首页 > 最新文献

Ocean Modelling最新文献

英文 中文
Detection of three-dimensional structures of oceanic eddies using artificial intelligence 利用人工智能探测海洋漩涡的三维结构
IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-05-18 DOI: 10.1016/j.ocemod.2024.102385
Guangjun Xu , Wenhong Xie , Xiayan Lin , Yu Liu , Renlong Hang , Wenjin Sun , Dazhao Liu , Changming Dong

Oceanic mesoscale eddies play an important role in transports of heat, freshwater, mass in the ocean, therefore understanding three-dimensional structure of oceanic eddies is of significance to climate study and oceanic applications. However, detection of three-dimensional (3D) structures is a big challenge though many algorithms of sea surface 2D eddy detection are developed. In this study, we present a novel approach by using 3D U-Net residual architecture (3D-U-Res-Net) to identify 3D structure of oceanic eddies. The sensitivity tests to input variables are conducted to optimalize the input setting. Trained by 3D eddy data provided by a kinetic eddy detection method, the AI-based method can identify different kinds of eddy vertical structures and moreover can dig out more eddy information in deeper layers. This study has significant implications for the further application of the AI-based algorithm in oceanic study.

海洋中尺度漩涡在海洋热量、淡水和质量的传输中发挥着重要作用,因此了解海洋漩涡的三维结构对气候研究和海洋应用具有重要意义。然而,尽管已开发出许多海面二维漩涡探测算法,但三维(3D)结构的探测仍是一项巨大挑战。在本研究中,我们提出了一种利用三维 U-Net 残余结构(3D-U-Res-Net)来识别海洋漩涡三维结构的新方法。我们对输入变量进行了灵敏度测试,以优化输入设置。基于人工智能的方法通过动力学漩涡探测方法提供的三维漩涡数据进行训练,可以识别不同类型的漩涡垂直结构,并能挖掘出更多深层漩涡信息。这项研究对基于人工智能的算法在海洋研究中的进一步应用具有重要意义。
{"title":"Detection of three-dimensional structures of oceanic eddies using artificial intelligence","authors":"Guangjun Xu ,&nbsp;Wenhong Xie ,&nbsp;Xiayan Lin ,&nbsp;Yu Liu ,&nbsp;Renlong Hang ,&nbsp;Wenjin Sun ,&nbsp;Dazhao Liu ,&nbsp;Changming Dong","doi":"10.1016/j.ocemod.2024.102385","DOIUrl":"https://doi.org/10.1016/j.ocemod.2024.102385","url":null,"abstract":"<div><p>Oceanic mesoscale eddies play an important role in transports of heat, freshwater, mass in the ocean, therefore understanding three-dimensional structure of oceanic eddies is of significance to climate study and oceanic applications. However, detection of three-dimensional (3D) structures is a big challenge though many algorithms of sea surface 2D eddy detection are developed. In this study, we present a novel approach by using 3D U-Net residual architecture (3D-U-Res-Net) to identify 3D structure of oceanic eddies. The sensitivity tests to input variables are conducted to optimalize the input setting. Trained by 3D eddy data provided by a kinetic eddy detection method, the AI-based method can identify different kinds of eddy vertical structures and moreover can dig out more eddy information in deeper layers. This study has significant implications for the further application of the AI-based algorithm in oceanic study.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"190 ","pages":"Article 102385"},"PeriodicalIF":3.2,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141073387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel model for the study of future maritime climate using artificial neural networks and Monte Carlo simulations under the context of climate change 在气候变化背景下利用人工神经网络和蒙特卡罗模拟研究未来海洋气候的新模式。
IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-05-17 DOI: 10.1016/j.ocemod.2024.102384
Nerea Portillo Juan, Vicente Negro Valdecantos

This paper proposes a new model to study future coastal maritime climate under climate change context. This new model combines statistical analysis, Monte Carlo simulations and Artificial Neural Networks (ANNs). Statistical analysis and Monte Carlo simulations are used to extrapolate future wave climate under climate change context at a regional level and ANNs are used to propagate these projected sea states obtained in deep water to the coast. The use of ANNs allows for the utilization of large amounts of data at a very low computational cost, and the use of Monte Carlo simulations enables the generation of future climate change projections at a regional level. The combination of the two methodologies results in a very accurate (MSE of 0.02 m and 1 s) and computationally inexpensive hybrid model that allows projections of coastal maritime climate considering climate change. This new methodology has been validated and applied in the Western Mediterranean for the long-term regime and for extreme events, obtaining increases in extreme events up to 1.5 m in wave height and up to 1.8 s in wave period by 2050.

