首页 > 最新文献

Ocean Modelling最新文献

英文 中文
Deep learning-based solution for the KdV-family governing equations of ocean internal waves
IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-12-26 DOI: 10.1016/j.ocemod.2024.102493
Xiaofeng Li , Haoyu Wang , Yi Yang , Xudong Zhang
Internal Solitary Waves (ISWs) are critical for ocean studies due to their large amplitude and long-travel capabilities. Conventionally, the Korteweg-de Vries (KdV) equations and their extensions are employed to simulate ISW properties, but traditional numerical methods lack flexibility and efficiency. This study introduces a universal, deep learning-based model that streamlines solving KdV-family equations. Within the framework of physics-informed neural networks, we implement an optimized Radial Basis Function (RBF) neural network and a new progressive expansion training strategy. This innovation minimizes error during training, leading to efficient convergence. Our model is tested on KdV and forced KdV equations, dimensional and non-dimensional equations using soliton, cnoidal, and dnoidal waveforms to simulate ISW propagation. The model results align with theoretical and numerical benchmarks, as demonstrated in a case study in the Sulu Sea. This paper does not concern ISW dynamics but uses the KdV equation as an example to showcase how to solve the partial differential equations with a new deep-learning method. The developed deep-learning model offers an efficient and accurate approach to solving KdV-family equations in oceanographic studies.
{"title":"Deep learning-based solution for the KdV-family governing equations of ocean internal waves","authors":"Xiaofeng Li ,&nbsp;Haoyu Wang ,&nbsp;Yi Yang ,&nbsp;Xudong Zhang","doi":"10.1016/j.ocemod.2024.102493","DOIUrl":"10.1016/j.ocemod.2024.102493","url":null,"abstract":"<div><div>Internal Solitary Waves (ISWs) are critical for ocean studies due to their large amplitude and long-travel capabilities. Conventionally, the Korteweg-de Vries (KdV) equations and their extensions are employed to simulate ISW properties, but traditional numerical methods lack flexibility and efficiency. This study introduces a universal, deep learning-based model that streamlines solving KdV-family equations. Within the framework of physics-informed neural networks, we implement an optimized Radial Basis Function (RBF) neural network and a new progressive expansion training strategy. This innovation minimizes error during training, leading to efficient convergence. Our model is tested on KdV and forced KdV equations, dimensional and non-dimensional equations using soliton, cnoidal, and dnoidal waveforms to simulate ISW propagation. The model results align with theoretical and numerical benchmarks, as demonstrated in a case study in the Sulu Sea. This paper does not concern ISW dynamics but uses the KdV equation as an example to showcase how to solve the partial differential equations with a new deep-learning method. The developed deep-learning model offers an efficient and accurate approach to solving KdV-family equations in oceanographic studies.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"194 ","pages":"Article 102493"},"PeriodicalIF":3.1,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143148257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Stokes drift and washing-off on the pathways and accumulation of microplastics originating from a subtropical estuary
IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-12-21 DOI: 10.1016/j.ocemod.2024.102492
Caiyuan Cai , Bo Hong , Liangsheng Zhu , Hongzhou Xu , Ling Wang
Highly urbanized river deltas are hotspots for microplastic (MP) pollution, yet research on the transport and accumulation of MPs from these estuaries remains limited. This study employed a Lagrangian particle-tracking model to elucidate the pathways and accumulation of MPs originating from the Pearl River Estuary over a three-year simulation. The results indicated that Stokes drift was the predominant factor influencing the southwestward transport of MPs. This movement led to their accumulation along the northeastern and southeastern coasts of Hainan Island, with a potential extension towards the Gulf of Thailand and Malaysia during the autumn and winter seasons. The combined effects of Stokes drift and washing-off processes enable some MPs entering the Beibu Gulf through Qiongzhou Strait. The washing-off processes disrupted the seasonal variations of MP pathways, altering the spatiotemporal distribution of MPs across different regions of the South China Sea. These findings could facilitate the local policymaking and environment protecting.
