Pub Date : 2024-10-21Epub Date: 2024-09-04DOI: 10.1098/rstb.2022.0521
Brian M Wood, David A Raichlen, Herman Pontzer, Jacob A Harris, M Katherine Sayre, Bunga Paolo, Mariamu Anyawire, Audax Z P Mabulla
Human evolutionary ecology stands to benefit by integrating theory and methods developed in movement ecology, and in turn, to make contributions to the broader field of movement ecology by leveraging our species' distinct attributes. In this paper, we review data and evolutionary models suggesting that major changes in socio-spatial behaviour accompanied the evolution of language. To illustrate and explore these issues, we present a comparison of GPS measures of the socio-spatial behaviour of Hadza hunter-gatherers of northern Tanzania to those of olive baboons (Papio anubis), a comparatively small-brained primate that is also savanna-adapted. While standard spatial metrics show modest differences, measures of spatial diversity, landscape exploration and spatiotemporal displacement between individuals differ markedly. Groups of Hadza foragers rapidly accumulate a vast, diverse knowledge pool about places and things over the horizon, contrasting with the baboon's narrower and more homogeneous pool of ecological information. The larger and more complex socio-spatial world illustrated by the Hadza is one where heightened cognitive abilities for spatial and episodic memory, navigation, perspective taking and communication about things beyond the here and now all have clear value.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
{"title":"Beyond the here and now: hunter-gatherer socio-spatial complexity and the evolution of language.","authors":"Brian M Wood, David A Raichlen, Herman Pontzer, Jacob A Harris, M Katherine Sayre, Bunga Paolo, Mariamu Anyawire, Audax Z P Mabulla","doi":"10.1098/rstb.2022.0521","DOIUrl":"10.1098/rstb.2022.0521","url":null,"abstract":"<p><p>Human evolutionary ecology stands to benefit by integrating theory and methods developed in movement ecology, and in turn, to make contributions to the broader field of movement ecology by leveraging our species' distinct attributes. In this paper, we review data and evolutionary models suggesting that major changes in socio-spatial behaviour accompanied the evolution of language. To illustrate and explore these issues, we present a comparison of GPS measures of the socio-spatial behaviour of Hadza hunter-gatherers of northern Tanzania to those of olive baboons (<i>Papio anubis</i>), a comparatively small-brained primate that is also savanna-adapted. While standard spatial metrics show modest differences, measures of spatial diversity, landscape exploration and spatiotemporal displacement between individuals differ markedly. Groups of Hadza foragers rapidly accumulate a vast, diverse knowledge pool about places and things over the horizon, contrasting with the baboon's narrower and more homogeneous pool of ecological information. The larger and more complex socio-spatial world illustrated by the Hadza is one where heightened cognitive abilities for spatial and episodic memory, navigation, perspective taking and communication about things beyond the here and now all have clear value.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1912","pages":"20220521"},"PeriodicalIF":5.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449209/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21Epub Date: 2024-09-04DOI: 10.1098/rstb.2024.0060
Emmanuel Lourie, Tomer Shamay, Sivan Toledo, Ran Nathan
According to the information centre hypothesis (ICH), colonial species use social information in roosts to locate ephemeral resources. Validating the ICH necessitates showing that uninformed individuals follow informed ones to the new resource. However, following behaviour may not be essential when individuals have a good memory of the resources' locations. For instance, Egyptian fruit bats forage on spatially predictable trees, but some bear fruit at unpredictable times. These circumstances suggest an alternative ICH pathway in which bats learn when fruits emerge from social cues in the roost but then use spatial memory to locate them without following conspecifics. Here, using an unique field manipulation and high-frequency tracking data, we test for this alternative pathway: we introduced bats smeared with the fruit odour of the unpredictably fruiting Ficus sycomorus trees to the roost, when they bore no fruits, and then tracked the movement of conspecifics exposed to the manipulated social cue. As predicted, bats visited the F. sycomorus trees with significantly higher probabilities than during routine foraging trips (of >200 bats). Our results show how the integration of spatial memory and social cues leads to efficient resource tracking and highlight the value of using large movement datasets and field experiments in behavioural ecology. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