本文提出了一种研究气候变化背景下未来沿海海洋气候的新模式。这一新模式结合了统计分析、蒙特卡罗模拟和人工神经网络(ANN)。统计分析和蒙特卡洛模拟用于推断区域气候变化背景下的未来波浪气候,而人工神经网络则用于将这些在深水获得的预测海况传播到沿岸。使用 ANN 可以以极低的计算成本利用大量数据,而使用 Monte Carlo 仿真则可以生成区域一级的未来气候变化预测。将这两种方法结合起来,可以得到一个非常精确(MSE 为 0.02 米和 1 秒)、计算成本低廉的混合模式,可以对考虑到气候变化的沿岸海洋气候进行预测。这一新方法已在西地中海的长期制度和极端事件中得到验证和应用,到 2050 年,极端事件的波高增加可达 1.5 米,波长增加可达 1.8 秒。
{"title":"A novel model for the study of future maritime climate using artificial neural networks and Monte Carlo simulations under the context of climate change","authors":"Nerea Portillo Juan,&nbsp;Vicente Negro Valdecantos","doi":"10.1016/j.ocemod.2024.102384","DOIUrl":"10.1016/j.ocemod.2024.102384","url":null,"abstract":"<div><p>This paper proposes a new model to study future coastal maritime climate under climate change context. This new model combines statistical analysis, Monte Carlo simulations and Artificial Neural Networks (ANNs). Statistical analysis and Monte Carlo simulations are used to extrapolate future wave climate under climate change context at a regional level and ANNs are used to propagate these projected sea states obtained in deep water to the coast. The use of ANNs allows for the utilization of large amounts of data at a very low computational cost, and the use of Monte Carlo simulations enables the generation of future climate change projections at a regional level. The combination of the two methodologies results in a very accurate (MSE of 0.02 m and 1 s) and computationally inexpensive hybrid model that allows projections of coastal maritime climate considering climate change. This new methodology has been validated and applied in the Western Mediterranean for the long-term regime and for extreme events, obtaining increases in extreme events up to 1.5 m in wave height and up to 1.8 s in wave period by 2050.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"190 ","pages":"Article 102384"},"PeriodicalIF":3.2,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1463500324000714/pdfft?md5=57413f642e0872fede7ee58226b42d66&pid=1-s2.0-S1463500324000714-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141024648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An analysis of surface waves in the Caribbean Sea based on a high-resolution numerical wave model 基于高分辨率数值波浪模型的加勒比海表面波分析
IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-05-12 DOI: 10.1016/j.ocemod.2024.102377
Brandon J. Bethel , Changming Dong , Jin Wang , Yuhan Cao

Surface waves are extremely important in a large variety of oceanographic applications and thus, the study of their spatiotemporal characteristics remains crucial. This study analyzes waves in the Caribbean Sea (CS) and western Atlantic Ocean (AO) using a high-resolution (HR) Simulating WAves Nearshore model validated with buoy observations and paired with a HR bathymetric dataset from 2010 – 2019. Island sheltering effects are examined but special attention is given to these effects under Hurricane Dorian in The Bahamas using observations from the China-France Oceanographic Satellite. Results illustrate that wave heights within the CS fluctuated with Caribbean Low-Level Jet activity, but a different wave regime exists within the AO. While wind waves overwhelmingly dominate the wave field and this is true even in the AO, surprisingly, the contribution of swell in the central CS was equal to one site in the AO. Possibly, due to interaction with the shallow Nicaraguan Rise, wave heights were strongly (depth-induced) refracted nearly 45°, a feature unseen in previous research using coarse bathymetric datasets. Island sheltering effects were pervasive and were naturally most pronounced under hurricane conditions. Crucially, New Providence in The Bahamas is vulnerable to hurricane-forced waves funneled through the Grand Bahama and Northeastern Providence Channels.

