Pub Date : 2024-10-09Epub Date: 2024-08-26DOI: 10.1098/rsta.2023.0411
Andrew Davis, Chris Waldon, Stuart I Muldrew, Bhavin S Patel, Patricia Verrier, Thomas R Barrett, Gerasimos A Politis
The Spherical Tokamak for Energy Production (STEP) programme is an ambitious but challenging endeavour to design and deliver a prototype fusion power plant. It is a rapid, fast-moving programme, designing a first of a kind device in a Volatile, Uncertain, Complex and Ambiguous (VUCA) environment, and digital tools play a pivotal role in managing and navigating this space. Digital helps manage the complexity and sheer volume of information. Advanced modelling and simulation techniques provide a platform for designers to explore various scenarios and iteratively refine designs, providing insights into the intricate interplay of requirements, constraints and design factors across physics, technology and engineering domains and aiding informed decision-making amidst uncertainties. It also provides a means of building confidence in the new scientific, technological and engineering solutions, given that a full-scale-integrated precursor test is not feasible, almost by definition. The digital strategy for STEP is built around a vision of a digital twin of the whole plant. This will evolve from the current digital shadow formed by system architecting codes and complex workflows and will be underpinned by developing capabilities in plasma, materials and engineering simulation, data management, advanced control, industrial cybersecurity, regulation, digital technologies and related digital disciplines. These capabilities will help address the key challenges of managing the complexity and quantity of information, improving the reliability and robustness of the current digital shadow and developing an understanding of its validity and performance.This article is part of the theme issue 'Delivering Fusion Energy - The Spherical Tokamak for Energy Production (STEP)'.
{"title":"Digital: accelerating the pathway.","authors":"Andrew Davis, Chris Waldon, Stuart I Muldrew, Bhavin S Patel, Patricia Verrier, Thomas R Barrett, Gerasimos A Politis","doi":"10.1098/rsta.2023.0411","DOIUrl":"10.1098/rsta.2023.0411","url":null,"abstract":"<p><p>The Spherical Tokamak for Energy Production (STEP) programme is an ambitious but challenging endeavour to design and deliver a prototype fusion power plant. It is a rapid, fast-moving programme, designing a first of a kind device in a Volatile, Uncertain, Complex and Ambiguous (VUCA) environment, and digital tools play a pivotal role in managing and navigating this space. Digital helps manage the complexity and sheer volume of information. Advanced modelling and simulation techniques provide a platform for designers to explore various scenarios and iteratively refine designs, providing insights into the intricate interplay of requirements, constraints and design factors across physics, technology and engineering domains and aiding informed decision-making amidst uncertainties. It also provides a means of building confidence in the new scientific, technological and engineering solutions, given that a full-scale-integrated precursor test is not feasible, almost by definition. The digital strategy for STEP is built around a vision of a digital twin of the whole plant. This will evolve from the current digital shadow formed by system architecting codes and complex workflows and will be underpinned by developing capabilities in plasma, materials and engineering simulation, data management, advanced control, industrial cybersecurity, regulation, digital technologies and related digital disciplines. These capabilities will help address the key challenges of managing the complexity and quantity of information, improving the reliability and robustness of the current digital shadow and developing an understanding of its validity and performance.This article is part of the theme issue 'Delivering Fusion Energy - The Spherical Tokamak for Energy Production (STEP)'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2280","pages":"20230411"},"PeriodicalIF":4.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423680/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09Epub Date: 2024-08-26DOI: 10.1098/rsta.2023.0412
Debbie Kempton, Chris Waldon
The design, delivery and operation of a large-scale infrastructure project are challenging at best. For the Spherical Tokamak for Energy Production (STEP) prototype powerplant (SPP), the challenges increased dramatically. In addition to being a large-scale infrastructure project, it is a cutting edge, first of a kind (FOAK) technology demonstrator. The design teams are working in a volatile, uncertain, complex and ambiguous environment, where technology is constantly emerging, maturing and changing. STEP will be unlike any power plant ever built and requires the development of new technologies and capabilities, but also a novel approach to planning and maturing the design. By taking a holistic view of the engineering life cycle from the start, the programme will be better positioned to achieve an SPP that is fit for purpose and can be used to show a path to ultimate commercial viability for subsequent power plants. This paper will review the key challenges in maturing a FOAK fusion power plant and look in depth at how the STEP team are maturing the required capabilities and planning to ensure successful delivery of the SPP. This article is part of the theme issue 'Delivering Fusion Energy - The Spherical Tokamak for Energy Production (STEP)'.