{"title":"Spatial memory obviates following behaviour in an information centre of wild fruit bats.","authors":"Emmanuel Lourie, Tomer Shamay, Sivan Toledo, Ran Nathan","doi":"10.1098/rstb.2024.0060","DOIUrl":"10.1098/rstb.2024.0060","url":null,"abstract":"<p><p>According to the information centre hypothesis (ICH), colonial species use social information in roosts to locate ephemeral resources. Validating the ICH necessitates showing that uninformed individuals follow informed ones to the new resource. However, following behaviour may not be essential when individuals have a good memory of the resources' locations. For instance, Egyptian fruit bats forage on spatially predictable trees, but some bear fruit at unpredictable times. These circumstances suggest an alternative ICH pathway in which bats learn when fruits emerge from social cues in the roost but then use spatial memory to locate them without following conspecifics. Here, using an unique field manipulation and high-frequency tracking data, we test for this alternative pathway: we introduced bats smeared with the fruit odour of the unpredictably fruiting <i>Ficus sycomorus</i> trees to the roost, when they bore no fruits, and then tracked the movement of conspecifics exposed to the manipulated social cue. As predicted, bats visited the <i>F. sycomorus</i> trees with significantly higher probabilities than during routine foraging trips (of >200 bats). Our results show how the integration of spatial memory and social cues leads to efficient resource tracking and highlight the value of using large movement datasets and field experiments in behavioural ecology. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1912","pages":"20240060"},"PeriodicalIF":5.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449202/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21Epub Date: 2024-09-04DOI: 10.1098/rstb.2022.0523
Simona Picardi, Briana L Abrahms, Jerod A Merkle
Animals simultaneously navigate spatial and social environments, and their decision-making with respect to those environments constitutes their spatial (e.g. habitat selection) and social (e.g. conspecific associations) phenotypes. The spatial-social interface is a recently introduced conceptual framework linking these components of spatial and social ecology. The spatial-social interface is inherently scale-dependent, yet it has not been integrated with the rich body of literature on ecological scale. Here, we develop a conceptual connection between the spatial-social interface and ecological scale. We propose three key innovations that incrementally build upon each other. First, the use-availability framework that underpins a large body of literature in behavioural ecology can be used in analogy to the phenotype-environment nomenclature and is transferable across the spatial and social realms. Second, both spatial and social phenotypes are hierarchical, with nested components that are linked via constraints-from the top down-or emergent properties-from the bottom up. Finally, in both the spatial and social realms, the definitions of environment and phenotype depend on the focal scale of inquiry. These conceptual innovations cast our understanding of the relationships between social and spatial dimensions of animal ecology in a new light, allowing a more holistic understanding and clearer hypothesis development for animal behaviour. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
{"title":"Scale at the interface of spatial and social ecology.","authors":"Simona Picardi, Briana L Abrahms, Jerod A Merkle","doi":"10.1098/rstb.2022.0523","DOIUrl":"10.1098/rstb.2022.0523","url":null,"abstract":"<p><p>Animals simultaneously navigate spatial and social environments, and their decision-making with respect to those environments constitutes their spatial (e.g. habitat selection) and social (e.g. conspecific associations) phenotypes. The spatial-social interface is a recently introduced conceptual framework linking these components of spatial and social ecology. The spatial-social interface is inherently scale-dependent, yet it has not been integrated with the rich body of literature on ecological scale. Here, we develop a conceptual connection between the spatial-social interface and ecological scale. We propose three key innovations that incrementally build upon each other. First, the use-availability framework that underpins a large body of literature in behavioural ecology can be used in analogy to the phenotype-environment nomenclature and is transferable across the spatial and social realms. Second, both spatial and social phenotypes are hierarchical, with nested components that are linked via constraints-from the top down-or emergent properties-from the bottom up. Finally, in both the spatial and social realms, the definitions of environment and phenotype depend on the focal scale of inquiry. These conceptual innovations cast our understanding of the relationships between social and spatial dimensions of animal ecology in a new light, allowing a more holistic understanding and clearer hypothesis development for animal behaviour. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1912","pages":"20220523"},"PeriodicalIF":5.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495407/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21Epub Date: 2024-09-04DOI: 10.1098/rstb.2022.0525
J G Hendrix, A L Robitaille, J M Kusch, Q M R Webber, E Vander Wal
Site fidelity-the tendency to reuse familiar spaces-is expected to improve fitness. Familiarity with the local environment is particularly crucial when resource demands or predation risk are high. Consequently, site fidelity often peaks during reproduction when energetic costs are high and offspring are vulnerable. For many species, the environment they experience is not solely a function of geography but also of the social environment. Social fidelity, the selection for familiar social environments, could constitute an independent or parallel strategy to spatial fidelity when considering behaviour at the spatial-social interface. Using global positioning system locations from caribou across Newfoundland, we tested whether females selected calving sites based on proximity to familiar conspecifics, in addition to geographical (spatial) fidelity. These strategies were synergistic, not alternative, and correlated across the population but more variable within individuals. We also tested whether either form of fidelity affected reproductive success. We failed to detect an effect of spatial or social fidelity on reproductive success in this population. Nevertheless, given the association between social and spatial fidelity and the demonstrated fitness consequences of site fidelity in other systems, familiar conspecifics and the potential benefits these social partners provide may be an underappreciated component driving site fidelity.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