表面波在各种海洋学应用中都极为重要,因此对其时空特征的研究仍然至关重要。本研究使用高分辨率(HR)模拟 WAves 近岸模型分析了加勒比海(CS)和西大西洋(AO)的波浪,该模型通过浮标观测进行了验证,并与 2010 - 2019 年的高分辨率测深数据集进行了配对。对岛屿遮蔽效应进行了研究,但利用中法海洋卫星的观测数据,特别关注了飓风 "多里安 "对巴哈马群岛的影响。结果表明,CS 内的波高随加勒比低空喷流活动而波动,但在 AO 内存在不同的波浪机制。虽然风浪在波浪场中占压倒性优势,即使在 AO 中也是如此,但令人惊讶的是,CS 中部的涌浪贡献与 AO 中的一个站点相当。可能是由于与尼加拉瓜浅海隆起的相互作用,波浪高度发生了近 45°的强烈折射(深度引起的),这是以往使用粗测深数据集的研究中从未见过的。岛屿遮蔽效应普遍存在,在飓风条件下自然最为明显。最重要的是,巴哈马的新普罗维登斯岛容易受到通过大巴哈马海峡和东北普罗维登斯海峡的飓风波的影响。
{"title":"An analysis of surface waves in the Caribbean Sea based on a high-resolution numerical wave model","authors":"Brandon J. Bethel ,&nbsp;Changming Dong ,&nbsp;Jin Wang ,&nbsp;Yuhan Cao","doi":"10.1016/j.ocemod.2024.102377","DOIUrl":"https://doi.org/10.1016/j.ocemod.2024.102377","url":null,"abstract":"<div><p>Surface waves are extremely important in a large variety of oceanographic applications and thus, the study of their spatiotemporal characteristics remains crucial. This study analyzes waves in the Caribbean Sea (CS) and western Atlantic Ocean (AO) using a high-resolution (HR) Simulating WAves Nearshore model validated with buoy observations and paired with a HR bathymetric dataset from 2010 – 2019. Island sheltering effects are examined but special attention is given to these effects under Hurricane Dorian in The Bahamas using observations from the China-France Oceanographic Satellite. Results illustrate that wave heights within the CS fluctuated with Caribbean Low-Level Jet activity, but a different wave regime exists within the AO. While wind waves overwhelmingly dominate the wave field and this is true even in the AO, surprisingly, the contribution of swell in the central CS was equal to one site in the AO. Possibly, due to interaction with the shallow Nicaraguan Rise, wave heights were strongly (depth-induced) refracted nearly 45°, a feature unseen in previous research using coarse bathymetric datasets. Island sheltering effects were pervasive and were naturally most pronounced under hurricane conditions. Crucially, New Providence in The Bahamas is vulnerable to hurricane-forced waves funneled through the Grand Bahama and Northeastern Providence Channels.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"190 ","pages":"Article 102377"},"PeriodicalIF":3.2,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140952165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An improved machine learning-based model to predict estuarine water levels 基于机器学习的河口水位预测改进模型
IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-05-06 DOI: 10.1016/j.ocemod.2024.102376
Min Gan , Yongping Chen , Shunqi Pan , Xijun Lai , Haidong Pan , Yuncheng Wen , Mingyan Xia

The areas around estuaries are typically densely populated and economically developed. Therefore, robust flood risk assessment in these areas is critical. One of the key elements of flood risk assessment is the accurate prediction of estuarine water levels. However, the nonlinear interactions between riverine (i.e., upstream river discharge) and marine (i.e., tides) forces complicate the prediction of estuarine water levels. Traditional physics-based and data-driven models have made significant progress in predicting estuarine water levels, but they require upstream river discharge data as inputs. Considering the lack of such data, the development of new approaches is crucial. This study investigated a machine-learning-based light gradient boosting machine (LightGBM) framework for predicting estuarine water levels using historical water levels as the only inputs. Two prediction models based on the LightGBM framework, denoted as LightGBM1 and LightGBM2, are developed. The LightGBM1 model constructs only a single regression model and uses a recursive approach to generate multidimensional outputs. The LightGBM2 model constructs multiple regression models between the same inputs and outputs in each dimension. The LightGBM1 and LightGBM2 models were applied to the Yangtze estuary as a test case. The results demonstrate that both models are effective at predicting short-term (within 48 hours) estuarine water levels, but the statistical performance of LightGBM2 is better overall. For 24-hour prediction, the root-mean-squared errors of the LightGBM1 and LightGBM2 models are in the ranges of 0.14–0.17 m and 0.12–0.15 m, respectively.

河口周围地区通常人口稠密,经济发达。因此,在这些地区进行稳健的洪水风险评估至关重要。洪水风险评估的关键要素之一是准确预测河口水位。然而,河水(即上游河流排水量)和海洋(即潮汐)力量之间的非线性相互作用使河口水位预测变得复杂。传统的物理模型和数据驱动模型在预测河口水位方面取得了重大进展,但这些模型需要上游河流排水量数据作为输入。考虑到此类数据的缺乏,开发新方法至关重要。本研究研究了基于机器学习的光梯度提升机(LightGBM)框架,以历史水位作为唯一输入来预测河口水位。基于 LightGBM 框架开发了两个预测模型,分别称为 LightGBM1 和 LightGBM2。LightGBM1 模型仅构建一个回归模型,并使用递归方法生成多维输出。LightGBM2 模型在每个维度的相同输入和输出之间构建多个回归模型。将 LightGBM1 和 LightGBM2 模型作为一个测试案例应用于长江河口。结果表明,两个模型都能有效预测短期(48 小时内)河口水位,但 LightGBM2 的统计性能总体上更好。在 24 小时预测中,LightGBM1 和 LightGBM2 模型的均方根误差分别为 0.14-0.17 米和 0.12-0.15 米。
{"title":"An improved machine learning-based model to predict estuarine water levels","authors":"Min Gan ,&nbsp;Yongping Chen ,&nbsp;Shunqi Pan ,&nbsp;Xijun Lai ,&nbsp;Haidong Pan ,&nbsp;Yuncheng Wen ,&nbsp;Mingyan Xia","doi":"10.1016/j.ocemod.2024.102376","DOIUrl":"https://doi.org/10.1016/j.ocemod.2024.102376","url":null,"abstract":"<div><p>The areas around estuaries are typically densely populated and economically developed. Therefore, robust flood risk assessment in these areas is critical. One of the key elements of flood risk assessment is the accurate prediction of estuarine water levels. However, the nonlinear interactions between riverine (i.e., upstream river discharge) and marine (i.e., tides) forces complicate the prediction of estuarine water levels. Traditional physics-based and data-driven models have made significant progress in predicting estuarine water levels, but they require upstream river discharge data as inputs. Considering the lack of such data, the development of new approaches is crucial. This study investigated a machine-learning-based light gradient boosting machine (LightGBM) framework for predicting estuarine water levels using historical water levels as the only inputs. Two prediction models based on the LightGBM framework, denoted as LightGBM1 and LightGBM2, are developed. The LightGBM1 model constructs only a single regression model and uses a recursive approach to generate multidimensional outputs. The LightGBM2 model constructs multiple regression models between the same inputs and outputs in each dimension. The LightGBM1 and LightGBM2 models were applied to the Yangtze estuary as a test case. The results demonstrate that both models are effective at predicting short-term (within 48 hours) estuarine water levels, but the statistical performance of LightGBM2 is better overall. For 24-hour prediction, the root-mean-squared errors of the LightGBM1 and LightGBM2 models are in the ranges of 0.14–0.17 m and 0.12–0.15 m, respectively.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"190 ","pages":"Article 102376"},"PeriodicalIF":3.2,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140952164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-year three-dimensional simulation of seasonal variation in phytoplankton species composition in a large shallow lake 大型浅水湖浮游植物物种组成季节性变化的多年三维模拟
IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-05-06 DOI: 10.1016/j.ocemod.2024.102374
Qi Wang , Leon Boegman , Nader Nakhaei , Josef D. Ackerman