{"title":"Maturing the design: challenges in maturing a first of a kind fusion power plant.","authors":"Debbie Kempton, Chris Waldon","doi":"10.1098/rsta.2023.0412","DOIUrl":"10.1098/rsta.2023.0412","url":null,"abstract":"<p><p>The design, delivery and operation of a large-scale infrastructure project are challenging at best. For the Spherical Tokamak for Energy Production (STEP) prototype powerplant (SPP), the challenges increased dramatically. In addition to being a large-scale infrastructure project, it is a cutting edge, first of a kind (FOAK) technology demonstrator. The design teams are working in a volatile, uncertain, complex and ambiguous environment, where technology is constantly emerging, maturing and changing. STEP will be unlike any power plant ever built and requires the development of new technologies and capabilities, but also a novel approach to planning and maturing the design. By taking a holistic view of the engineering life cycle from the start, the programme will be better positioned to achieve an SPP that is fit for purpose and can be used to show a path to ultimate commercial viability for subsequent power plants. This paper will review the key challenges in maturing a FOAK fusion power plant and look in depth at how the STEP team are maturing the required capabilities and planning to ensure successful delivery of the SPP. This article is part of the theme issue 'Delivering Fusion Energy - The Spherical Tokamak for Energy Production (STEP)'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2280","pages":"20230412"},"PeriodicalIF":4.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423681/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09Epub Date: 2024-08-26DOI: 10.1098/rsta.2023.0406
Hendrik Meyer
The programme to design plasma scenarios for the Spherical Tokamak for Energy Production (STEP), a reactor concept aiming at net electricity production, seeks to exploit the inherent advantages of the spherical tokamak (ST) while making conservative assumptions about plasma performance. This approach is motivated by the large gap between present-day STs and future burning plasmas based on this concept. It is concluded that plasma exhaust in such a device is most likely to be manageable in a double null (DN) configuration, and that high core performance is favoured by positive triangularity (PT) plasmas with an elevated central safety factor. Based on a full technical and physics assessment of external heating and current drive (CD) systems, it was decided that the external CD is provided most effectively by microwaves. Operation with active resistive wall mode (RWM) stabilization as well as high elongation is needed for the most compact solution. The gap between existing devices and STEP is most pronounced in the area of core transport, owing to high normalized plasma pressure in the latter which changes qualitatively the nature of the turbulence controlling transport. Plugging this gap will require dedicated experiments, particularly on high-performance STs, and the development of reduced models that faithfully represent turbulent transport at high normalized pressure. Plasma scenarios in STEP will also need to be such that edge localized modes (ELMs) either do not occur or are small enough to be compatible with material lifetime limits. The high current needed for a power plant-relevant plasma leads to the unavoidable generation of high runaway electron beam current during a disruption, where novel mitigation techniques may be needed. This article is part of the theme issue 'Delivering Fusion Energy - The Spherical Tokamak for Energy Production (STEP)'.