{"title":"Faithful pals and familiar locales: differentiating social and spatial site fidelity during reproduction.","authors":"J G Hendrix, A L Robitaille, J M Kusch, Q M R Webber, E Vander Wal","doi":"10.1098/rstb.2022.0525","DOIUrl":"10.1098/rstb.2022.0525","url":null,"abstract":"<p><p>Site fidelity-the tendency to reuse familiar spaces-is expected to improve fitness. Familiarity with the local environment is particularly crucial when resource demands or predation risk are high. Consequently, site fidelity often peaks during reproduction when energetic costs are high and offspring are vulnerable. For many species, the environment they experience is not solely a function of geography but also of the social environment. Social fidelity, the selection for familiar social environments, could constitute an independent or parallel strategy to spatial fidelity when considering behaviour at the spatial-social interface. Using global positioning system locations from caribou across Newfoundland, we tested whether females selected calving sites based on proximity to familiar conspecifics, in addition to geographical (spatial) fidelity. These strategies were synergistic, not alternative, and correlated across the population but more variable within individuals. We also tested whether either form of fidelity affected reproductive success. We failed to detect an effect of spatial or social fidelity on reproductive success in this population. Nevertheless, given the association between social and spatial fidelity and the demonstrated fitness consequences of site fidelity in other systems, familiar conspecifics and the potential benefits these social partners provide may be an underappreciated component driving site fidelity.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1912","pages":"20220525"},"PeriodicalIF":5.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449207/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21Epub Date: 2024-09-04DOI: 10.1098/rstb.2022.0522
James C Thompson, Carolyn Parkinson
Even in our highly interconnected modern world, geographic factors play an important role in human social connections. Similarly, social relationships influence how and where we travel, and how we think about our spatial world. Here, we review the growing body of neuroscience research that is revealing multiple interactions between social and spatial processes in both humans and non-human animals. We review research on the cognitive and neural representation of spatial and social information, and highlight recent findings suggesting that underlying mechanisms might be common to both. We discuss how spatial factors can influence social behaviour, and how social concepts modify representations of space. In so doing, this review elucidates not only how neural representations of social and spatial information interact but also similarities in how the brain represents and operates on analogous information about its social and spatial surroundings.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
{"title":"Interactions between neural representations of the social and spatial environment.","authors":"James C Thompson, Carolyn Parkinson","doi":"10.1098/rstb.2022.0522","DOIUrl":"10.1098/rstb.2022.0522","url":null,"abstract":"<p><p>Even in our highly interconnected modern world, geographic factors play an important role in human social connections. Similarly, social relationships influence how and where we travel, and how we think about our spatial world. Here, we review the growing body of neuroscience research that is revealing multiple interactions between social and spatial processes in both humans and non-human animals. We review research on the cognitive and neural representation of spatial and social information, and highlight recent findings suggesting that underlying mechanisms might be common to both. We discuss how spatial factors can influence social behaviour, and how social concepts modify representations of space. In so doing, this review elucidates not only how neural representations of social and spatial information interact but also similarities in how the brain represents and operates on analogous information about its social and spatial surroundings.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1912","pages":"20220522"},"PeriodicalIF":5.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449203/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21Epub Date: 2024-09-04DOI: 10.1098/rstb.2022.0533
Lauren E Ricci, Mike Cox, Kezia R Manlove