Lake Erie has been negatively impacted by multiple stressors, including nutrient enrichment and climate change, that have exacerbated eutrophication and harmful algal blooms. Management of these long-term water quality problems requires numerical models that can be run over years to decades. The three-dimensional hydrodynamics and biogeochemistry models applied to date, however, have not been tested for continuous runs longer than one year and have not been shown to accurately reproduce seasonal variation in phytoplankton species composition (e.g., the development of harmful algal blooms) over decadal timescales. We simulated the three-dimensional nutrient and phytoplankton concentrations in western Lake Erie continuously from 2002 to 2014. Using a single parameter set, we were able to reproduce both seasonal and inter-annual variation in phytoplankton species composition. The model qualitatively reproduced the observed seasonal succession (i.e., variation in phytoplankton species composition), including the spring diatom bloom and late summer cyanobacterial growth. This study demonstrates that three-dimensional models can be applied for multi-year simulations of nutrients and phytoplankton to inform large lake research and management.

伊利湖受到营养富集和气候变化等多种压力因素的负面影响,加剧了富营养化和有害藻类的大量繁殖。要解决这些长期的水质问题,需要运行数年至数十年的数值模型。然而,迄今为止应用的三维流体力学和生物地球化学模型还没有经过一年以上的连续运行测试,也没有证明能准确再现浮游植物物种组成(如有害藻华的发展)在十年时间尺度上的季节性变化。我们从 2002 年到 2014 年连续模拟了伊利湖西部的三维营养物质和浮游植物浓度。使用单一参数集,我们能够再现浮游植物物种组成的季节和年际变化。该模型定性地再现了观测到的季节演替(即浮游植物物种组成的变化),包括春季硅藻大量繁殖和夏末蓝藻生长。这项研究表明,三维模型可用于营养物和浮游植物的多年模拟,为大型湖泊的研究和管理提供信息。
{"title":"Multi-year three-dimensional simulation of seasonal variation in phytoplankton species composition in a large shallow lake","authors":"Qi Wang ,&nbsp;Leon Boegman ,&nbsp;Nader Nakhaei ,&nbsp;Josef D. Ackerman","doi":"10.1016/j.ocemod.2024.102374","DOIUrl":"https://doi.org/10.1016/j.ocemod.2024.102374","url":null,"abstract":"<div><p>Lake Erie has been negatively impacted by multiple stressors, including nutrient enrichment and climate change, that have exacerbated eutrophication and harmful algal blooms. Management of these long-term water quality problems requires numerical models that can be run over years to decades. The three-dimensional hydrodynamics and biogeochemistry models applied to date, however, have not been tested for continuous runs longer than one year and have not been shown to accurately reproduce seasonal variation in phytoplankton species composition (e.g., the development of harmful algal blooms) over decadal timescales. We simulated the three-dimensional nutrient and phytoplankton concentrations in western Lake Erie continuously from 2002 to 2014. Using a single parameter set, we were able to reproduce both seasonal and inter-annual variation in phytoplankton species composition. The model qualitatively reproduced the observed seasonal succession (i.e., variation in phytoplankton species composition), including the spring diatom bloom and late summer cyanobacterial growth. This study demonstrates that three-dimensional models can be applied for multi-year simulations of nutrients and phytoplankton to inform large lake research and management.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"189 ","pages":"Article 102374"},"PeriodicalIF":3.2,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1463500324000611/pdfft?md5=ac04ceb265591dc7eec00d24caab8ae2&pid=1-s2.0-S1463500324000611-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140893555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating westward and eastward propagating mesoscale eddies using a 1/10° global ocean simulation of CAS-LICOM3 利用 CAS-LICOM3 的 1/10° 全球海洋模拟评估向西和向东传播的中尺度漩涡
IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-05-01 DOI: 10.1016/j.ocemod.2024.102373
Mengrong Ding , Hailong Liu , Pengfei Lin , Yao Meng , Zipeng Yu