{"title":"Impact of Stokes drift and washing-off on the pathways and accumulation of microplastics originating from a subtropical estuary","authors":"Caiyuan Cai ,&nbsp;Bo Hong ,&nbsp;Liangsheng Zhu ,&nbsp;Hongzhou Xu ,&nbsp;Ling Wang","doi":"10.1016/j.ocemod.2024.102492","DOIUrl":"10.1016/j.ocemod.2024.102492","url":null,"abstract":"<div><div>Highly urbanized river deltas are hotspots for microplastic (MP) pollution, yet research on the transport and accumulation of MPs from these estuaries remains limited. This study employed a Lagrangian particle-tracking model to elucidate the pathways and accumulation of MPs originating from the Pearl River Estuary over a three-year simulation. The results indicated that Stokes drift was the predominant factor influencing the southwestward transport of MPs. This movement led to their accumulation along the northeastern and southeastern coasts of Hainan Island, with a potential extension towards the Gulf of Thailand and Malaysia during the autumn and winter seasons. The combined effects of Stokes drift and washing-off processes enable some MPs entering the Beibu Gulf through Qiongzhou Strait. The washing-off processes disrupted the seasonal variations of MP pathways, altering the spatiotemporal distribution of MPs across different regions of the South China Sea. These findings could facilitate the local policymaking and environment protecting.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"194 ","pages":"Article 102492"},"PeriodicalIF":3.1,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143147308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A vortex-implanted initialization scheme for the mesoscale eddy prediction: Real simulation and hindcast
IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-12-12 DOI: 10.1016/j.ocemod.2024.102489
Yuhang Zhu , Shiqiu Peng
This study aims to assess the effectiveness of applying the vortex-implanted initialization scheme for the mesoscale eddy prediction (VISTMEP) proposed by Zhu et al. (2022) in the real ocean. Both the Observational System Simulation Experiments (OSSEs) with real daily forcings and the real hindcast for the prediction of oceanic mesoscale eddies in the Northwest Pacific Ocean (NWPO) are conducted using an eddy-resolved numeric ocean model based on Regional Ocean Modeling System (ROMS) along with the three dimensional variational assimilation (3DVAR) module. The results show that, compared to the traditional initialization, VISTMEP can significantly reduce the biases in the prediction of characteristic quantities of mesoscale eddies (including the track, sea surface relative vorticity (SSRV), sea surface eddy kinetic energy (SSEKE), and scale) in both the OSSEs and the real hindcast, through optimizing the three dimensional (3D) structures of mesoscale eddies in both their initial states and evolutions. This study suggests that VISTMEP has a great potential application in operational service of the oceanic mesoscale eddy prediction.
{"title":"A vortex-implanted initialization scheme for the mesoscale eddy prediction: Real simulation and hindcast","authors":"Yuhang Zhu ,&nbsp;Shiqiu Peng","doi":"10.1016/j.ocemod.2024.102489","DOIUrl":"10.1016/j.ocemod.2024.102489","url":null,"abstract":"<div><div>This study aims to assess the effectiveness of applying the vortex-implanted initialization scheme for the mesoscale eddy prediction (VISTMEP) proposed by <span><span>Zhu et al. (2022)</span></span> in the real ocean. Both the Observational System Simulation Experiments (OSSEs) with real daily forcings and the real hindcast for the prediction of oceanic mesoscale eddies in the Northwest Pacific Ocean (NWPO) are conducted using an eddy-resolved numeric ocean model based on Regional Ocean Modeling System (ROMS) along with the three dimensional variational assimilation (3DVAR) module. The results show that, compared to the traditional initialization, VISTMEP can significantly reduce the biases in the prediction of characteristic quantities of mesoscale eddies (including the track, sea surface relative vorticity (SSRV), sea surface eddy kinetic energy (SSEKE), and scale) in both the OSSEs and the real hindcast, through optimizing the three dimensional (3D) structures of mesoscale eddies in both their initial states and evolutions. This study suggests that VISTMEP has a great potential application in operational service of the oceanic mesoscale eddy prediction.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"194 ","pages":"Article 102489"},"PeriodicalIF":3.1,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143147309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of tides on eddy viscosity via K-profile parameterization in the South China Sea near Luzon Strait
IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-12-11 DOI: 10.1016/j.ocemod.2024.102488
Zhitao Yu , Yalin Fan , Alan Wallcraft , E. Joseph Metzger , Jay Shriver , Hemantha Wijesekera