能源生产球形托卡马克(STEP)是一个以净发电为目标的反应堆概念,其等离子体方案设计计划旨在利用球形托卡马克(ST)的固有优势,同时对等离子体性能做出保守假设。之所以采用这种方法,是因为目前的 ST 与基于这一概念的未来燃烧等离子体之间存在巨大差距。得出的结论是,这种装置中的等离子体废气最有可能在双空(DN)配置中得到控制,而具有较高中心安全系数的正三角形(PT)等离子体则有利于实现较高的核心性能。根据对外部加热和电流驱动(CD)系统进行的全面技术和物理评估,决定外部 CD 由微波提供最为有效。为了实现最紧凑的解决方案,需要采用主动电阻壁模式(RWM)稳定运行和高伸长率。现有设备与 STEP 之间的差距在堆芯传输领域最为明显,原因是后者的归一化等离子体压力较高,从本质上改变了控制传输的湍流性质。要弥补这一差距,需要进行专门的实验,特别是在高性能 ST 上进行实验,并开发能够忠实反映高归一化压力下湍流输运的简化模型。STEP 中的等离子体方案还需要确保边缘局部模式 (ELM) 不发生或足够小,以符合材料寿命限制。发电厂相关等离子体所需的大电流导致在中断期间不可避免地产生高失控电子束电流,这可能需要新的缓解技术。本文是 "提供聚变能源--用于能源生产的球形托卡马克(STEP)"专题的一部分。
{"title":"Plasma burn-mind the gap.","authors":"Hendrik Meyer","doi":"10.1098/rsta.2023.0406","DOIUrl":"10.1098/rsta.2023.0406","url":null,"abstract":"<p><p>The programme to design plasma scenarios for the Spherical Tokamak for Energy Production (STEP), a reactor concept aiming at net electricity production, seeks to exploit the inherent advantages of the spherical tokamak (ST) while making conservative assumptions about plasma performance. This approach is motivated by the large gap between present-day STs and future burning plasmas based on this concept. It is concluded that plasma exhaust in such a device is most likely to be manageable in a double null (DN) configuration, and that high core performance is favoured by positive triangularity (PT) plasmas with an elevated central safety factor. Based on a full technical and physics assessment of external heating and current drive (CD) systems, it was decided that the external CD is provided most effectively by microwaves. Operation with active resistive wall mode (RWM) stabilization as well as high elongation is needed for the most compact solution. The gap between existing devices and STEP is most pronounced in the area of core transport, owing to high normalized plasma pressure in the latter which changes qualitatively the nature of the turbulence controlling transport. Plugging this gap will require dedicated experiments, particularly on high-performance STs, and the development of reduced models that faithfully represent turbulent transport at high normalized pressure. Plasma scenarios in STEP will also need to be such that edge localized modes (ELMs) either do not occur or are small enough to be compatible with material lifetime limits. The high current needed for a power plant-relevant plasma leads to the unavoidable generation of high runaway electron beam current during a disruption, where novel mitigation techniques may be needed. This article is part of the theme issue 'Delivering Fusion Energy - The Spherical Tokamak for Energy Production (STEP)'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2280","pages":"20230406"},"PeriodicalIF":4.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423683/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We explore a new design strategy of leveraging kinematic bifurcation in creating origami/kirigami-based three-dimensional (3D) hierarchical, reconfigurable, mechanical metamaterials with tunable mechanical responses. We start from constructing three basic, thick, panel-based structural units composed of 4, 6 and 8 rigidly rotatable cubes in close-looped connections. They are modelled, respectively, as 4R, 6R and 8R (R stands for revolute joint) spatial looped kinematic mechanisms, and are used to create a library of reconfigurable hierarchical building blocks that exhibit kinematic bifurcations. We analytically investigate their reconfiguration kinematics and predict the occurrence and locations of kinematic bifurcations through a trial-correction modelling method. These building blocks are tessellated in 3D to create various 3D bifurcated hierarchical mechanical metamaterials that preserve the kinematic bifurcations in their building blocks to reconfigure into different 3D architectures. By combining the kinematics and considering the elastic torsional energy stored in the folds, we develop the geometric mechanics to predict their tunable anisotropic Poisson's ratios and stiffnesses. We find that kinematic bifurcation can significantly effect mechanical responses, including changing the sign of Poisson's ratios from negative to positive beyond bifurcation, tuning the anisotropy, and overcoming the polarity of structural stiffness and enhancing the number of deformation paths with more reconfigured shapes.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.