This research evaluates the performance of CAS-LICOM3 (Chinese Academy of Science, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics (LASG/IAP) Climate system Ocean Model, version 3) in simulating global coherent mesoscale eddies by comparison to satellite altimeter observations. The simulations of westward and eastward propagating eddies (WPEs and EPEs) and cyclonic and anticyclonic eddies (CEs and AEs) are separately analyzed. The results demonstrate that the simulated spatial-temporal variabilities in global mesoscale eddies agree roughly with the satellite observations. CAS-LICOM3 also reproduces the distinctive features between WPEs and EPEs or between CEs and AEs. However, some systematic biases are found. Globally, CAS-LICOM3 simulates a less frequent and weaker mesoscale eddy field than is observed. WPEs contribute more to these global biases than do EPEs. EPEs are relatively better reproduced than WPEs, exhibiting smaller underestimations and even overestimations in the energetic western boundary current and Antarctic circumpolar current regions. The simulation results for CEs resemble those of AEs, but AEs are comparatively less biased than CEs. These findings provide a basis for improving low-resolution and eddy-resolving ocean general circulation models (OGCMs) and developing submesoscale-resolving OGCMs.

本研究通过与卫星高度计观测数据的对比,评估了 CAS-LICOM3(中国科学院大气科学与地球物理流体力学数值模拟国家重点实验室/大气物理研究所气候系统海洋模式第 3 版)在模拟全球相干中尺度涡方面的性能。分别分析了西向和东向传播漩涡(WPEs 和 EPEs)以及气旋和反气旋漩涡(CEs 和 AEs)的模拟情况。结果表明,模拟的全球中尺度涡的时空变化与卫星观测结果基本吻合。CAS-LICOM3 还再现了 WPE 和 EPE 之间或 CE 和 AE 之间的显著特征。然而,也发现了一些系统性偏差。从全球来看,CAS-LICOM3 模拟的中尺度涡场比观测到的更少、更弱。WPE比EPE对这些全球偏差的影响更大。相对而言,EPE 比 WPE 得到了更好的再现,在高能西边界流和南极环极流区域表现出较小的低估甚至高估。CEs的模拟结果与AEs相似,但AEs的偏差相对小于CEs。这些发现为改进低分辨率和涡解析海洋大气环流模式(OGCMs)以及开发次中尺度解析 OGCMs 提供了依据。
{"title":"Evaluating westward and eastward propagating mesoscale eddies using a 1/10° global ocean simulation of CAS-LICOM3","authors":"Mengrong Ding ,&nbsp;Hailong Liu ,&nbsp;Pengfei Lin ,&nbsp;Yao Meng ,&nbsp;Zipeng Yu","doi":"10.1016/j.ocemod.2024.102373","DOIUrl":"https://doi.org/10.1016/j.ocemod.2024.102373","url":null,"abstract":"<div><p>This research evaluates the performance of CAS-LICOM3 (Chinese Academy of Science, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics (LASG/IAP) Climate system Ocean Model, version 3) in simulating global coherent mesoscale eddies by comparison to satellite altimeter observations. The simulations of westward and eastward propagating eddies (WPEs and EPEs) and cyclonic and anticyclonic eddies (CEs and AEs) are separately analyzed. The results demonstrate that the simulated spatial-temporal variabilities in global mesoscale eddies agree roughly with the satellite observations. CAS-LICOM3 also reproduces the distinctive features between WPEs and EPEs or between CEs and AEs. However, some systematic biases are found. Globally, CAS-LICOM3 simulates a less frequent and weaker mesoscale eddy field than is observed. WPEs contribute more to these global biases than do EPEs. EPEs are relatively better reproduced than WPEs, exhibiting smaller underestimations and even overestimations in the energetic western boundary current and Antarctic circumpolar current regions. The simulation results for CEs resemble those of AEs, but AEs are comparatively less biased than CEs. These findings provide a basis for improving low-resolution and eddy-resolving ocean general circulation models (OGCMs) and developing submesoscale-resolving OGCMs.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"189 ","pages":"Article 102373"},"PeriodicalIF":3.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140893554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The seasonal evolution of the Yellow Sea Cold Water Mass Circulation: Roles of fronts, thermoclines, and tidal rectification 黄海冷水团环流的季节演变:锋面、温跃层和潮汐整流的作用
IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-04-27 DOI: 10.1016/j.ocemod.2024.102375
Yibo Hu , Fei Yu , Guangcheng Si , Fan Sun , Xingchuan Liu , Xinyuan Diao , Zifei Chen , Feng Nan , Qiang Ren