The non-local K Profile Parameterization (KPP) is a one-dimensional parameterization of the vertical turbulence mixing in the water column. It is the main mixing scheme used in the HYbrid Coordinate Ocean Model (HYCOM). There are two distinct mixing regimes in KPP. In the ocean surface boundary layer (OSBL), the mixing is driven by surface forcing. In the ocean interior, vertical mixing is driven by resolved shear instability, internal wave background, and double diffusive mixing. In this research, two global HYCOM simulations conducted with and without tidal forcing are used to study how tides affect eddy viscosity in the South China Sea (SCS) near Luzon Strait in 2019. Our analysis reveals that tides play a crucial role in modifying eddy viscosity. Internal tides generated at Luzon Strait propagate into the SCS under tidal forcing conditions. They increase the vertical shear of the velocity and consequently enhance eddy viscosity in the ocean interior. Notably, the HYCOM simulation with tides demonstrates substantial eddy viscosity, reaching the order of 10−3 m2s−1 at a depth of ∼2000 m at the Luzon Strait to the north of 20.3°N. The clear signature of spring-neap tidal cycle in the strong eddy viscosities in the ocean interior attribute their generation to internal tides. Due to the existence of the high-salinity North Pacific Tropical Water in the upper ocean of SCS (∼100 m), double diffusive mixing generated by salt fingering is shown to be more important than the background internal wave contribution at these depths. Tides also enhance the net downward surface heat flux and reduce the surface stress at Luzon Strait in both summer and winter of 2019. But tides mainly reduce (deepen) the OSBL depth at Luzon Strait in June (December) 2019 and lead mainly to a reduction (increase) of eddy viscosity in the OSBL in June (December) 2019.
{"title":"The effect of tides on eddy viscosity via K-profile parameterization in the South China Sea near Luzon Strait","authors":"Zhitao Yu ,&nbsp;Yalin Fan ,&nbsp;Alan Wallcraft ,&nbsp;E. Joseph Metzger ,&nbsp;Jay Shriver ,&nbsp;Hemantha Wijesekera","doi":"10.1016/j.ocemod.2024.102488","DOIUrl":"10.1016/j.ocemod.2024.102488","url":null,"abstract":"<div><div>The non-local K Profile Parameterization (KPP) is a one-dimensional parameterization of the vertical turbulence mixing in the water column. It is the main mixing scheme used in the HYbrid Coordinate Ocean Model (HYCOM). There are two distinct mixing regimes in KPP. In the ocean surface boundary layer (OSBL), the mixing is driven by surface forcing. In the ocean interior, vertical mixing is driven by resolved shear instability, internal wave background, and double diffusive mixing. In this research, two global HYCOM simulations conducted with and without tidal forcing are used to study how tides affect eddy viscosity in the South China Sea (SCS) near Luzon Strait in 2019. Our analysis reveals that tides play a crucial role in modifying eddy viscosity. Internal tides generated at Luzon Strait propagate into the SCS under tidal forcing conditions. They increase the vertical shear of the velocity and consequently enhance eddy viscosity in the ocean interior. Notably, the HYCOM simulation with tides demonstrates substantial eddy viscosity, reaching the order of 10<sup>−3</sup> m<sup>2</sup>s<sup>−1</sup> at a depth of ∼2000 m at the Luzon Strait to the north of 20.3°N. The clear signature of spring-neap tidal cycle in the strong eddy viscosities in the ocean interior attribute their generation to internal tides. Due to the existence of the high-salinity North Pacific Tropical Water in the upper ocean of SCS (∼100 m), double diffusive mixing generated by salt fingering is shown to be more important than the background internal wave contribution at these depths. Tides also enhance the net downward surface heat flux and reduce the surface stress at Luzon Strait in both summer and winter of 2019. But tides mainly reduce (deepen) the OSBL depth at Luzon Strait in June (December) 2019 and lead mainly to a reduction (increase) of eddy viscosity in the OSBL in June (December) 2019.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"194 ","pages":"Article 102488"},"PeriodicalIF":3.1,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143148254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-duration storm surges due to 2023 successive UK storms Ciarán and Domingos: Generation, field surveys, and numerical modelling
IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-12-10 DOI: 10.1016/j.ocemod.2024.102487
Mohammad Heidarzadeh , Jadranka Šepić , Takumu Iwamoto