The spatial availability of social resources is speculated to structure animal movement decisions, but the effects of social resources on animal movements are difficult to identify because social resources are rarely measured. Here, we assessed whether varying availability of a key social resource-access to receptive mates-produces predictable changes in movement decisions among bighorn sheep in Nevada, the United States. We compared the probability that males made long-distance 'foray' movements, a critical driver of connectivity, across three ecoregions with varying temporal duration of a socially mediated factor, breeding season. We used a hidden Markov model to identify foray events and then quantified the effects of social covariates on the probability of foray using a discrete choice model. We found that males engaged in forays at higher rates when the breeding season was short, suggesting that males were most responsive to the social resource when its existence was short lived. During the breeding season, males altered their response to social covariates, relative to the non-breeding season, though patterns varied, and age was associated with increased foray probability. Our results suggest that animals respond to the temporal availability of social resources when making the long-distance movements that drive connectivity. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
{"title":"Movement decisions driving metapopulation connectivity respond to social resources in a long-lived ungulate, bighorn sheep (<i>Ovis canadensis</i>).","authors":"Lauren E Ricci, Mike Cox, Kezia R Manlove","doi":"10.1098/rstb.2022.0533","DOIUrl":"10.1098/rstb.2022.0533","url":null,"abstract":"<p><p>The spatial availability of social resources is speculated to structure animal movement decisions, but the effects of social resources on animal movements are difficult to identify because social resources are rarely measured. Here, we assessed whether varying availability of a key social resource-access to receptive mates-produces predictable changes in movement decisions among bighorn sheep in Nevada, the United States. We compared the probability that males made long-distance 'foray' movements, a critical driver of connectivity, across three ecoregions with varying temporal duration of a socially mediated factor, breeding season. We used a hidden Markov model to identify foray events and then quantified the effects of social covariates on the probability of foray using a discrete choice model. We found that males engaged in forays at higher rates when the breeding season was short, suggesting that males were most responsive to the social resource when its existence was short lived. During the breeding season, males altered their response to social covariates, relative to the non-breeding season, though patterns varied, and age was associated with increased foray probability. Our results suggest that animals respond to the temporal availability of social resources when making the long-distance movements that drive connectivity. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1912","pages":"20220533"},"PeriodicalIF":5.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449200/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21Epub Date: 2024-09-04DOI: 10.1098/rstb.2022.0524
Michael Chimento, Damien R Farine
The structure of social networks fundamentally influences spreading dynamics. In general, the more contact between individuals, the more opportunity there is for the transmission of information or disease to take place. Yet, contact between individuals, and any resulting transmission events, are determined by a combination of spatial (where individuals choose to move) and social rules (who they choose to interact with or learn from). Here, we examine the effect of the social-spatial interface on spreading dynamics using a simulation model. We quantify the relative effects of different movement rules (localized, semi-localized, nomadic and resource-based movement) and social transmission rules (simple transmission, anti-conformity, proportional, conformity and threshold rules) to both the structure of social networks and spread of a novel behaviour. Localized movement created weakly connected sparse networks, nomadic movement created weakly connected dense networks, and resource-based movement generated strongly connected modular networks. The resulting rate of spreading varied with different combinations of movement and transmission rules, but-importantly-the relative rankings of transmission rules changed when running simulations on static versus dynamic representations of networks. Our results emphasize that individual-level social and spatial behaviours influence emergent network structure, and are of particular consequence for the spread of information under complex transmission rules.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
{"title":"The contribution of movement to social network structure and spreading dynamics under simple and complex transmission.","authors":"Michael Chimento, Damien R Farine","doi":"10.1098/rstb.2022.0524","DOIUrl":"10.1098/rstb.2022.0524","url":null,"abstract":"<p><p>The structure of social networks fundamentally influences spreading dynamics. In general, the more contact between individuals, the more opportunity there is for the transmission of information or disease to take place. Yet, contact between individuals, and any resulting transmission events, are determined by a combination of spatial (where individuals choose to move) and social rules (who they choose to interact with or learn from). Here, we examine the effect of the social-spatial interface on spreading dynamics using a simulation model. We quantify the relative effects of different movement rules (localized, semi-localized, nomadic and resource-based movement) and social transmission rules (simple transmission, anti-conformity, proportional, conformity and threshold rules) to both the structure of social networks and spread of a novel behaviour. Localized movement created weakly connected sparse networks, nomadic movement created weakly connected dense networks, and resource-based movement generated strongly connected modular networks. The resulting rate of spreading varied with different combinations of movement and transmission rules, but-importantly-the relative rankings of transmission rules changed when running simulations on static versus dynamic representations of networks. Our results emphasize that individual-level social and spatial behaviours influence emergent network structure, and are of particular consequence for the spread of information under complex transmission rules.