{"title":"Geometric mechanics of kiri-origami-based bifurcated mechanical metamaterials.","authors":"Yanbin Li, Caizhi Zhou, Jie Yin","doi":"10.1098/rsta.2024.0010","DOIUrl":"10.1098/rsta.2024.0010","url":null,"abstract":"<p><p>We explore a new design strategy of leveraging kinematic bifurcation in creating origami/kirigami-based three-dimensional (3D) hierarchical, reconfigurable, mechanical metamaterials with tunable mechanical responses. We start from constructing three basic, thick, panel-based structural units composed of 4, 6 and 8 rigidly rotatable cubes in close-looped connections. They are modelled, respectively, as 4R, 6R and 8R (R stands for revolute joint) spatial looped kinematic mechanisms, and are used to create a library of reconfigurable hierarchical building blocks that exhibit kinematic bifurcations. We analytically investigate their reconfiguration kinematics and predict the occurrence and locations of kinematic bifurcations through a trial-correction modelling method. These building blocks are tessellated in 3D to create various 3D bifurcated hierarchical mechanical metamaterials that preserve the kinematic bifurcations in their building blocks to reconfigure into different 3D architectures. By combining the kinematics and considering the elastic torsional energy stored in the folds, we develop the geometric mechanics to predict their tunable anisotropic Poisson's ratios and stiffnesses. We find that kinematic bifurcation can significantly effect mechanical responses, including changing the sign of Poisson's ratios from negative to positive beyond bifurcation, tuning the anisotropy, and overcoming the polarity of structural stiffness and enhancing the number of deformation paths with more reconfigured shapes.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2283","pages":"20240010"},"PeriodicalIF":4.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456820/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weijian Jiao, Hang Shu, Qiguang He, Jordan R Raney
Mechanical metamaterials have recently been exploited as an interesting platform for information storing, retrieval and processing, analogous to electronic devices. In this work, we describe the design and fabrication a two-dimensional (2D) multistable metamaterial consisting of building blocks that can be switched between two distinct stable phases, and which are capable of storing binary information analogous to digital bits. By changing the spatial distribution of the phases, we can achieve a variety of different configurations and tunable mechanical properties (both static and dynamic). Moreover, we demonstrate the ability to determine the phase distribution via simple probing of the dynamic properties, to which we refer as mechanical proprioception. Finally, as a simple demonstration of feasibility, we illustrate a strategy for building autonomous kirigami systems that can receive inputs from their environment. This work could bring new insights for the design of mechanical metamaterials with information processing and computing functionalities. This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.
{"title":"Toward mechanical proprioception in autonomously reconfigurable kirigami-inspired mechanical systems.","authors":"Weijian Jiao, Hang Shu, Qiguang He, Jordan R Raney","doi":"10.1098/rsta.2024.0116","DOIUrl":"https://doi.org/10.1098/rsta.2024.0116","url":null,"abstract":"<p><p>Mechanical metamaterials have recently been exploited as an interesting platform for information storing, retrieval and processing, analogous to electronic devices. In this work, we describe the design and fabrication a two-dimensional (2D) multistable metamaterial consisting of building blocks that can be switched between two distinct stable phases, and which are capable of storing binary information analogous to digital bits. By changing the spatial distribution of the phases, we can achieve a variety of different configurations and tunable mechanical properties (both static and dynamic). Moreover, we demonstrate the ability to determine the phase distribution via simple probing of the dynamic properties, to which we refer as mechanical proprioception. Finally, as a simple demonstration of feasibility, we illustrate a strategy for building autonomous kirigami systems that can receive inputs from their environment. This work could bring new insights for the design of mechanical metamaterials with information processing and computing functionalities. This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2283","pages":"20240116"},"PeriodicalIF":4.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shun Yao, Constantinos L Zekios, Stavros V Georgakopoulos
A rigidly foldable and reconfigurable origami antenna is developed here. This antenna uses thick folding panels thereby providing robust operation and folding/unfolding actuation, which are very important for many applications in extreme environments, such as space. Also, this antenna can be constructed using standard printed circuit boards, which simplifies its manufacturing. For the reconfigurable antenna developed here, the origami flasher pattern is chosen to achieve a spatial transformation of a dipole operating at 0.48 GHz to a conical spiral antenna (CSA) operating from 2.1 to 3.7 GHz. The design equations for the origami CSA are derived. A prototype is built using a 0.81-mm-thick FR4 substrate to validate the proposed methodology. The antenna parameters are investigated in a wide frequency range. Our simulated results agree very well with the measurements. The rigid structure of the proposed design and its reconfigurable nature make it a good candidate for satellite communications.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.