We model the long-duration storm surges generated by October–November 2023 storm chain in the English Channel employing a hybrid method including numerical modelling, field surveys and analysis of oceanic and atmospheric data. The event consisted of three successive storms: a weaker unnamed storm (27–30 October), Storm Ciarán (2–3 November with minimum pressure 948 hPa) and Storm Domingos (4–5 November with minimum pressure 958 hPa). The average surge duration produced by this storm chain was 10.5 days. The average maximum air pressure drop was 42 hPa during Ciarán and 23 hPa during Domingos. These pressure drops, combined with onshore wind stresses, led to average maximum storm surge amplitudes of 92 cm for Ciarán and 74 cm for Domingos. We accurately modelled storm surges using a three-level nested grid system and validated the results with tide gauge data. Sensitivity analysis showed a spatially-dependant impacts from tides and waves on maximum surge amplitudes. To correlate our modelling and data analysis with actual conditions on the ground, field surveys were conducted where we measured a runup heights of 4.1 m in Chesil Beach and 2.1 m in West Bay. These values were successfully reproduced by two independent empirical runup models enabling adaption of suitable models for storm hazard mitigation and resilience. A meteotsunami with an amplitude of 17–23 cm and a period of 11–40 min was identified during Ciarán. The innovative hybrid framework developed in this study is recommended for building robust systems for storm warnings and coastal resilience.
{"title":"Long-duration storm surges due to 2023 successive UK storms Ciarán and Domingos: Generation, field surveys, and numerical modelling","authors":"Mohammad Heidarzadeh ,&nbsp;Jadranka Šepić ,&nbsp;Takumu Iwamoto","doi":"10.1016/j.ocemod.2024.102487","DOIUrl":"10.1016/j.ocemod.2024.102487","url":null,"abstract":"<div><div>We model the long-duration storm surges generated by October–November 2023 storm chain in the English Channel employing a hybrid method including numerical modelling, field surveys and analysis of oceanic and atmospheric data. The event consisted of three successive storms: a weaker unnamed storm (27–30 October), Storm Ciarán (2–3 November with minimum pressure 948 hPa) and Storm Domingos (4–5 November with minimum pressure 958 hPa). The average surge duration produced by this storm chain was 10.5 days. The average maximum air pressure drop was 42 hPa during Ciarán and 23 hPa during Domingos. These pressure drops, combined with onshore wind stresses, led to average maximum storm surge amplitudes of 92 cm for Ciarán and 74 cm for Domingos. We accurately modelled storm surges using a three-level nested grid system and validated the results with tide gauge data. Sensitivity analysis showed a spatially-dependant impacts from tides and waves on maximum surge amplitudes. To correlate our modelling and data analysis with actual conditions on the ground, field surveys were conducted where we measured a runup heights of 4.1 m in Chesil Beach and 2.1 m in West Bay. These values were successfully reproduced by two independent empirical runup models enabling adaption of suitable models for storm hazard mitigation and resilience. A meteotsunami with an amplitude of 17–23 cm and a period of 11–40 min was identified during Ciarán. The innovative hybrid framework developed in this study is recommended for building robust systems for storm warnings and coastal resilience.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"194 ","pages":"Article 102487"},"PeriodicalIF":3.1,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143147310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the effects of climate change on the Gulf of Mexico wave climate using the COWCLIP framework and the PRECIS regional climate model
IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-12-08 DOI: 10.1016/j.ocemod.2024.102486
Christian M. Appendini , Pablo Ruiz-Salcines , Reza Marsooli , Ruth Cerezo-Mota
The present study utilized downscaled wind projections from the PRECIS regional climate model to project and assess changes in wind-generated waves in the Gulf of Mexico under a warmer climate. The methodology entailed simulating waves using a high-resolution and validated third-generation wave model. The wave model was first forced with historical winds from the Climate Forecast Systems Reanalysis (CFSR) to evaluate the accuracy of the model for studying wave climate. The wave model was then forced by downscaled HadGEM winds from PRECIS (HadRM3P) to quantify wave climate change from the historical period (1980–2005) to a future period (2030–2054) under a high emission scenario. Wave climate patterns were analyzed using the framework developed by the Coordinated Ocean Wave Climate Project (COWCLIP), which ensures consistency across different studies, allowing researchers to compare results from various regions and models more effectively. The results provide a comprehensive assessment of the wave climate in the Gulf of Mexico, suggesting more intense wave conditions in a warmer climate. The quantified effects of global warming on future wave conditions can inform key economic sectors in the region, such as oil and gas production, shipping, tourism, and fisheries.