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1912","pages":"20220524"},"PeriodicalIF":5.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495406/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21Epub Date: 2024-09-04DOI: 10.1098/rstb.2022.0527
Kaitlyn M Gaynor, Briana Abrahms, Kezia R Manlove, William K Oestreich, Justine A Smith
Human disturbance is contributing to widespread, global changes in the distributions and densities of wild animals. These anthropogenic impacts on wildlife arise from multiple bottom-up and top-down pathways, including habitat loss, resource provisioning, climate change, pollution, infrastructure development, hunting and our direct presence. Animal behaviour is an important mechanism linking these disturbances to population outcomes, although these behavioural pathways are often complex and can remain obscured when different aspects of behaviour are studied in isolation from one another. The spatial-social interface provides a lens for understanding how an animal's spatial and social environments interact to determine its spatial and social phenotype (i.e. measurable characteristics of an individual), and how these phenotypes interact and feed back to reshape environments. Here, we review studies of animal behaviour at the spatial-social interface to understand and predict how human disturbance affects animal movement, distribution and intraspecific interactions, with consequences for the conservation of populations and ecosystems. By understanding the spatial-social mechanisms linking human disturbance to conservation outcomes, we can better design management interventions to mitigate undesired consequences of disturbance.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
{"title":"Anthropogenic impacts at the interface of animal spatial and social behaviour.","authors":"Kaitlyn M Gaynor, Briana Abrahms, Kezia R Manlove, William K Oestreich, Justine A Smith","doi":"10.1098/rstb.2022.0527","DOIUrl":"10.1098/rstb.2022.0527","url":null,"abstract":"<p><p>Human disturbance is contributing to widespread, global changes in the distributions and densities of wild animals. These anthropogenic impacts on wildlife arise from multiple bottom-up and top-down pathways, including habitat loss, resource provisioning, climate change, pollution, infrastructure development, hunting and our direct presence. Animal behaviour is an important mechanism linking these disturbances to population outcomes, although these behavioural pathways are often complex and can remain obscured when different aspects of behaviour are studied in isolation from one another. The spatial-social interface provides a lens for understanding how an animal's spatial and social environments interact to determine its spatial and social phenotype (i.e. measurable characteristics of an individual), and how these phenotypes interact and feed back to reshape environments. Here, we review studies of animal behaviour at the spatial-social interface to understand and predict how human disturbance affects animal movement, distribution and intraspecific interactions, with consequences for the conservation of populations and ecosystems. By understanding the spatial-social mechanisms linking human disturbance to conservation outcomes, we can better design management interventions to mitigate undesired consequences of disturbance.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1912","pages":"20220527"},"PeriodicalIF":5.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449167/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21Epub Date: 2024-09-04DOI: 10.1098/rstb.2022.0534
Gregory F Albery, Quinn M R Webber, Damien Farine, Simona Picardi, Eric Vander Wal, Kezia R Manlove
All animals exhibit some combination of spatial and social behaviours. A diversity of interactions occurs between such behaviours, producing emergent phenomena at the spatial-social interface. Untangling and interrogating these complex, intertwined processes can be vital for identifying the mechanisms, causes and consequences of behavioural variation in animal ecology. Nevertheless, the integrated study of the interactions between spatial and social phenotypes and environments (at the spatial-social interface) is in its relative infancy. In this theme issue, we present a collection of papers chosen to expand the spatial-social interface along several theoretical, methodological and empirical dimensions. They detail new perspectives, methods, study systems and more, as well as offering roadmaps for applied outputs and detailing exciting new directions for the field to move in the future. In this Introduction, we outline the contents of these papers, placing them in the context of what comes before, and we synthesize a number of takeaways and future directions for the spatial-social interface. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