The Yellow Sea Cold Water Mass (YSCWM), surrounded by thermocline and fronts, is one of the most notable hydrological characteristics of the Yellow Sea (YS) in the summer. Temperature structure at the boundary of the YSCWM drives the Yellow Sea Cold Water Mass Circulation (YSCWMC). However, the 3D structure of YSCWMC remains unclear. The position, seasonal evolution, and dynamical mechanisms of the YSCWMC were examined by observations and high-resolution numerical model. It was found that the core of the YSCWMC is located at the junction of the fronts and the thermocline during the summer. Furthermore, the YSCWMC exhibits remarkable seasonal variations characterized by a progressive shrinking and deepening dependence on the position and strength of the fronts and thermocline. The YSCWMC is geostrophic at the basin scale, with the barotropic pressure term determining the direction of the circulation and the baroclinic pressure term controlling the vertical structure of the circulation. Fronts yield a baroclinic effect in the thermal field and affect the sea surface elevation in the barotropic process. Therefore, fronts are crucial to the formation of the YSCWMC. Nevertheless, under conditions of steep topography, tidal rectification is comparable to the frontal contribution to the circulation.

黄海冷水团(YSCWM)被温跃层和锋面包围,是夏季黄海(YS)最显著的水文特征之一。黄海冷水团边界的温度结构驱动着黄海冷水团环流(YSCWMC)。然而,黄海冷水团环流的三维结构仍不清楚。通过观测和高分辨率数值模式研究了黄海冷水团的位置、季节演变和动力学机制。研究发现,夏季 YSCWMC 的核心位于锋面和热跃层的交界处。此外,YSCWMC 还表现出显著的季节性变化,其特征是随锋面和温跃层的位置和强度而逐渐缩小和加深。在海盆尺度上,YSCWMC 是地营性的,气压项决定了环流的方向,而气压项则控制了环流的垂直结构。锋面在热场中产生条气效应,并在气压过程中影响海面高度。因此,锋面对形成 YSCWMC 至关重要。不过,在地形陡峭的条件下,潮汐整流作用与锋面对环流的贡献相当。
{"title":"The seasonal evolution of the Yellow Sea Cold Water Mass Circulation: Roles of fronts, thermoclines, and tidal rectification","authors":"Yibo Hu ,&nbsp;Fei Yu ,&nbsp;Guangcheng Si ,&nbsp;Fan Sun ,&nbsp;Xingchuan Liu ,&nbsp;Xinyuan Diao ,&nbsp;Zifei Chen ,&nbsp;Feng Nan ,&nbsp;Qiang Ren","doi":"10.1016/j.ocemod.2024.102375","DOIUrl":"https://doi.org/10.1016/j.ocemod.2024.102375","url":null,"abstract":"<div><p>The Yellow Sea Cold Water Mass (YSCWM), surrounded by thermocline and fronts, is one of the most notable hydrological characteristics of the Yellow Sea (YS) in the summer. Temperature structure at the boundary of the YSCWM drives the Yellow Sea Cold Water Mass Circulation (YSCWMC). However, the 3D structure of YSCWMC remains unclear. The position, seasonal evolution, and dynamical mechanisms of the YSCWMC were examined by observations and high-resolution numerical model. It was found that the core of the YSCWMC is located at the junction of the fronts and the thermocline during the summer. Furthermore, the YSCWMC exhibits remarkable seasonal variations characterized by a progressive shrinking and deepening dependence on the position and strength of the fronts and thermocline. The YSCWMC is geostrophic at the basin scale, with the barotropic pressure term determining the direction of the circulation and the baroclinic pressure term controlling the vertical structure of the circulation. Fronts yield a baroclinic effect in the thermal field and affect the sea surface elevation in the barotropic process. Therefore, fronts are crucial to the formation of the YSCWMC. Nevertheless, under conditions of steep topography, tidal rectification is comparable to the frontal contribution to the circulation.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"190 ","pages":"Article 102375"},"PeriodicalIF":3.2,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141083543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved tidal estimates from short water level records via the modified harmonic analysis model 通过修改后的谐波分析模型从短水位记录中改进潮汐估算
IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-04-20 DOI: 10.1016/j.ocemod.2024.102372
Haidong Pan , Tengfei Xu , Zexun Wei

To fully resolve eight major tides from short-term records, classical harmonic analysis model usually infers unresolved constituents with the help of inference relationships from nearby long-term tide gauges. Our previous study developed a modified harmonic analysis model using the credo of smoothness (i.e., MHACS) which can achieve this without inference relationships. Via introducing the inherent natural links between major tides, MHACS breaks the restrictions of the Rayleigh criterion and requires only ∼9-day hourly records to resolve eight major tides. However, when data length is shorter than 9 days, the results of MHACS become problematic due to over-fitting. In this study, we introduce ridge regression to replace ordinary least squares (OLS) in the MHACS. Practical experiments on short-term hourly tide gauge records and satellite altimeter observations indicate that ridge regression can effectively eliminate meaningless mathematical artifacts obtained by OLS. The minimum length of records for MHACS to resolve eight major tides dramatically decreases from ∼210 h to ∼75 h as a result of using ridge regression. It is also found that ridge regression can notably reduce the uncertainties of tidal estimates from MHACS. Moreover, other modified harmonic analysis models such as NS_TIDE designed for river tides also suffer from over-fitting which can be solved by ridge regression in a similar way.