{"title":"Assessing the effects of climate change on the Gulf of Mexico wave climate using the COWCLIP framework and the PRECIS regional climate model","authors":"Christian M. Appendini ,&nbsp;Pablo Ruiz-Salcines ,&nbsp;Reza Marsooli ,&nbsp;Ruth Cerezo-Mota","doi":"10.1016/j.ocemod.2024.102486","DOIUrl":"10.1016/j.ocemod.2024.102486","url":null,"abstract":"<div><div>The present study utilized downscaled wind projections from the PRECIS regional climate model to project and assess changes in wind-generated waves in the Gulf of Mexico under a warmer climate. The methodology entailed simulating waves using a high-resolution and validated third-generation wave model. The wave model was first forced with historical winds from the Climate Forecast Systems Reanalysis (CFSR) to evaluate the accuracy of the model for studying wave climate. The wave model was then forced by downscaled HadGEM winds from PRECIS (HadRM3P) to quantify wave climate change from the historical period (1980–2005) to a future period (2030–2054) under a high emission scenario. Wave climate patterns were analyzed using the framework developed by the Coordinated Ocean Wave Climate Project (COWCLIP), which ensures consistency across different studies, allowing researchers to compare results from various regions and models more effectively. The results provide a comprehensive assessment of the wave climate in the Gulf of Mexico, suggesting more intense wave conditions in a warmer climate. The quantified effects of global warming on future wave conditions can inform key economic sectors in the region, such as oil and gas production, shipping, tourism, and fisheries.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"194 ","pages":"Article 102486"},"PeriodicalIF":3.1,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143148521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling of hurricane Dorian via the implementation of Wave Boundary Layer Model (WBLM) within the OpenIFS
IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-12-07 DOI: 10.1016/j.ocemod.2024.102469
Nefeli Makrygianni , Shunqi Pan , Michaela Bray , Jean R. Bidlot
For over three decades numerous studies have tried to understand the processes and impacts of air–sea interactions on the atmosphere and oceans, particularly in predicting winds and waves under tropical cyclone conditions. Literature has highlighted the critical role of momentum transfer, with various parameterisations proposed for the momentum fluxes, through the drag coefficient (Cd) and the roughness (z0). However, accurate predictions still remain a significant challenge. Recently, Du et al. (2017,2019) proposed a comprehensive calculation of the source input function using a Wave Boundary Layer Model (WBLM). However, their study used a standalone model rather than a coupled system. Given the established significance of two-way wind-wave systems (Janssen, 1991), this study implements the WBLM within a coupled model (OpenIFS), to evaluate its impact and discuss the potential and limitations of the method. Numerical simulations were conducted using the WBLM scheme for a selected tropical cyclone, with results compared against in-situ buoy measurements and satellite altimeter data. Furthermore, the new approach’s results were compared with outputs using the default, well-established source input function of OpenIFS (Janssen et al., 1989; Janssen, 1991) to further assess its effectiveness. The findings suggest that the WBLM tends to reduce the commonly overestimated drag and Charnock coefficients. However, comparisons with in-situ observations indicate that the new approach requires substantial refinements to improve wind and wave predictions, since there are cases that the WBLM scheme under-performs the default scheme. This discrepancy may be attributed to the calculation of high-frequency impacts on momentum exchanges.