{"title":"Expanding theory, methodology and empirical systems at the spatial-social interface.","authors":"Gregory F Albery, Quinn M R Webber, Damien Farine, Simona Picardi, Eric Vander Wal, Kezia R Manlove","doi":"10.1098/rstb.2022.0534","DOIUrl":"10.1098/rstb.2022.0534","url":null,"abstract":"<p><p>All animals exhibit some combination of spatial and social behaviours. A diversity of interactions occurs between such behaviours, producing emergent phenomena at <i>the spatial-social interface</i>. Untangling and interrogating these complex, intertwined processes can be vital for identifying the mechanisms, causes and consequences of behavioural variation in animal ecology. Nevertheless, the integrated study of the interactions between spatial and social phenotypes and environments (at the spatial-social interface) is in its relative infancy. In this theme issue, we present a collection of papers chosen to expand the spatial-social interface along several theoretical, methodological and empirical dimensions. They detail new perspectives, methods, study systems and more, as well as offering roadmaps for applied outputs and detailing exciting new directions for the field to move in the future. In this Introduction, we outline the contents of these papers, placing them in the context of what comes before, and we synthesize a number of takeaways and future directions for the spatial-social interface. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1912","pages":"20220534"},"PeriodicalIF":5.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449169/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21Epub Date: 2024-09-04DOI: 10.1098/rstb.2022.0532
Aakash Pandey, Chris Wojan, Abigail Feuka, Meggan E Craft, Kezia Manlove, Kim M Pepin
Social and spatial structures of host populations play important roles in pathogen transmission. For environmentally transmitted pathogens, the host space use interacts with both the host social structure and the pathogen's environmental persistence (which determines the time-lag across which two hosts can transmit). Together, these factors shape the epidemiological dynamics of environmentally transmitted pathogens. While the importance of both social and spatial structures and environmental pathogen persistence has long been recognized in epidemiology, they are often considered separately. A better understanding of how these factors interact to determine disease dynamics is required for developing robust surveillance and management strategies. Here, we use a simple agent-based model where we vary host mobility (spatial), host gregariousness (social) and pathogen decay (environmental persistence), each from low to high levels to uncover how they affect epidemiological dynamics. By comparing epidemic peak, time to epidemic peak and final epidemic size, we show that longer infectious periods, higher group mobility, larger group size and longer pathogen persistence lead to larger, faster growing outbreaks, and explore how these processes interact to determine epidemiological outcomes such as the epidemic peak and the final epidemic size. We identify general principles that can be used for planning surveillance and control for wildlife host-pathogen systems with environmental transmission across a range of spatial behaviour, social structure and pathogen decay rates. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
{"title":"The influence of social and spatial processes on the epidemiology of environmentally transmitted pathogens in wildlife: implications for management.","authors":"Aakash Pandey, Chris Wojan, Abigail Feuka, Meggan E Craft, Kezia Manlove, Kim M Pepin","doi":"10.1098/rstb.2022.0532","DOIUrl":"10.1098/rstb.2022.0532","url":null,"abstract":"<p><p>Social and spatial structures of host populations play important roles in pathogen transmission. For environmentally transmitted pathogens, the host space use interacts with both the host social structure and the pathogen's environmental persistence (which determines the time-lag across which two hosts can transmit). Together, these factors shape the epidemiological dynamics of environmentally transmitted pathogens. While the importance of both social and spatial structures and environmental pathogen persistence has long been recognized in epidemiology, they are often considered separately. A better understanding of how these factors interact to determine disease dynamics is required for developing robust surveillance and management strategies. Here, we use a simple agent-based model where we vary host mobility (spatial), host gregariousness (social) and pathogen decay (environmental persistence), each from low to high levels to uncover how they affect epidemiological dynamics. By comparing epidemic peak, time to epidemic peak and final epidemic size, we show that longer infectious periods, higher group mobility, larger group size and longer pathogen persistence lead to larger, faster growing outbreaks, and explore how these processes interact to determine epidemiological outcomes such as the epidemic peak and the final epidemic size. We identify general principles that can be used for planning surveillance and control for wildlife host-pathogen systems with environmental transmission across a range of spatial behaviour, social structure and pathogen decay rates. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1912","pages":"20220532"},"PeriodicalIF":5.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449208/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}