{"title":"A rigidly foldable and reconfigurable thick origami antenna.","authors":"Shun Yao, Constantinos L Zekios, Stavros V Georgakopoulos","doi":"10.1098/rsta.2024.0002","DOIUrl":"https://doi.org/10.1098/rsta.2024.0002","url":null,"abstract":"<p><p>A rigidly foldable and reconfigurable origami antenna is developed here. This antenna uses thick folding panels thereby providing robust operation and folding/unfolding actuation, which are very important for many applications in extreme environments, such as space. Also, this antenna can be constructed using standard printed circuit boards, which simplifies its manufacturing. For the reconfigurable antenna developed here, the origami flasher pattern is chosen to achieve a spatial transformation of a dipole operating at 0.48 GHz to a conical spiral antenna (CSA) operating from 2.1 to 3.7 GHz. The design equations for the origami CSA are derived. A prototype is built using a 0.81-mm-thick FR4 substrate to validate the proposed methodology. The antenna parameters are investigated in a wide frequency range. Our simulated results agree very well with the measurements. The rigid structure of the proposed design and its reconfigurable nature make it a good candidate for satellite communications.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2283","pages":"20240002"},"PeriodicalIF":4.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present the design and evaluation of a simple, compact and efficient electromagnetic energy harvesting tile that can be used to harness energy from footsteps. The proposed harvester incorporates a translational-rotational origami-inspired coupling mechanism to transform the axial loads exerted by human footsteps into a localized rotation of an electromagnetic generator. The coupling mechanism employs a non-rigid tunable Kresling spring, the restorative behaviour of which is tunable to maximize energy transduction from the applied load to the generator. A computational model is developed to optimize the design parameters of the mechanism, which are then utilized to fabricate a prototype of the energy harvester. The tile is tested under loading conditions that mimic a human step, where it is demonstrated that it is capable of generating 4.18 W of electrical power per step with a surface power density of 2609 μW cm-2.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.
我们介绍了一种简单、紧凑、高效的电磁能量收集瓦的设计和评估,该瓦片可用于从脚步声中获取能量。所提出的采集器采用了一种平移-旋转折纸启发式耦合机制,将人类脚步施加的轴向载荷转化为电磁发生器的局部旋转。耦合机制采用了非刚性可调克雷斯林弹簧,其恢复行为可调,以最大限度地实现从外加负载到发电机的能量转换。我们开发了一个计算模型来优化机构的设计参数,然后利用这些参数制造出能量收集器的原型。在模拟人类迈步的加载条件下对瓷砖进行了测试,结果表明它每迈一步能够产生 4.18 W 的电能,表面功率密度为 2609 μW cm-2。
{"title":"Energy-harvesting tile incorporating an origami coupling mechanism.","authors":"Shadi Khazaaleh, Ahmed S Dalaq, Mohammed F Daqaq","doi":"10.1098/rsta.2024.0015","DOIUrl":"https://doi.org/10.1098/rsta.2024.0015","url":null,"abstract":"<p><p>We present the design and evaluation of a simple, compact and efficient electromagnetic energy harvesting tile that can be used to harness energy from footsteps. The proposed harvester incorporates a translational-rotational origami-inspired coupling mechanism to transform the axial loads exerted by human footsteps into a localized rotation of an electromagnetic generator. The coupling mechanism employs a non-rigid tunable Kresling spring, the restorative behaviour of which is tunable to maximize energy transduction from the applied load to the generator. A computational model is developed to optimize the design parameters of the mechanism, which are then utilized to fabricate a prototype of the energy harvester. The tile is tested under loading conditions that mimic a human step, where it is demonstrated that it is capable of generating 4.18 W of electrical power per step with a surface power density of 2609 μW cm<sup>-2</sup>.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2283","pages":"20240015"},"PeriodicalIF":4.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent advances in origami science and engineering have particularly focused on the challenges of dynamics. While research has primarily focused on statics and kinematics, the need for effective and processable dynamic models has become apparent. This paper evaluates various dynamic modelling techniques for rigid-foldable origami, particularly focusing on their ability to capture nonlinear dynamic behaviours. Two primary methods, the lumped mass-spring-damper approach and the energy-based method, are examined using a bistable stacked Miura-origami (SMO) structure as a case study. Through systematic dynamic experiments, we analyse the effectiveness of these models in predicting bistable dynamic responses, including intra- and interwell oscillations, in different loading conditions. Our findings reveal that the energy-based approach, which considers the structure's inertia and utilizes dynamic experimental data for parameter identification, outperforms other models in terms of validity and accuracy. This model effectively predicts the dynamic response types, the rich and complex nonlinear characteristics and the critical frequency where interwell oscillations occur. Despite its relatively increased complexity in model derivation, it maintains computational efficiency and shows promise for broader applications in origami dynamics. By comparing model predictions with experimental results, this study enhances our understanding of origami dynamics and contributes valuable insights for future research and applications. This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.