{"title":"Modelling of hurricane Dorian via the implementation of Wave Boundary Layer Model (WBLM) within the OpenIFS","authors":"Nefeli Makrygianni ,&nbsp;Shunqi Pan ,&nbsp;Michaela Bray ,&nbsp;Jean R. Bidlot","doi":"10.1016/j.ocemod.2024.102469","DOIUrl":"10.1016/j.ocemod.2024.102469","url":null,"abstract":"<div><div>For over three decades numerous studies have tried to understand the processes and impacts of air–sea interactions on the atmosphere and oceans, particularly in predicting winds and waves under tropical cyclone conditions. Literature has highlighted the critical role of momentum transfer, with various parameterisations proposed for the momentum fluxes, through the drag coefficient (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span>) and the roughness (<span><math><msub><mrow><mi>z</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>). However, accurate predictions still remain a significant challenge. Recently, Du et al. (2017,2019) proposed a comprehensive calculation of the source input function using a Wave Boundary Layer Model (WBLM). However, their study used a standalone model rather than a coupled system. Given the established significance of two-way wind-wave systems (Janssen, 1991), this study implements the WBLM within a coupled model (OpenIFS), to evaluate its impact and discuss the potential and limitations of the method. Numerical simulations were conducted using the WBLM scheme for a selected tropical cyclone, with results compared against in-situ buoy measurements and satellite altimeter data. Furthermore, the new approach’s results were compared with outputs using the default, well-established source input function of OpenIFS (Janssen et al., 1989; Janssen, 1991) to further assess its effectiveness. The findings suggest that the WBLM tends to reduce the commonly overestimated drag and Charnock coefficients. However, comparisons with in-situ observations indicate that the new approach requires substantial refinements to improve wind and wave predictions, since there are cases that the WBLM scheme under-performs the default scheme. This discrepancy may be attributed to the calculation of high-frequency impacts on momentum exchanges.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"194 ","pages":"Article 102469"},"PeriodicalIF":3.1,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143148255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model-based assessment of sustainable adaptation options for an industrialised meso‑tidal estuary
IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-11-28 DOI: 10.1016/j.ocemod.2024.102467
Johannes Pein , Joanna Staneva , Johanna Biederbick , Corinna Schrum
Human-shaped estuaries play a vital role in supporting a range of economic, ecological and social functions. Such cultural landscapes often require enormous services, which may be provided at the expense of the ecological status and the ability to provide ecosystem services. This is exemplified by the estuaries of the German North Sea coast, of which the Elbe estuary is the most prominent and stands out as the largest and most consistently developed. The port of Hamburg, which is the primary economic driver in the region, has shaped the morphology of the surrounding water body. This has resulted in a number of hydrodynamic effects and sedimentological and ecological consequences, which have been well documented and subject to extensive debate. Despite this understanding, however, there is a tendency to propose solutions that are limited to the smallest local scales and are unable to mitigate the consequences of human interventions that have taken place or continue to take place at the estuarine and catchment scales. The lack of illustrative and quantitative scenario simulations and holistic assessments also hinders the ability to implement ambitious adaptation measures. To step forward, this study presents a model-based assessment including scenario simulations of four prototypical adaptation measures that are potentially capable of mitigating the problems of high turbidity, sedimentation and oxygen minimum without compromising coastal protection. The experimental design comprises a two-month morphodynamic simulation for each adaptation scenario and a one-year simulation of coupled hydrodynamics and ecology. The model simulations demonstrate that the proposed measures have the potential to reduce the siltation of the upper estuary, thereby reducing the need for extensive and costly maintenance dredging. Furthermore, the simulated measures also reduce the tidal range in the densely populated upper estuary, albeit to varying degrees. This also applies to mitigating the consequences of eutrophication, such as the oxygen content in the navigation channel. These differences, as well as the differing scale and effort associated with the four measures, form the basis of a final comparative evaluation based on universal sustainability criteria.