为了从短期记录中完全解析八大潮汐,经典的谐波分析模型通常借助附近长期验潮仪的推断关系来推断未解析的成分。我们之前的研究利用平滑信条开发了一种改进的谐波分析模型(即 MHACS),无需推断关系即可实现这一目标。通过引入主要潮汐之间固有的自然联系,MHACS 打破了雷利准则的限制,只需要 9 天~9 天的每小时记录就能解析 8 个主要潮汐。然而,当数据长度短于 9 天时,MHACS 的结果会因过度拟合而出现问题。在本研究中,我们在 MHACS 中引入了脊回归来替代普通最小二乘法(OLS)。对短期每小时验潮仪记录和卫星高度计观测数据的实际实验表明,脊回归能有效消除 OLS 得到的无意义数学假象。使用脊回归后,MHACS 分辨八个主要潮汐的最小记录长度从 ∼ 210 小时大幅减少到 ∼ 75 小时。研究还发现,脊回归可以显著降低 MHACS 对潮汐估算的不确定性。此外,为河流潮汐设计的其他修正谐波分析模型(如 NS_TIDE)也存在过拟合问题,也可以用类似的方法通过脊回归来解决。
{"title":"Improved tidal estimates from short water level records via the modified harmonic analysis model","authors":"Haidong Pan ,&nbsp;Tengfei Xu ,&nbsp;Zexun Wei","doi":"10.1016/j.ocemod.2024.102372","DOIUrl":"10.1016/j.ocemod.2024.102372","url":null,"abstract":"<div><p>To fully resolve eight major tides from short-term records, classical harmonic analysis model usually infers unresolved constituents with the help of inference relationships from nearby long-term tide gauges. Our previous study developed a modified harmonic analysis model using the credo of smoothness (i.e., MHACS) which can achieve this without inference relationships. Via introducing the inherent natural links between major tides, MHACS breaks the restrictions of the Rayleigh criterion and requires only ∼9-day hourly records to resolve eight major tides. However, when data length is shorter than 9 days, the results of MHACS become problematic due to over-fitting. In this study, we introduce ridge regression to replace ordinary least squares (OLS) in the MHACS. Practical experiments on short-term hourly tide gauge records and satellite altimeter observations indicate that ridge regression can effectively eliminate meaningless mathematical artifacts obtained by OLS. The minimum length of records for MHACS to resolve eight major tides dramatically decreases from ∼210 h to ∼75 h as a result of using ridge regression. It is also found that ridge regression can notably reduce the uncertainties of tidal estimates from MHACS. Moreover, other modified harmonic analysis models such as NS_TIDE designed for river tides also suffer from over-fitting which can be solved by ridge regression in a similar way.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"189 ","pages":"Article 102372"},"PeriodicalIF":3.2,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140761302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction of coherent interference in wave-resolving nearshore models and validation with experimental data 近岸波解析模型中的相干干扰校正及实验数据验证
IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-04-16 DOI: 10.1016/j.ocemod.2024.102369
Simon Treillou , Patrick Marchesiello , Christine M. Baker

Here we address the problem of coherent interference that arises in double-sum wavemakers of wave-resolving models. Identified as a key problem for experimental and numerical simulations since the late 1970s, this problem induces spurious persistent longshore variability and affects nearshore dynamics. To overcome this problem, we present the implementation of a single-sum wavemaker in the 3D wave-resolving model CROCO. The new wavemaker, which assigns only one pair of direction and frequency values to each component of the wave spectrum, definitively prevents coherent interference, unlike a conventional double-sum wavemaker that allows waves of different direction to share the same frequency. Each wave component must also strictly comply with the periodicity rules, to avoid any spurious boundary dynamics. We validate the single-sum wavemaker with experimental data collected in a wave basin with longshore-uniform bathymetry and compare results with the double-sum wavemaker simulations. We show that the new wavemaker produces transient rips devoid of any coherent interference effect and that, consequently, the model statistics closely match the experimental data. The new wavemaker therefore guarantees statistical integrity while reducing computational costs, a necessary step for realistic wave-resolving studies of nearshore dynamics.

