top right). As a result, simultaneous recording of electrical signals was obtained from multiple neurons at single-cell resolution. Moreover, the signals had distinguishable waveforms that implicated extracellular- and intracellular-like electrophysiological voltage changes (bottom).
在此,我们报告了透明多通道垂直纳米管电极阵列的制作过程,该阵列可用于检测细胞活动和对神经元网络进行光学成像。为了制作这些透明电极阵列,我们在透明石墨烯层上生长了由超薄纳米壁组成的位置和形态可控的氧化锌纳米管阵列,并在其表面镀上了钛/金金属层。利用这些多通道阵列,可单独记录原代小鼠海马神经元的电生理信号,并记录到独特的类细胞内电位信号。此外,透明电极阵列还能对神经元细胞体和神经元连接进行荧光成像。这种基于石墨烯和纳米管的透明记录装置通过同时记录和成像神经元培养物,大大提高了研究神经元活动的多功能性。
{"title":"Transparent vertical nanotube electrode arrays on graphene for cellular recording and optical imaging","authors":"Jamin Lee, Keundong Lee, Kyumeen Kang, Asad Ali, Dong Wook Kim, Hyerim Ahn, Gwanho Ko, Myunghwan Choi, Youngbin Tchoe, Hye Yoon Park, Gyu-Chul Yi","doi":"10.1038/s41427-024-00532-0","DOIUrl":"10.1038/s41427-024-00532-0","url":null,"abstract":"Here, we report the fabrication of transparent multichannel vertical nanotube electrode arrays for detecting cellular activity and optically imaging neuronal networks. To fabricate these transparent electrode arrays, position- and morphology-controlled ZnO nanotube arrays consisting of ultrathin nanowalls were grown on transparent graphene layers and coated with Ti/Au metal layers. Using these multichannel arrays, electrophysiological signals were individually recorded from primary mouse hippocampal neurons and recorded distinctive intracellular potential-like signals. Moreover, the transparent electrode array enabled fluorescence imaging of neuron cell bodies and neurite connections. This transparent graphene- and nanotube-based recording device is proposed to greatly increase the versatility of capabilities for investigating neuronal activity through simultaneous recording and imaging of neuron cultures. The figure depicts a new type of transparent electrode recording array made of vertically aligned zinc oxide nanotubes grown on graphene (top middle). The nanotubes are formed by sharp nanowalls to penetrate the cell (top left) while transparent graphene layers allow imaging the neurons using with conventional microscopy (top right). As a result, simultaneous recording of electrical signals was obtained from multiple neurons at single-cell resolution. Moreover, the signals had distinguishable waveforms that implicated extracellular- and intracellular-like electrophysiological voltage changes (bottom).","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-9"},"PeriodicalIF":8.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00532-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140009549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Npg Asia Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1