{"title":"Model-based assessment of sustainable adaptation options for an industrialised meso‑tidal estuary","authors":"Johannes Pein ,&nbsp;Joanna Staneva ,&nbsp;Johanna Biederbick ,&nbsp;Corinna Schrum","doi":"10.1016/j.ocemod.2024.102467","DOIUrl":"10.1016/j.ocemod.2024.102467","url":null,"abstract":"<div><div>Human-shaped estuaries play a vital role in supporting a range of economic, ecological and social functions. Such cultural landscapes often require enormous services, which may be provided at the expense of the ecological status and the ability to provide ecosystem services. This is exemplified by the estuaries of the German North Sea coast, of which the Elbe estuary is the most prominent and stands out as the largest and most consistently developed. The port of Hamburg, which is the primary economic driver in the region, has shaped the morphology of the surrounding water body. This has resulted in a number of hydrodynamic effects and sedimentological and ecological consequences, which have been well documented and subject to extensive debate. Despite this understanding, however, there is a tendency to propose solutions that are limited to the smallest local scales and are unable to mitigate the consequences of human interventions that have taken place or continue to take place at the estuarine and catchment scales. The lack of illustrative and quantitative scenario simulations and holistic assessments also hinders the ability to implement ambitious adaptation measures. To step forward, this study presents a model-based assessment including scenario simulations of four prototypical adaptation measures that are potentially capable of mitigating the problems of high turbidity, sedimentation and oxygen minimum without compromising coastal protection. The experimental design comprises a two-month morphodynamic simulation for each adaptation scenario and a one-year simulation of coupled hydrodynamics and ecology. The model simulations demonstrate that the proposed measures have the potential to reduce the siltation of the upper estuary, thereby reducing the need for extensive and costly maintenance dredging. Furthermore, the simulated measures also reduce the tidal range in the densely populated upper estuary, albeit to varying degrees. This also applies to mitigating the consequences of eutrophication, such as the oxygen content in the navigation channel. These differences, as well as the differing scale and effort associated with the four measures, form the basis of a final comparative evaluation based on universal sustainability criteria.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"194 ","pages":"Article 102467"},"PeriodicalIF":3.1,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143148555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wave climate projections off coastal French Guiana based on high-resolution modelling over the Atlantic Ocean
IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-11-28 DOI: 10.1016/j.ocemod.2024.102468
Maurizio D'Anna , Léopold Vedie , Ali Belmadani , Déborah Idier , Remi Thiéblemont , Philippe Palany , François Longueville
Global warming is altering the atmosphere and ocean dynamics worldwide, including patterns in the generation and propagation of ocean waves, which are important drivers of coastal evolution, flood risk, and renewable energy. In French Guiana (northern South America), where most of the population is concentrated in coastal areas, understanding future wave climate change is critical for regional development, planning and adaptation purposes. The most energetic waves typically occur in boreal winter, in the form of long-distance swell originating from the mid-latitude North Atlantic Ocean. However, existing high-resolution wave climate projections that cover the French Guiana region focus on the hurricane season only (summer-fall). In this study, we used a state-of-the-art basin-scale spectral wave model and wind fields from a high-resolution atmospheric global climate model to simulate present and future winter (November to April) wave climate offshore of French Guiana. The model performance was evaluated against wave data from ERA5 reanalysis, satellite altimetry and coastal buoys between 1984 and 2013. For the future greenhouse gas emission scenario (Representative Concentration Pathway) RCP-8.5, we found a statistically significant overall projected decrease (∼5 %) in wintertime average significant wave height and mean wave period, with a ∼1° clockwise rotation of mean wave direction. The results suggest that these decreasing trends are primarily driven by changes in large-scale patterns across the Atlantic that counteract an expected increase in local wind speed. We discuss the implications of such projections for mud-bank dynamics along coastal French Guiana, although further local studies are required to address future coastal evolution and hazards. Finally, we identify a need for more in situ wave data near French Guiana to improve quantitative assessments of model performance and allow a correction of possible model biases.