在这里,我们讨论了波浪解算模型的双和波浪发生器中出现的相干干扰问题。自 20 世纪 70 年代末以来,这个问题已被确定为实验和数值模拟的一个关键问题,它会诱发虚假的持续长岸变化,并影响近岸动力学。为了克服这一问题,我们在三维波浪解析模型 CROCO 中实施了单和造浪技术。与允许不同方向的波浪共享相同频率的传统双和制波器不同,这种新制波器只为波谱中的每个分量分配一对方向和频率值,可明确防止相干干扰。每个波谱分量还必须严格遵守周期规则,以避免任何虚假的边界动态。我们利用在具有长岸均匀水深的波浪盆地中收集的实验数据验证了单和造浪器,并将结果与双和造浪器的模拟结果进行了比较。结果表明,新造波器产生的瞬态波纹不存在任何相干干扰效应,因此,模型的统计数据与实验数据非常吻合。因此,新造波机在保证统计完整性的同时降低了计算成本,这是对近岸动力学进行真实波浪解析研究的必要步骤。
{"title":"Correction of coherent interference in wave-resolving nearshore models and validation with experimental data","authors":"Simon Treillou ,&nbsp;Patrick Marchesiello ,&nbsp;Christine M. Baker","doi":"10.1016/j.ocemod.2024.102369","DOIUrl":"https://doi.org/10.1016/j.ocemod.2024.102369","url":null,"abstract":"<div><p>Here we address the problem of coherent interference that arises in double-sum wavemakers of wave-resolving models. Identified as a key problem for experimental and numerical simulations since the late 1970s, this problem induces spurious persistent longshore variability and affects nearshore dynamics. To overcome this problem, we present the implementation of a single-sum wavemaker in the 3D wave-resolving model CROCO. The new wavemaker, which assigns only one pair of direction and frequency values to each component of the wave spectrum, definitively prevents coherent interference, unlike a conventional double-sum wavemaker that allows waves of different direction to share the same frequency. Each wave component must also strictly comply with the periodicity rules, to avoid any spurious boundary dynamics. We validate the single-sum wavemaker with experimental data collected in a wave basin with longshore-uniform bathymetry and compare results with the double-sum wavemaker simulations. We show that the new wavemaker produces transient rips devoid of any coherent interference effect and that, consequently, the model statistics closely match the experimental data. The new wavemaker therefore guarantees statistical integrity while reducing computational costs, a necessary step for realistic wave-resolving studies of nearshore dynamics.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"189 ","pages":"Article 102369"},"PeriodicalIF":3.2,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140631803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elastic moduli of first-year sea ice calculated from tests with vibrating beams 通过振动梁测试计算出的第一年海冰的弹性模量
IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-04-16 DOI: 10.1016/j.ocemod.2024.102365
Aleksey Marchenko

Thirteen laboratory and field tests were carried out with vibrating sea ice beams to study the dependence of the elastic modulus of sea ice in the spectral range from 1 Hz to 500 Hz. Six full-scale tests with floating fixed ends beams were carried out on the land fast ice of the Spitsbergen fjords. For laboratory testing, smaller ice beams were made sea ice of the same fjords. Three tests with columnar fresh lake ice S2 were conducted to validate the method for calculating of the added mass of a floating beam with fixed ends. A 60% increase in the elastic modulus of columnar sea ice S2 was found due to an increase in the frequency of flexural deformations in the range from 10 Hz to 500 Hz. The paper also discusses the influence of ice structure on the elastic modulus.

对振动海冰梁进行了 13 次实验室和实地测试,以研究海冰弹性模量在 1 赫兹至 500 赫兹频谱范围内的相关性。在斯匹次卑尔根峡湾的陆地快冰上进行了六次带有浮动固定端梁的全面测试。为了进行实验室测试,在同一峡湾的海冰上制作了较小的冰梁。对柱状新鲜湖冰 S2 进行了三次测试,以验证计算固定端浮梁附加质量的方法。结果发现,由于在 10 Hz 至 500 Hz 范围内弯曲变形频率的增加,柱状海冰 S2 的弹性模量增加了 60%。论文还讨论了冰结构对弹性模量的影响。
{"title":"Elastic moduli of first-year sea ice calculated from tests with vibrating beams","authors":"Aleksey Marchenko","doi":"10.1016/j.ocemod.2024.102365","DOIUrl":"10.1016/j.ocemod.2024.102365","url":null,"abstract":"<div><p>Thirteen laboratory and field tests were carried out with vibrating sea ice beams to study the dependence of the elastic modulus of sea ice in the spectral range from 1 Hz to 500 Hz. Six full-scale tests with floating fixed ends beams were carried out on the land fast ice of the Spitsbergen fjords. For laboratory testing, smaller ice beams were made sea ice of the same fjords. Three tests with columnar fresh lake ice S2 were conducted to validate the method for calculating of the added mass of a floating beam with fixed ends. A 60% increase in the elastic modulus of columnar sea ice S2 was found due to an increase in the frequency of flexural deformations in the range from 10 Hz to 500 Hz. The paper also discusses the influence of ice structure on the elastic modulus.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"189 ","pages":"Article 102365"},"PeriodicalIF":3.2,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140757621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Ocean Modelling
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1