{"title":"Evaluating dynamic models for rigid-foldable origami: unveiling intricate bistable dynamics of stacked-Miura-origami structures as a case study.","authors":"Hongbin Fang, Haiping Wu, Zuolin Liu, Qiwei Zhang, Jian Xu","doi":"10.1098/rsta.2024.0014","DOIUrl":"https://doi.org/10.1098/rsta.2024.0014","url":null,"abstract":"<p><p>Recent advances in origami science and engineering have particularly focused on the challenges of dynamics. While research has primarily focused on statics and kinematics, the need for effective and processable dynamic models has become apparent. This paper evaluates various dynamic modelling techniques for rigid-foldable origami, particularly focusing on their ability to capture nonlinear dynamic behaviours. Two primary methods, the lumped mass-spring-damper approach and the energy-based method, are examined using a bistable stacked Miura-origami (SMO) structure as a case study. Through systematic dynamic experiments, we analyse the effectiveness of these models in predicting bistable dynamic responses, including intra- and interwell oscillations, in different loading conditions. Our findings reveal that the energy-based approach, which considers the structure's inertia and utilizes dynamic experimental data for parameter identification, outperforms other models in terms of validity and accuracy. This model effectively predicts the dynamic response types, the rich and complex nonlinear characteristics and the critical frequency where interwell oscillations occur. Despite its relatively increased complexity in model derivation, it maintains computational efficiency and shows promise for broader applications in origami dynamics. By comparing model predictions with experimental results, this study enhances our understanding of origami dynamics and contributes valuable insights for future research and applications. This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2283","pages":"20240014"},"PeriodicalIF":4.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The bar and hinge framework uses truss elements and rotational springs to efficiently model the structural behaviour of origami. The framework is especially useful to investigate origami metamaterials as they have repeating geometry, which makes conventional finite element simulations very expensive due to a large number of degrees of freedom. This work proposes improvements to the parameters of bar and hinge model within the context of structural dynamics, specifically modal analysis under small deformations, which has not been carried out previously in the literature. A range of low-frequency modes involving origami folding and panel bending deformations that can be accurately captured by the bar and hinge framework are identified. Within this range, bar and hinge parameters like the lumped masses and the rotational spring stiffness values are derived using conservation laws and finite element tests. The best among the proposed schemes is found to predict natural frequencies of the considered origami structures to within 10% maximum error, improving the accuracy by more than three times from existing schemes. In most cases, the errors in natural frequencies are less than 5%. This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.
{"title":"Improving mass lumping and stiffness parameters of bar and hinge model for accurate modal dynamics of origami structures.","authors":"Anandaroop Lahiri, Phanisri Pradeep Pratapa","doi":"10.1098/rsta.2024.0012","DOIUrl":"https://doi.org/10.1098/rsta.2024.0012","url":null,"abstract":"<p><p>The bar and hinge framework uses truss elements and rotational springs to efficiently model the structural behaviour of origami. The framework is especially useful to investigate origami metamaterials as they have repeating geometry, which makes conventional finite element simulations very expensive due to a large number of degrees of freedom. This work proposes improvements to the parameters of bar and hinge model within the context of structural dynamics, specifically modal analysis under small deformations, which has not been carried out previously in the literature. A range of low-frequency modes involving origami folding and panel bending deformations that can be accurately captured by the bar and hinge framework are identified. Within this range, bar and hinge parameters like the lumped masses and the rotational spring stiffness values are derived using conservation laws and finite element tests. The best among the proposed schemes is found to predict natural frequencies of the considered origami structures to within 10% maximum error, improving the accuracy by more than three times from existing schemes. In most cases, the errors in natural frequencies are less than 5%. This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2283","pages":"20240012"},"PeriodicalIF":4.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Origami-/kirigami-inspired structures: from fundamentals to applications.","authors":"Suyi Li, Mohammed Daqaq","doi":"10.1098/rsta.2024.0018","DOIUrl":"10.1098/rsta.2024.0018","url":null,"abstract":"","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2283","pages":"20240018"},"PeriodicalIF":4.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495675/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}