{"title":"Wave climate projections off coastal French Guiana based on high-resolution modelling over the Atlantic Ocean","authors":"Maurizio D'Anna ,&nbsp;Léopold Vedie ,&nbsp;Ali Belmadani ,&nbsp;Déborah Idier ,&nbsp;Remi Thiéblemont ,&nbsp;Philippe Palany ,&nbsp;François Longueville","doi":"10.1016/j.ocemod.2024.102468","DOIUrl":"10.1016/j.ocemod.2024.102468","url":null,"abstract":"<div><div>Global warming is altering the atmosphere and ocean dynamics worldwide, including patterns in the generation and propagation of ocean waves, which are important drivers of coastal evolution, flood risk, and renewable energy. In French Guiana (northern South America), where most of the population is concentrated in coastal areas, understanding future wave climate change is critical for regional development, planning and adaptation purposes. The most energetic waves typically occur in boreal winter, in the form of long-distance swell originating from the mid-latitude North Atlantic Ocean. However, existing high-resolution wave climate projections that cover the French Guiana region focus on the hurricane season only (summer-fall). In this study, we used a state-of-the-art basin-scale spectral wave model and wind fields from a high-resolution atmospheric global climate model to simulate present and future winter (November to April) wave climate offshore of French Guiana. The model performance was evaluated against wave data from ERA5 reanalysis, satellite altimetry and coastal buoys between 1984 and 2013. For the future greenhouse gas emission scenario (Representative Concentration Pathway) RCP-8.5, we found a statistically significant overall projected decrease (∼5 %) in wintertime average significant wave height and mean wave period, with a ∼1° clockwise rotation of mean wave direction. The results suggest that these decreasing trends are primarily driven by changes in large-scale patterns across the Atlantic that counteract an expected increase in local wind speed. We discuss the implications of such projections for mud-bank dynamics along coastal French Guiana, although further local studies are required to address future coastal evolution and hazards. Finally, we identify a need for more in situ wave data near French Guiana to improve quantitative assessments of model performance and allow a correction of possible model biases.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"194 ","pages":"Article 102468"},"PeriodicalIF":3.1,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143148556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On long-crested ocean rogue waves originating from localized amplitude and frequency modulations 由局部振幅和频率调制产生的长峰海洋异常波
IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-11-22 DOI: 10.1016/j.ocemod.2024.102464
Yuchen He , Amin Chabchoub
Rogue waves, which form on the ocean’s surface, can cause significant damage to marine installations and pose a serious threat to ship safety. Understanding the physical mechanisms behind extreme wave focusing is crucial for predicting their formation and mitigating their impact. Two intensively discussed wave amplification frameworks are the linear and nonlinear focusing mechanisms. These are also known as superposition principle and modulation instability, respectively. We report an experimental study investigating the formation mechanisms in a unidirectional representative JONSWAP-type sea state and show that the nonlinear focusing principle can be sub-categorized into either a localized amplitude or a so far less-studied phase-related frequency modulation, or both being at play. The frequency modulation-type mechanism occurs at a lower probability, as suggested from the distribution of more than 200 recorded extreme events, however, it cannot be underrated or disregarded.
在海洋表面形成的巨浪会对海洋设施造成重大破坏,并对船舶安全构成严重威胁。了解极端波聚焦背后的物理机制对于预测其形成和减轻其影响至关重要。两个主要讨论的波放大框架是线性聚焦机制和非线性聚焦机制。这些也分别被称为叠加原理和调制不稳定性。我们报告了一项实验研究,调查了单向代表性jonswap型海况的形成机制,并表明非线性聚焦原理可以细分为局部幅度或迄今为止研究较少的与相位相关的频率调制,或者两者都在起作用。从200多个记录的极端事件的分布来看,调频型机制发生的概率较低,但不能低估或忽视它。
{"title":"On long-crested ocean rogue waves originating from localized amplitude and frequency modulations","authors":"Yuchen He ,&nbsp;Amin Chabchoub","doi":"10.1016/j.ocemod.2024.102464","DOIUrl":"10.1016/j.ocemod.2024.102464","url":null,"abstract":"<div><div>Rogue waves, which form on the ocean’s surface, can cause significant damage to marine installations and pose a serious threat to ship safety. Understanding the physical mechanisms behind extreme wave focusing is crucial for predicting their formation and mitigating their impact. Two intensively discussed wave amplification frameworks are the linear and nonlinear focusing mechanisms. These are also known as superposition principle and modulation instability, respectively. We report an experimental study investigating the formation mechanisms in a unidirectional representative JONSWAP-type sea state and show that the nonlinear focusing principle can be sub-categorized into either a localized amplitude or a so far less-studied phase-related frequency modulation, or both being at play. The frequency modulation-type mechanism occurs at a lower probability, as suggested from the distribution of more than 200 recorded extreme events, however, it cannot be underrated or disregarded.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"193 ","pages":"Article 102464"},"PeriodicalIF":3.1,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142748207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Ocean Modelling
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1